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Abstract- The uptake in electric vehicles has led to a keen debate and need 

for the development of autonomous ground vehicles (AGV). AGVs are 
equipped with an increasing number of actuators which aid to actively control 

its lateral and longitudinal dynamics. Amidst the varied road terrains, 

precision in coordination is of the essence. In that regard, manoeuvrability, 
accuracy, and controllability are vital aspects to consider in the design of an 

AGV controller. The four-wheel steer and four-wheel drive (4WS4WD) 

architecture is one such AGV technology that offers the challenge of over-
actuation and nonlinearity. The paper reviews the AGV dynamics and 

scholarly approaches to handling control task amidst the AGV challenges.
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I. INTRODUCTION 

HE imperative nature of vehicle navigation has 

necessitated the development of Autonomous

Ground Vehicles (AGVs) with reliable accuracy, 

manoeuvrability, and controllability. Usually, an AGV is 

required to follow a path with a high degree of accuracy 

under unstructured and uneven terrain conditions, where a 

significant amount of wheel slip and unpredictable 

disturbance forces occur at the vehicle’s wheels [1]. The 

four-wheel steer and four-wheel drive (4WS4WD) vehicle, 

with wheels that can be steered and driven independently, 

is a revolutionary platform that has great potential to 

perform high maneuverability and flexibility in harsh 

environments [2] and [3].  

The main challenge in the control of 4WS4WD is the 

number of control inputs (four steering angles and four 

drive torques), which results in an over-actuated system [4] 

and [5], where only three outputs including its degree of 

freedom (DOF) in the longitudinal, lateral and angular 

directions of the vehicle are concerned. How to allocate all 

eight control inputs to achieve high path following 

performance has not yet been effectively solved [6]. The 

control allocation should handle the control problems of 

over-actuated systems. 

The aim of this study involves appreciating AGV 

system dynamics and challenges in the control task by 

providing an overview of the architectural and control 

strategies geared to improve the performance of 

(semi)autonomous vehicles. AGV controls are constrained 

and uncertain hence Model Predictive Control (MPC) has 

been designed and established as the promising tool [7]–

[14]. The need to synthesize robust and safety constraints 

with regard to vehicle dynamics is ubiquitous. 

The paper reviews control approaches for 

(semi)autonomous vehicle adopting MPC. Approaches 

considered are linear MPC, nonlinear MPC, adaptive MPC, 

and Robust MPC. Decoupling and control allocation 

approaches are an additional concern when dealing with a 

control algorithm that handles both lateral and longitudinal 

vehicle dynamics, hence, forms part of the review.  

II. AGV MODEL

A. CONTROL OVERVIEW 

AGV under consideration has four wheels to be steered 

and driven independently. The technologies that aid 

autonomy include sensing, path planning, and control [15]. 

For that reason, the concept of autonomy requires that the 

control algorithm depends on sensors and output 

measurement 𝑦 in determining reference path trajectory and 

velocity profile. During motion, a vehicle that veers off the 

path should be steered back by a control command with a 

steering angle 𝛿 to revert back to its course. In addition, 

when a vehicle has to be driven consistent with the 

reference velocity profile set by path/velocity planner, a 

control command with an equivalent torque input 𝑇 has to 

be supplied.  

B. EQUATIONS OF MOTION 

The dynamics of motion for an AGV can be described 

using the well-developed Newton-Euler formalism. 

Considering input 𝑢 and state 𝜓, the systems can be 

expressed as; 

( , )f u =   (1) 

The AGV architecture brings together submodules that 

make up a vehicle which include vehicle body dynamic 

model, driving unit dynamic model and tire model [16]. The 

subsystems are integrated together and external 

disturbances considered in representing vehicle states under 

eight system inputs; four drive torques and four steering 

angles.  

A vehicles body frame 𝑥, 𝑦, and 𝑧 are the longitudinal, 

lateral and vertical axes (consider Fig. 1). 𝑥̇, 𝑦 ̇ and 𝜃 ̇ are the 

longitudinal, lateral velocities and yaw rate. Considering 
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𝐹𝑥, 𝐹𝑦 and 𝑀𝑧 are the longitudinal, lateral forces acting on

the vehicle CG and the rotating moment about 𝑧 𝑎𝑥𝑒𝑠. 

Fig. 1 Vehicle x-y-z orientation 

Four-wheel notation for body dynamic in the driving task is 

governed by, 

 ( ) ( ) ( )( )4 , wt f t u t =  (2) 

where 𝜓(𝑡) ∈ ℝ𝑛 is the state of the system and 𝑢(𝑡) ∈ ℝ𝑚𝑟

is the input, 𝑛 = 10 is the number of states and 𝑚𝑟 = 8 is

the number of inputs. The vehicles states are lateral, 

longitudinal velocities in the inertial frame and angular 

velocities on the four wheels denoted as: 

, , , , , , , , ,
T

fl fr rl rry x Y X w w w w   =   (3) 

Where 𝑓𝑙 is front left, 𝑓𝑟 is front right, 𝑟𝑙 rear left and 𝑟𝑟 is 

rear right wheel notations and W. The inputs are steering 

angle and tractive torque at the four wheels denoted by: 

[ , , , , , , , ]T

fl rl fr rr fl rl fr rru T T T T   = (4) 

where 𝛿 is the steering angle and 𝑇 is the driving torque. 

The equation governing motion based on Newtonian 

formalism [17]–[19] to describe the system are 

yfl yfr yrl yrrm mx F F F Fy = − + + + +  (5)

xfl xfr xrl xrrm my F F Fx F= + + + + (6) 

( ) ( )

( )

...

...

f yfl yfr r yrl yrr

xfl xfr xrl xrr

I x F F x F F

c F F F F

 = + − + +

+ − + − +
(7) 

 
x

Y sin cos
y

 
 

=  
 

  (8) 

 
x

X cos sin
y

 
 

= −  
 

  (9) 

The 𝑥 and 𝑦 components of the tire forces 𝐹𝑥 and 𝐹𝑦 are

computed by 

  li

yi i i

ci

F
F sin cos

F
 

 
=  

 
(10) 

  li

xi i i

ci

F
F cos sin

F
 

 
= −  

 
 (11) 

Lateral and longitudinal tire forces 𝐹𝑙𝑖 and 𝐹𝑐𝑖 are governed

by 

( ), , ,ci c i i ziF f s F = (12) 

( ), , ,li l i i ziF f s F = (13) 

where 𝛼 represents the slip angle of the tire, 𝑠 is the slip 

ratio, 𝜇 is the friction coefficient and 𝐹𝑧 is the normal force.

In addition, 𝐹𝑐𝑖and 𝐹𝑙𝑖 indicate lateral (cornering) and

longitudinal tire forces in the tire frame. 𝐹𝑦𝑖 and 𝐹𝑥𝑖are the

components of tire forces along the lateral and longitudinal 

vehicle axes. 𝛼𝑖  are the wheel slip angles.

Two-wheel notation equation is better used in the 

design of the steer dynamics as Fig. 2 below.  

Fig. 2 Two wheel steer model 

By considering angular and radial velocity as shown 

in the Fig. 2 above, the kinematic equations of the vehicle 

defined through the global coordinate system (𝑋 − 𝑂 − 𝑌) 

is summarized as 

lng rdlX V cos V sin = −    (14) 

lng rdlY V sin V cos = +    (15) 

( ) ( )( )tan tanlng f f r r

f r

V

L L

   


+ − +
=

+
(16) 

where 𝑉𝑙𝑛𝑔 is the longitudinal velocity, 𝑉𝑟𝑑𝑙 is the radial

velocity, 𝛿𝑓 front steering input, 𝛿𝑟 is the rear steering input,

𝛼𝑓 is front slip angle, 𝛼𝑟is the rear slip angle. The system
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states can be expressed as a model based on the dynamic 

and kinematic equation as 

 
T

Pos x y = (17) 

T

lng rdl angVel V V V =   (18) 

T

lng rdl angAcc a a a =   (19) 

where 𝑎𝑙𝑛𝑔 , 𝑎𝑟𝑑𝑙  and 𝑎𝑎𝑛𝑔 are longitudinal, radial and

angular acceleration respectively. 

III. CONTROL STRATEGIES

This section reviews MPC formulation and approaches 

applied to steering and/or drive functions of a 

(semi)autonomous system.  

A. GENERAL MPC FORMULATION 

Design makes use of a model of a process in the 

computation of the control signal by performing a 

minimization of the objective function [9]. In that regard, 

the design of the objective function relates the future plant 

behaviour. A dynamic model according to [7] is of essence 

which yield the predictive model concept and make use of 

a design interval time known as prediction horizon.  

The control algorithms consistent with model 

prediction differ based on the process model, objective 

function, noise, and application of constraints [12]. 

Predictive model is a mathematical representation that 

describes or approximates behaviour of the real system. The 

computation is done and applied in a receding horizon 

technique [20]. Due to use of modern computer systems in 

computation, a discrete model is a convenient approach for 

computation of the control command. The prediction model 

thus contains  

1 ( , )k k kx f x u+ = (20) 

where 𝑥𝑘𝜖ℝ𝑛 represents the system state while 𝑢𝑘 ∈ ℝ𝑚

represents the instantaneous control action at time 𝑘. In 

addition, an objective cost function is used as the criteria for 

optimizing the computation of control command. The 

function is used to compute control trajectory along the 

prediction horizon 𝑁 [9]. The form of the equation is 

1

0

( ( | ))
( , ( ))

( ( | ))

StageN

N k Term
i

L x k i k
J x u k

V x k N k

−

=

+ +
=

+
 (21) 

where 𝐿𝑠𝑡𝑎𝑔𝑒(. ) represents the stage cost while 𝑉𝑇𝑒𝑟𝑚(. )
represents the terminal cost and 𝑢̅(𝑘) represents future 

instantaneous control that evolves along the prediction 

horizon at instant 𝑘.  
The computation of the control command to ensure the 

system state evolves along a desire trajectory has to satisfy 

a set of constraint imposed as expressed by [12] due to 

system limits and design desirables. Constraints can be 

formulated as (in)equality and system model on the terminal 

cost [11].  

B. LINEAR MPC CONTROL 

A feedback linearized model based on feedback 

linearization following the equations (5-7) and (14-16) and 

linear MPC were studied by [16]. The reference profile was 

used to define an offset model used in the evaluation of the 

AGV performance under varied terrains and winding 

curvatures. The offset model inferred from 

ref  = − (22) 

 

lng lngref

rdl rdl

ang angref

V V

Vel V V ref

V V

− 
 

= − 
 − 

(23) 

ln  g lngref

rdl rdlref

ang angref

a a

a a a

a a

 
 

= − 
 

− 

−

(24) 

Is used in the design formulation of the MPC. The author 

used a sequential quadratic programming solver where the 

offset model based on the linearized system is expressed as; 

( ). ,x A x v x t= + (25) 

where  

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

A =

is the system state matrix. The system the output is 

determined by  

c cy C x=  (26) 

where 

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

cC =  

is the output matrix. The system (25) is discretized so as to 

form discrete state-vector defined by 

( ) ( ) ( )d d d d dx k  1    A x k    B u k+ = + (27) 

( ) ( )d d dy k   C x k= (28) 
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Matrices 𝐴𝑑 , 𝐵𝑑 , 𝐶𝑑  of the system are updated after

discretization. The system represented by (27) portrays 

oscillation hence solved through definition of new control 

input presented by [12] as (27) and the system augmentation 

to yield 

1

1

  

0   

k k

ku u

k k

x xA B B
u

x xI I

+

+

      
= +       
      

(29) 

and,     0
k

k u

k

x
y C

x

 
=  

 

(30) 

where, 1k k ku u u − = − (31) 

The optimal control problem is then formulated as 

, ,

1

1 1

0

0

min ( ) ( )

[( ) ( )]

p

i ref i i ref i

p

i i i i

H
T

i

H
T

i

z z Q z z

u u R u u
−

− −

=

=

− − +

− −




(32) 

The system performance was investigated based on 

data presented in the table 1 shown below.  

Table 1 Data used in simulation [1] 

Para Value Unit Para Value Unit 

Vehicle Model 

𝑀 200 𝐾𝑔 𝑚𝑑 15 𝑘𝑔 

𝐿𝑓 0.85 𝑚 𝐿𝑟 0.85 𝑚 

𝐿ℎ 0.5 𝑚 𝑅𝑤 0.25 𝑚 

𝐽𝑧 45 𝐾𝑔. 𝑚2 𝐽𝑤 0.8 𝐾𝑔. 𝑚2

System constraints 

𝐹𝑑𝑚𝑎𝑥 250 𝑁 𝛿𝑚𝑎𝑥 40 0

𝐹𝑑𝑚𝑖𝑛 −250 𝑁 𝛿𝑚𝑖𝑛 −40 0

∆𝐹𝑑𝑚𝑎𝑥 0.8 𝑁 ∆𝛿𝑚𝑎𝑥 0.35 0

The linear MPC controller based on a linearized system 

of equation posted an offset error of 3.2 𝑐𝑚 and subsequent 

heading error of less than 20 at speeds of less than 3 𝑚/𝑠.

Fig. 3 Performance simulation [1] 

The linear MPC performance were impressive yet 

still suffered due to model errors as a result of 

approximations made by linearization of the process. For 

that reason, performance of the strategy deteriorates in 

cases where aggressive manoeuvres are required.  

C. NONLINEAR MPC CONTROL 

Nonlinear MPC has been implemented for bicycle and 

tire model in Fig. 2, system (5-7) and (14-16) by [22]. Kong 

et al. [22], investigated discretization time and the vehicle 

model; kinematic and bicycle model to design a controller.  

Fig. 4  Controller and planner 

The setup used a nonlinear system of equations to 

design a Model predictive controller (MPC). In that regard, 

with optimal control formulation as (32). The input and 

prediction horizon at 8 steps and thus looks ahead 1.6 s. The 

sampling time, 𝑡𝑠 = 100 𝑚𝑠, discretization time 𝑡𝑑 =
200 𝑚𝑠 was used and limits to the system were considered 

as shown in table 2. 

Table 2 System limits 

𝜃 𝑎 𝜃̇ 𝑎̇ 

minimum −370 −1.5 𝑚/𝑠2 −100/𝑠 −3 𝑚/𝑠3

maximum 370 1 𝑚/𝑠2 100/𝑠 1.5𝑚/𝑠3

The investigation was performed for low-speed 

tracking, and results show an impressive performance when 

a kinematic model (14-16) is used for lateral control.  
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Fig. 5 Kinematic performance on a low-speed right turn 

tracking 

The controller is capable of operating in the go and stop 

scenario where reference velocity ranged from 0 𝑡𝑜 6 𝑚/𝑠. 

Moreover, the standard deviation of distance error 

compared to the reference path was 0.03 𝑚 with a single 

maximum value of 0.15 𝑚 occurring at the turning point.  

Nonlinear MPC have the advantage as the model used 

represents the true process scenario hence computation of 

the control command yields a better tracking performance 

[13]. On the contrary, the computational load and 

discretization offer a challenge for system that require fast 

response and during uncertainty.  

D. ADAPTIVE MPC CONTROL 

A real-time adaptation of the control command is a 

vital feature when uncertainty and errors in a model are 

present [23]. Adaptation allows a recursive and refined 

vehicle model estimate which ultimately offer comfort and 

safety. Considering the nonlinear system expressed by (5-

7) and (14-16), steering control was considered by

Bujarbaruah et al. [23] where a steering offset estimation 

was defined. The steady-state trajectory error model as 

t t t a tx A x B E w  =  +  + +    (33) 

Where 

 1 1Θ :  , 0p

t t t t t tx A x B E t  − −=   −  −  −  R W     (34)

where ∆𝑥, 𝑡 ≥ 0 represents the realized trajectory for a 

closed loop. Knowledge of steering offset 𝜃𝑎is defined by

the domain Θ regarded as the feasible parameter set, and is 

estimated from other previous vehicle data. At every time 

step data gathered on the input-output state is used to update 

the feasible parameter set at time 𝑡. The expression reveals 

the ability to progressively update the knowledge of Θ with 

consideration of all other previous time instants. 

The design considered an affine feedback policy 𝜋(. ) 

for control approximation.  

( ) ( ). :t t t t tx K x v   = −  + (35) 

where 𝐾 ∈ ℝ𝑚×𝑛 is the fixed stabilizing state feedback gain

chosen by Bujarbaruah et al. [23] as optimal LQR while the 

auxiliary control is depicted by 𝑣𝑡 . Constraints are then

imposed in the form and the control objective is to keep 

∆𝑥𝑡  small.

t tC x D b +    (36) 

Bujarbaruah et al. [23] showed how an MPC is able to 

achieve a recursively feasible control policy. The adaptive 

control algorithm considered is  

1. While 𝜃𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 do
2. Obtain road curvature 𝐶(𝑠). Compute 

corresponding steady state trajectory 𝑥𝑠𝑠(𝑠)and

steering angle input 𝛿𝑠𝑠(𝑠). Set 𝑡 = 0; initialize

feasible parameter set Θ0

3. While 𝐶(𝑠)unchanged w.r.t step 2 do
4. Compute the terminal invariant set 𝑋𝑡

𝑁.

Compute 𝑣𝑡
∗ from (35) and apply steering

command  

( ) ( )( ) *

t ss t ss ts K x x s v = − − +   (37)

5. Update Θ(𝑡+1) using (34). Set 𝑡 = 𝑡 + 1 

6. Estimate 𝐶(𝑠) 

7. End while
8. Set Θ0 = Θt. return to step 2

9. End while

The adaptive robust design was tested based on the data 

in table 3, longitudinal speed of 𝑉𝑥 = 30 𝑚/𝑠 and the

reference lane chosen to be a circular arc of 

curvature 𝐶(𝑠) = 1 𝑚. 

Table 3 Vehicle data used by [23] 

Parameter Value 
𝑀 1830 𝑘𝑔 
𝐽𝑧 3477 𝑘𝑔𝑚2 

𝐿𝑓 1.152 𝑚 

𝐿𝑟 1.693 𝑚 
𝐶𝑓 40703 𝑁/𝑟𝑎𝑑 

𝐶𝑟 64495 𝑁/𝑟𝑎𝑑 

The test involved a comparison between adaptive 

and robust control as illustrated in the simulation results in 

Fig. 6. An adaptive model of the system (5-7) and control 

obtained through (35) has great potential to steer a vehicle 

with minimal offset error.  
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Fig. 6 Adaptive versus robust MPC 

Fig. 7 Adaptive versus robust MPC operating 

outside constraints 

Adaptive MPC is limited by model errors due to 

approximations by linearization [23]. In view of the 

adaptive nature of computation of the control command, the 

adaptive MPC bear greater potential in handling uncertain 

scenarios and the demand needs of aggressive manoeuvres. 

It offers an intuitive approach to the design consideration 

focusing on the challenges through which the AGV 

undergoes as they operate through with need for apt 

controllability, versatile manoeuvres and accurate tracking 

performance.  

E. ROBUST MPC CONTROL 

Due to disturbances and model errors, using a robust 

MPC helps to tighten the system state and input constraints 

satisfactorily. Gao et al. [14] used a force-input nonlinear 

bicycle model and formulated a robust invariant set based 

on Lipchitz constants for a nonlinear system. Using the 

system (5-7) and the depicted slip angles that affect rear tire 

forces in (12-13) is approximated by 

f

y a

x


 

+
= −    (38) 

r

y b

x




−
= (39) 

And the system description includes an external disturbance 

and constraints; 

( )k k k k kx Ax g x Bu w= + + + (40) 

s.t

Ξkx  (41) 

ku u (42) 

where 𝑔(. ): ℛ𝑛 → ℛ𝑛 a nonlinear Lipschitz function and

which 𝑤𝑘 ∈ 𝑊 ⊂ ℛ𝑛 is a disturbance of additive nature.

The control design of the system (40-42) involve a 

feedforward control input referred to as a nominal system 

[23], [21] and a feedback controller acting on the error 

occurring from the nominal system. The control input 

consistent with 𝑢𝑘 = 𝑢̅𝑘 + 𝑢̂(𝑒𝑘) and an error dynamic

equation 

( ) ( ) ( )( )1k k k k k ke Ae Bu e g x g x w+ = + + − + (43) 

with the nonlinear term (𝑔(𝑥) − 𝑔(𝑥̅)) is bounded using 

Lipschitz constant 𝑔(. ) whereby it is treated to be part of 

the disturbance. 

Matrix pair (𝐴, 𝐵) of (43) being controllable means 

there exists a stabilizing feedback gain 𝐾 and such that (𝐴 +
𝐵𝐾) is Hurwitz. In that regard, a robust positively invariant 

set associated with the gain 𝐾 is computed following 

through algorithm below  

1: 1: Ω0 ← {0}
2: 𝑊 ← 𝑊  

3: 𝑖 ← 0;  
4: 𝒓𝒆𝒑𝒆𝒂𝒕
5: 𝑖 = 𝑖 + 1   
6: 𝑊 = 𝑊⨁𝐵(Ω𝑖);
7: Ω𝑖 = 𝑅𝑒𝑎𝑐ℎ𝑓𝑎(Ω𝑖−1, 𝑊)⋃Ω𝑖−1.

8: 𝒖𝒏𝒕𝒊𝒍 Ω𝑖 == Ω𝑖−1

9: Ζ ← Ω𝑖

Upon which a stabilizing state feedback gain 𝐾 with an 

infinite horizon LQR solution for the system matrix pair 

(𝐴, 𝐵) to yield a new controller becomes  

( ( ))k k LQR k ku u K x x= + −  (44) 
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The optimal formulation with 𝑄, 𝑅, 𝑆 𝑎𝑛𝑑 𝜆 as weighting 

matrices for state tracking error, control action and change 

rate action and violation of soft constraints respectively.  

1 2

,

0

min ....
pH

t k t ref
u

k

x x Q
−

+

=

− +  

2 2

, ,t k t t k tu R u + ++  +  (45) 

Tests were performed using mass 2050 𝑘𝑔, 

3344 𝑘𝑔/𝑚2 utilizing an electric motor for drive torque.

Table 4 Data used by Gao  et al. [14] 

Para Value Units Para Valu

e 

Unit

s 

𝑢𝑚𝑎𝑥 [0,0.5,0] [−] [𝐻𝑝] 12 - 

𝑢min −[0.5,0.5,0] [−] 𝐻𝑐 8 - 

Δ𝑢max [20,20,20] [−]
/𝑠𝑒𝑐 

𝐻𝑖  2 - 

Δ𝑢min −[20,20,20] [−]
/𝑠𝑒𝑐 

𝑇𝑠 100 𝑚𝑠 

𝑄 (1,20,5,10) - 𝑅 (1,1,1) - 

𝑆 (1,1,1) - 

The controller was tested through a track whereby a vehicle 

performs obstacle avoidance at 80 𝑘𝑝ℎ.  

Fig. 8 Nominal system obstacle avoidance 

Where it’s braking and steering input for the nominal 

system was as shown 

Fig. 9 Nominal system inputs 

For robust design tests, the friction coefficient was set to 

0.1, and the controller is set up for a nominal 𝜇 = 0.3 to 

represent a snow track. The vehicle was tested at 35 𝑘𝑝ℎ as 

shown below  

Fig. 10 Robust system obstacle avoidance 

Fig. 11 Robust system inputs 

The robust controller posted effective system 

behaviour under uncertain environment. The unmeasured 

disturbance are best handled by robust MPC [8], [10], [24]. 

The strategy leans towards MPC stability while the 
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challenge is in incorporating the uncertainties in the 

optimal problem solution. 

IV. CONCLUSION

The survey has shown the MPC approaches and 

design consideration for (semi)autonomous vehicles to 

enhance performance. The control strategies presented 

reveal the strength of the Model Predictive Control 

technique. Individual solutions portray advantages over 

each other. On the other hand, the limitations of a strategy 

are well covered by another. Handling MPC application 

design requires consolidation of advantages to satisfy 

design objective. This is achieved with consideration of 

constraints and penalties that are associated. The review is 

a foundation for further research and design to be carried 

out by the authors under the adaptive model predictive 

control. 
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