A Practical Approach To Combustion Process Optimization Using An Improved Immune Optimizer

Show simple item record

dc.contributor.author Miller, A.
dc.contributor.author Milewski, J.
dc.contributor.author Warchol, M.
dc.contributor.author Swirski, K.
dc.contributor.author Wojdan, K.
dc.date.accessioned 2017-04-06T09:47:51Z
dc.date.available 2017-04-06T09:47:51Z
dc.date.issued 2017-04-06
dc.identifier.issn 2079-6226
dc.identifier.uri http://journals.jkuat.ac.ke/index.php/sri
dc.identifier.uri http://hdl.handle.net/123456789/2816
dc.description.abstract An improved version of the immune inspired optimizer SILO is presented in this paper. The new model identification method allows for utilization of model gains constraints. Moreover the operation of a new Transition State algorithm is analyzed based on a real-life example. The improved version of SILO was implemented in a real power boiler. Results from a real combustion process optimization are presented in this paper. en_US
dc.description.sponsorship JKUAT en_US
dc.language.iso en en_US
dc.publisher COETEC en_US
dc.relation.ispartofseries Sustainable Research and Innovation Conference Proceedings;Vol 3 (2011) 2011
dc.subject Practical Approach To Combustion Process en_US
dc.subject Optimization Using An Improved Immune Optimizer en_US
dc.subject KENYA en_US
dc.subject JKUAT en_US
dc.title A Practical Approach To Combustion Process Optimization Using An Improved Immune Optimizer en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account