
Received: 22 September 2022 Revised: 7 November 2022 Accepted: 8 November 2022

DOI: 10.1002/eng2.12598

R E S E A R C H A R T I C L E

A transformer-based end-to-end data-driven model for
multisensor time series monitoring of machine
tool condition

Oroko Joanes Agung’1 Kimotho James2 Kabini Samuel1 Murimi Evan1

1Mechatronics Engineering Department,
Jomo Kenyatta University of Agriculture
and Technology, Nairobi, Kenya
2Mechanical Engineering Department,
Jomo Kenyatta University of Agriculture
and Technology, Nairobi, Kenya

Correspondence
Oroko Joanes Agung’, Mechatronics
Engineering Department, Jomo Kenyatta
University of Agriculture and Technology,
Nairobi, Kenya.
Email: agunghame@gmail.com

Funding information
African Development Bank Group; Jomo
Kenyatta University of Agriculture and
Technology

Abstract
Online determination of a cutter’s health status is crucial for the attainment
of condition-based automated tool change in computer numerically controlled
(CNC) machining. Due to the impracticalities associated with direct condition
measurements, data-based modeling of monitoring signals provides a viable
practical route. However, the highly noisy and redundant nature of the associ-
ated data impacts negatively on model’s accuracy and typically calls for addi-
tional initial preprocessing before modeling. Additionally, the long sequential
data entails widely varying condition distributions exhibited by different cutters,
even from the same batch on similar machining parameters, posing a challenge
to model generalization. An end-to-end model has thus been developed to work
directly on unprocessed data to establish global sensitive features from varying
distributions for online tool wear estimation in CNC machining. The model uti-
lizes three main functional blocks. First, a data denoising and feature selection
block automatically processes raw multisensor data directly, dispensing with
scaling or preprocessing of inputs as conventionally done. Each sensor chan-
nel’s independence is preserved at initial processing ensuring complementary
information from different sensors is utilized while simultaneously minimizing
existing redundancies. The weighted denoised data is then processed through
a transformer encoder block for determination of global dependencies in the
time-series sequence, regardless of the time-step position. The learned features
are then fed to an upper supervised learning block for association with the mon-
itored wear condition. The developed model works directly on raw noisy data
irrespective of scaling differences, saving on preprocessing computational cost.
The global associations extracted on long sequences by the transformer-encoder
allow for model generalization to varying wear distributions. The parallel pro-
cessing structure of all channels ensures complementary information is utilized
minimizing unforeseen model bias. The model’s performance as evaluated on
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experimental milling data and further comparison with other reported models
on same dataset shows attainment of comparable state-of-art results.

K E Y W O R D S

deep-learning, end-to-end model, tool condition monitoring, transformer

1 INTRODUCTION

The health condition of a machine cutter directly impacts the dimensional and surface integrity of the machined part.1,2

Thus, in order to limit the overhead costs associated with part discarding and machine repair due to damaged cutters,
tool condition monitoring is essential. Moreover, future planning on automated tool change based on health condi-
tion requires this process. This is especially critical for machining applications involving hard-to-machine materials or
extended machining periods.

Direct measurement of a tool’s wear condition during machining is not practical due to the constant tool–work
interaction which would necessitate continuous intermittent stoppages for relevant measurements to be under-
taken. Moreover, the presence of cutting fluid, inaccessibilty of the cutting zone, among many other factors, make
it impossible to deploy direct visual-based measuring techniques. The studies reported in References 3-6 utilize
visual systems for tool wear image processing in controlled settings but cannot be deployed in practical machin-
ing setups due to the aforementioned challenges. Tool condition monitoring (TCM) via modeling of in-direct sen-
sory data and machining parameters provides the practical alternative.7,8 Traditional physics-based models which
relate tool condition to machining conditions, such as cutting speed and feed, have been developed.9 These mod-
els though cannot be used for online TCM as they assume static conditions based on domain knowledge, making
them inflexible to update. Moreover, such machining parameters as feed and speed do not change continuously dur-
ing machining. Thus, data-driven models on sensor signals, independent of cutting parameters, provide a more viable
option. The popularity of these models has also been driven by the advancement in storage, sensor and computing
technologies.

The monitoring signals used by the data-based models is derived from such sensors as cutting force, vibration, acoustic
emission, power, temperature, among many others. Upon data collection, the typical data-driven frame work10 consists of
the steps: feature extraction and reduction, data modeling, and then model prediction. The modeling step involves offline
training of the model on historically collected monitoring signals, after which it can then be deployed for predictions
on current sampled data. The information contained in a single monitoring sensor channel has temporal associations
between the captured data. In order to develop a robust system, complementary redundant information from multiple
sensors, that are sensitive to varying faults are utilized.11-13 The side by side arrangement of the sensor data from multiple
channels provides for spatial associations. The conventional data-driven approach utilizes human expert knowledge to
manually extract features from the monitoring data for use in model training. The model is thus not trained directly on
raw data. This significantly reduces the computational load at train time, and provided with discriminative relevant fea-
tures, leads to enhanced model performance. Additionally, the sequential steps in the data-driven framework are treated
as independent of each other which allows for the use of different optimization algorithms at the relevant stages. The
studies in References 14-18 utilize this conventional approach employing tools such as artificial neural networks, sup-
port vector regression, hidden Markov models, relevance vector machines, among others. However, the reliance on expert
knowledge not only provides an avenue for information loss but is also tedious owing to the huge volume of data usually
involved, with no defined way of determining which data features to use. This generally impacts negatively on the mod-
els generalization capability and performance. Moreover, the model cannot be jointly optimized as a whole due to the
independent stages.

Deep learning approach offers a solution to the weaknesses of the conventional data-driven framework through
building of end-to-end models capable of working on raw data directly to provide the monitored condition.19,20 These
models automate the feature extraction and reduction stage, preserving information and generally leading to com-
paratively better model performance. Different deep architectures such as the deep auto-encoder (DAE), deep belief
network (DBN), deep convolutional neural networks (DCNN), and deep recurrent networks have been employed for
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condition monitoring tasks.19,21,22 The DAE and DBN can utilize layerwise unsupervised pretraining allowing for train-
ing of a very deep fully connected structure on even a small data sample. However, owing to the large number of
associated parameters the problem of model overfitting is easily experienced with such architectures and as such are
not favored for the TCM task. The favored deep learning architecture for spatial information extraction is the DCNN,
which works by passing a number of kernels across sequential data in order to learn important information at different
parts in the data. In order to prevent model overfitting, pooling layers are usually utilized in conjuction in a cascaded
structure. The weights sharing of convolutional layers reduces model parameters which eases the computational load
at train time. However, CNN treats the data as static spatial arrangement thus the time dependency information is
ignored. Thus, in order to learn temporal relations, the deep recurrent neural network (RNN) architecture is applied
with the long short-term memory (LSTM) cell preferred due to its superior performance over the basic RNN cell.20

The output of an LSTM cell is a function of its input and the output at the previous time step. The time dependency
in sequential time-series data can thus be learned. However, LSTM cells have limited short-term memory thus cannot
learn relations in very long sequences without performance drop while they also consequently lose spatial associa-
tions in a multisensory system. Different hybrid architectures have thus been developed to utilize the complementary
power of CNN and LSTM while attempting to address the individual shortcomings. These involve various variations of
CNN-LSTM layer pairings.21 The CNN is generally used to extract spatial associations in the data while concurrently
shortening sequences for use by the subsequent LSTM layers. This architecture allows for processing of long sequen-
tial data through stepwise shortening. However, the shortened sequences may not be discriminative enough thus the
model’s performance is negatively impacted as opposed to learning on comparatively longer sequences. Additionally,
temporal convolutional networks (TCN) have also been developed utilizing dilated causal convolutions thus dispens-
ing with the recurrent architectures.19 The long-range temporal dependency problems still exist though even for this
architecture.

In order to address the long-range dependency short comings, attention mechanisms were developed especially
for networks utilizing encoder–decoder architectures specifically for natural language processing (NLP) tasks.23 An
attention mechanism is a neural network that learns to select only a valuable portion of the provided input that
the model should focus on at each time step. This is achieved by differentially weighting each part of the input
and paying attention on aggregated score. These mechanisms led to marked improvement on NLP tasks. However,
they were initially used in conjunction with LSTMs and not a replacement. A novel improvement on the atten-
tion mechanisms which allows for dispensing off with the LSTMs is the transformer architecture.24 The transformer
uses multihead attention which consists of several attention layers running in parallel, which allows the model to
jointly attend to information from different representation subspaces at different time steps. Its full typical struc-
ture comprises of an encoder–decoder architecture with positional encodings incorporated for enhanced process-
ing of sequential data. The transformer is thus able to learn comparatively long range associations in sequential
data completely outperforming the previously aforementioned preferred architectures. It is currently the state-of-art
in NLP especially for machine translation tasks. Even though performance-wise superior in the reported tasks its
been deployed, the transformer is computationally expensive owing to the huge volume of associated parameters.
However, depending on the particular task at hand, different part-elements of its structure can be adopted for
utilization.

The wear estimation task in a multi-sensor TCM system is thus faced with a couple of challenges. First, is the huge
volume of data with high redundancy and noise. The complementary information provided from multiple sensor chan-
nels inexplicably contains redundancies while the significantly high sampling rates of data capture contributes to the
elevated noise. These features have to be eliminated or minimized before or at model training as they negatively impact
the accuracy of the trained model. Thus, the typical approach to deep modeling is to first preprocess the raw data by either
standardization or normalization before use in model training to minimize impact of noise and redundant information.
Secondly, different cutters, even from the same batch, exhibit varying wear distributions even on similar work pieces
and machining parameters which poses a problem at modeling time as it provides for varying train-test distributions.
Deep models provide enhanced performance results but require train-test data to be from similar or close distributions
for this to be attained. This thus calls for a processing architecture capable of learning global associations in long sequen-
tial data as opposed to the relations in the particular ordering of time stamps which gets easily forgotten as the sequence
gets longer. This allows for better model generalization capacity and provides an alternate processing technique for com-
paratively longer sequences. Finally, deep models preferential bias toward the more dominant signals in a multichannel
input system negates the multisensory approach need in the first place as information from less dominant channels
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are ignored. This results from the manner of backpropagation training in which the optimization algorithm penalizes
the associated nodes of the less dominant input data more. Thus it calls for a data processing architecture that incor-
porates information flow from all input channels deep into the model. The work reported in this study addresses these
challenges.

The developed model consists of three main parts based on functionality; data denoising and feature selection,
transformer encoder, and supervised learning layer. Raw data from multiple sensors is first segmented automatically
along the sensor channels preserving independence of each. This data is then passed to a linear encoding layer to
provide for higher dimensionality in feature extraction. The output is then passed to a feature selection network
(FSN) which utilizes gated residual networks (GRN) to permit the model to apply nonlinearity only where neces-
sary. Data are processed through the GRN in parallel, both as individual independent channels and as a combined
block. The result from the parallel processing is then differentially weighted, with the result being weighted denoised
data. This output is then fed to a transformer encoder network which consists of a multihead attention block followed
by a feed-forward network. The utilization of only the encoder structure without positional encodings incorporation
significantly lowers the associated computational cost while preventing data overfitting by deploying a simplified struc-
ture. A global pooling layer is then utilized to obtain global features of the data which are then passed along to
the final supervised learning layer block to provide the association between the global features and the monitored
variable.

The main contributions in this paper include the use of the denoising network which enables the model to operate
on raw data directly. This eliminates the conventional need to always first preprocess the input data before feeding to a
deep model. The model can thus work directly on noisy redundant sensor data irrespective of difference in scale. Addi-
tionally, the transformer encoder block is able to learn global dependencies in time-series data without regard to position
of time-stamp. This provides an alternative route for processing spatiotemporal associations in time-series data devoid of
the challenges of gradient explosion and vanishing, and the short-term memory deficiencies associated with LSTMs. The
weighted global association of relations should allow for better generalization at test time to cater for different train–test
data distributions. Moreover, the parallel processing structure utilized for input data analysis deep into the model ensures
information from all monitoring sensor channels is used and weighted appropriately minimizing bias. The rest of this
paper is organized into the following sections; related work, theory, methodology, experiments and discussion, conclusion
and finally references.

2 RELATED WORK

2.1 CNN, LSTM use in condition monitoring

The use of two-dimensional (2D) CNN to process raw time-series sensory information requires that the data either
first be encoded into 2D spatial images or transformed to a time-invariant domain.25-27 These approaches however
add an extra computational overhead into the model. Alternatively instead, one-dimensional (1D) convolutional lay-
ers can be used to process raw time-series data directly.28 They work by sliding multiple filters across 1D sensor
channel data to generate relevant feature maps. Moreover, in order to capture time dependency, temporal convolu-
tion networks have been used, with the performance closely comparable to the more favored LSTM networks. LSTM
networks provide comparative superior performance for temporal relations tasks.29-31 However, the LSTM suffers
long range dependency problems due to its small short-term memory. Thus, the use of hybrid CNN-LSTM architec-
ture is favored.32 The CNN is used for spatial information extraction while consequently shortening the sequences
via pooling layers in a stacked configuration. This then allows the LSTM to process shorter sequences significantly
improving model performance. In order to harness the power of convolutional and recurrent cells in one step, a
convolutional-LSTM (ConvLSTM) can be used.33,34 The ConvLSTM is simply an LSTM cell with the usual matrix mul-
tiplications replaced with the convolution operation. The consequence of this is a neural layer capable of learning both
spatial and temporal information in one go. This minimizes the chances of information loss across different stages in the
model.

In general, irrespective of the configuration, the aforementioned models require the data first be preprocessed for
scaling purposes to enable gradients flow during back propagation at train time. Moreover, long-range dependency issues
is still a problem that limits the model’s ability to process long input sequences.
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2.2 Attention mechanisms use in condition monitoring

Attention mechanisms were originally developed to address limitations of context representations and long-range depen-
dency deficiencies of LSTM-based encoder–decoder networks. This was specifically for machine translation and related
NLP tasks. Although faced with a widely different data domain, these mechanisms have started finding limited use
in the TCM task. In Reference 35, an attention layer is used in a hybrid CNN-Bidirectional LSTM model network to
assign weights to each time step output of the BiLSTM layer in order to selectively filter and focus on critical infor-
mation from a large number of output features before being fed to the upper supervised layer. Other recent works
reporting use of attention for condition monitoring tasks is in Reference 36. On the other hand, the attention-only
based transformer architecture has led to attainment of state-of-art accurate results in machine translation tasks and
even in computer vision.37 The use of this architecture in TCM is not widely reported to the best knowledge of this
author, though one recent such work is in Reference 38. However, although performance-wise superior to other preced-
ing architectures reported to date, the transformer is computationally expensive owing to the large number of parameters
and structure.

The work reported in this paper uses a variation of only the encoder portion of the transformer architecture
without positional encodings encompassment in order to harness the global attention prowess while minimizing the
computational load.

3 THEORY

3.1 Convolution

The CNN is typically made up of a stack of convolutional, activation, and optional pooling layers in sequence. Each
neuron in an upper convolutional layer is only connected to a small number of neurons in the previous layer, making up
the receptive field. The convolutional layer operates by sliding multiple filters across an input and outputs one feature
map per filter. The neurons in a feature map share the same parameters reducing the number of parameters in the model.
The output of a neuron in a 2D convolutional layer is the weighted sum of all inputs plus a bias term as provided in
Equation (1).39

zk =
fh−1∑

u=0

fw−1∑

u=0

f ′n−1∑

v=0
xijk + bk, (1)

where fh and fw are the filter height and width, respectively, f ′n is the number of feature maps in the previous layer, x is
the input vector, bk is the bias term for feature map k, wuvk is the connection weight between neurons in feature map k
and input vector.

The 1D-convolutional layer operates much the same way as the 2D layer with the critical difference being in that the
strided sliding shift from one receptive field to next is only along one direction. For time-series signal analysis, this is
equivalent to processing only along the time dimension. The output of the convolutional layer is then usually nonlin-
earized through an activation function, the choice of which is one of rectified linear unit (ReLU) or its variants, hyperbolic
tangent (tanh), or logistic function. If the dimension of the input sequence to a 1D-convolutional layer is n × l × d, where
n is the number of data samples, l is the number of time steps, and d is the number of input channels, then the out-
put dimension is given by n ×

(
l−p+f

s
+ 1

)
× k, where p is the padding used, s is the stride and k is the number of filters

used. Padding allows for preservation of sequence length dimension. This new representation of the data captures better
abstract and informative knowledge than the original input representation. The pooling layer is optionally used to apply
a sliding maximum or average window for sequence dimensionality reduction.

3.2 Recurrence

The output yt of a typical recurrent cell, such as an LSTM, is a function of its input xt and the output at its previous time
step ht. The LSTM cell extends this simple functionality by addition of long-term memory. Figure 140 shows a typical
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F I G U R E 1 Schematic of an long short-term memory cell

LSTM cell. For a single instance of input data, the cell’s long-term state, short-term state, and output at each time step are
given by Equations (2).40

it = 𝜎(WxiXt +Whiht−1 + bi)
ft = 𝜎(Wxf Xt +Whf ht−1 + bf )
ot = 𝜎(WxoXt +Whoht−1 + bo)
gt = tanh(WxgXt +Whg(rt ⊗ ht−1) + bg)
ct = ft ⊗ ct−1 + it ⊗ gt

yt = ht = ot ⊗ tanh (ct) (2)

where W is the weight matrices of each of the four layers, xt is the input vector, b is the bias term for each of the four
layers. The status of the long-term memory cell ct is controlled via three gates. The input gate it controls which parts
of the main output gt should be added to the long-term state, whereas the forget gate ft controls which parts are to be
erased, with the output gate ot controlling which parts of the long-term state should be read and output at this time
step. The main layer gt analyzes current inputs xt and the previous short-term state ht−1. An LSTM cell can learn to
recognize an important input, store it in the long-term state, preserve it for as long as it needed, and retrieve it whenever
needed.

3.3 Attention

The attention mechanism permits a network to focus only on a portion of presented input representation at each time
step. This is achieved via weighting the combination of all encoded input representations with the most significant vectors
assigned the highest scores. This introduces an element of memory storage in the network as represented by the attention
weights through time. Attention weights are calculated by normalizing the output score of a feed-forward neural network
described by the function that captures the alignment between input and output element at each time step. Equation (3)24

describes the attention operation.

ht =
∑

i
𝛼t,iyi, (3)

with 𝛼t,i = softmax(et,i) and et,i = a
(

si−1, hj
)
.

Initially, attention mechanisms were introduced to operate in conjunction with RNN and CNN. How-
ever, attention-only networks, such as the transformer, have been shown capable of capturing dependencies
in sequential data dispensing with the aforementioned networks. The transformer architecture is as shown
in Figure 2.24
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F I G U R E 2 Schematic representation of the transformer architecture

The transformer utilizes separate multihead self attention in the encoder and decoder blocks as well as an
encoder–decoder attention. Self-attention permits an input sequence to attend to itself thereby learning global depen-
dencies between elements in the sequence without regard to position or order of time steps. Multihead runs multiple
attention computations in parallel allowing for focus to be applied to same parts of a sequence differently learning different
representations. The output of these parallel attention calculations are then combined to produce a final score.

Multihead attention is based on scaled dot product attention as described in Equation (4),24 which uses a key, value
and search query parameters.

Attention(Q,K,V) = softmax

(
QKT
√

dkeys

)
V , (4)

where Q,K, and V are the query, key and value matrices respectively. The query is used to search over keys of all context
representations of the input elements. Each key is related to a particular value that encodes the specific input element.

The work in this paper utilizes only the transformer encoder portion of the architecture for determination of
long-range global dependencies in time-series signals for the tool wear prediction task.

4 METHODOLOGY

4.1 Notation

The monitoring data for the tool wear prediction task is a time-series of real values from N different sensor channels, and
is denoted X = {xi, ..., xL}, where L is the number of data samples. Each input data sample is a 2D tensor xi ∈ Rl×d where
l is the number of time steps and d is the sensor channels. At each time step j there are d different values. For each input
sample, there is a corresponding output wear value y ∈ R3 of three real values of flank wear width for each flute of the
cutter. The wear monitoring task is thus formulated as a time-series regression prediction task of output value y for each
input data sample xi.
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4.2 Proposed model

The proposed model architecture is as shown in Figure 3. It comprises of three main blocks based on functionality, that is,
data denoising and feature selection, transformer encoder, and supervised learning layer block. In a multisensor monitor-
ing system, each independent channel provides useful information which is complementary to the others. The combined
data though possesses significant redundancies. Additionally, the data capture is done at a high frequency for real-time
monitoring success but this inadvertently results in elevated noise in the data. Moreover, different sensor channels are var-
iedly scaled which leads to data outliers and scaling disproportionality. These elements need to be addressed as they not
only make model training unstable, they also negatively impact performance. The initial denoising and feature selection
block of the proposed model addresses these challenges, with additional benefits provided.

The main processing unit in this block is a GRN, whose configuration is as shown in Figure 3. It comprises of a
stack of time-distributed fully connected neural layers, exponential linear unit activation, dropout, gated layer and a
skip connection. The GRN permits the model to only apply data nonlinearization only where necessary. This enables
the learning of both simple and complex data associations. The input data to this block is first segmented along the
sensors channel in order to preserve each channels independence at initial processing. Each channel is then linearly
encoded to increase data dimensionality for features determination. The encoded data is then fed to the FSN. The FSN
parallel processes this data by independently applying GRN to each encoded channel while simultaneously doing the
same to the concatenated combination followed by softmax weighting. The two outputs of the parallel processing are then
differentially weighted to provide final result. The FSN allows the model to remove any unnecessary noisy inputs. The
weighted output provides for a better representation of input data by minimizing redundancies.

The denoised weighted output of the first block is then fed into a transformer encoder block. The main purpose of
this block is to determine global dependencies in the provided sequence. Multi-head self attention is utilized for sequence
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F I G U R E 3 Schematic representation of developed model’s architecture
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representation. No positional encoding is used thus the associations determined are irrespective of the sequence time step
order.

Finally, the features generated from the transformer encoder are fed to a supervised learning layer which comprises
of two fully connected layers and a dropout layer. The output of the model is the corresponding wear value for each input
data sample. Dropout is utilized to introduce randomness at train time to prevent data over-fitting.

4.2.1 Data denoising and feature selection

The input data sample xi of dimension l × d is first segmented along the d domain resulting in d tensors of shape l × 1. Each
l × 1 input is linearly encoded with encoding size e a hyper-parameter for the encoding layer. The resulting encodings are
d tensors of shape l × e. These are fed in parallel to the FSN. The weighted output of FSN is a single dimension of size e
for each instance of input data sample. The input data samples are fed into the model as batches thus weighted output
of FSN is b × e regardless of the number of input features, where b is the batch size. The ELU activation function used in
the GRN and the softmax in the FSN are provided by Equations (5)39 and (6),39 respectively;

ELU
𝛼
(x) =

{
𝛼(exp(x) − 1) if x < 0
x if x ≥ 0

, (5)

softmax(x)k =
exp(x)

∑k
j=1 exp(xj)

, (6)

where x is the input vector.

4.2.2 Transformer encoder

Due to limited computational resources available for model training in this work, the input sequence to the trans-
former encoder is first passed through a 1D convolutional layer for dimensionality reduction with the resultant sequence
dimension being b × nl × e, where nl is the new sequence length. Data propagation through the transformer encoder
results in features sequence of same dimension as input sequence. The hyper-parameters of choice for the trans-
former block are the number of heads, head size for the multihead attention layer and the number of transformer
blocks.

4.2.3 Supervised learning

The features tensor fed into this layer block passes through two fully connected layers to output three real values corre-
sponding to predicted tool flank wear width. Linear activation function described by Equation (7)39 is used in the output
regression layer.

y = Wv + b, (7)

where W is the connection weight, b the bias term associated with the layer and v the input features. The mean of the
square of the error between the predicted values and the ground truth wear values is back propagated during model
training for parameters adjustments.

5 EXPERIMENTS AND DISCUSSION

In order to determine the effectiveness of the proposed model for the tool wear prediction task, its performance was tested
on publicly available milling wear data from three monitoring sensors.
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5.1 Data description

The data used for the tool wear prediction task in this study is for a dry surface milling process, from the 2010 data chal-
lenge by the Prognostics and Health Management society. The monitoring signals are from force, vibration and acoustic
emission sensors, with the first two having three channels each, for x, y, and z axes measurements. The input data thus
comprise of seven channels. A Kistler quartz 3-component platform dynamometer was used for force measurements,
with three Kistler piezo accelerometers and a Kistler acoustic emission sensor used for vibrations and acoustic emissions
measurements respectively. The offline measured output is the flank wear width of three-flute ball nose tungsten car-
bide cutters, obtained through a LEICA MZ12 microscope after each milling cut run. A total of six cutters were used in
the experiments, but only three cutter histories, labeled c1, c4, and c6, have both monitoring data and associated mea-
sured wear. A total of 315 cutting tests using each cutter, on a three-axis high-speed CNC machine, were conducted. The
experimental setup used as described in Reference 41 is as shown in Figure 4.

The input data corresponding to one cut is considered a data sample. The time series measurements corresponding
to different data samples vary in length, with some having over two hundred thousand time steps. In this study, the
original data sequence length was down-sampled to a representative 20,000 time steps for each data sample before further
applying a sliding window for attaining a shorter sequence length while concurrently increasing the training samples
count. The sliding window was adopted due to the high frequency capture of the signals thus minimal wear exists across
windowed cut samples. The data was acquired through a DAQ NI PCI1200 data acquisition card at a sampling frequency
of 50 kHz/channel. The experimental measurements were obtained under constant machining conditions indicated in
Table 1.

Due to the machining parameters being constant in the experiments, they were not considered for use in modeling in
this study, since the model would be unable to capture any correlation with tool wear.

5.2 Model settings

The sliding window size adopted determines the length and number of data samples downsampled from original data
set and serves as an initial crucial hyperparameter. Too short a sequence and not much discriminative information can

Dynamometer

Cutter

Work piece

Accelerometers

AE sensor

Multichannel data 

acquisition

Off-line tool flank 

wear measurement

Data storage

F I G U R E 4 Schematic representation of experimental setup used in data collection

T A B L E 1 Machining parameters

Parameter Value Units

Spindle speed, n 10,400 rpm

Feed rate, vf 1555 mm/min

Radial depth of cut, ae 0.125 mm

Axial depth of cut, ap 0.2 mm
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T A B L E 2 Proposed model hyper-parameters

Model block Hyper-parameter Value

Denoising/feature selection Encoding size 16

Dropout rate 0.4

Transformer encoder Head size 128

Number of heads 4

Conv1D filters 1 × 1

Supervised layer FC nodes 32

Output nodes 3

Dropout rate 0.4

T A B L E 3 Training/testing domain

Train set Test set Notation

C4, C6 C1 C4C6/C1

C1, C6 C4 C1C6/C4

C1, C4 C6 C1C4/C6

be derived whereas too long a sequence increases the computational processing load without much additional infor-
mation captured. Values of 100, 200, 500, 1000, and 2000 sequential time-stamps were experimented on with results of
cross-validated experiments used in window size selection. Values below 500 resulted in data samples with insufficient
dicriminative information whereas higher values produced better results but at a price of enhanced computational load.
The median value 500 was thus adopted. The increased training data samples was additionally utilized in minimizing
model parameter uncertainty at train time. The summary of the main hyper-parameters, per functional block, for the
proposed model are as indicated in Table 2.

Random experimentation on different values and datasets for sensitivity and performance for the main
hyper-parameters was carried out with encoding size values of 16, 32, 64, and 128, transformer head size of 64,
128, 256, and 512, number of transformer heads of 1, 2, 4, and 8, and supervised layer nodes of 16, 32, 64,
and 128. Higher value choices for each of the hyper-parameters significantly leads to models parameters count
explosion which inadvertently risks data overfitting and increases computational processing load for model train-
ing and testing. Performance of value variations on different experimentations aided in selection. No joint model
hyper-parameter optimization was performed, so the selection of optimal values is still an open avenue for this
study. The low count of hyper-parameters required for model tuning simplifies the proposed model in oper-
ation. The training and testing regime adopted a three-fold setting whereby two sets, from histories C1, C4,
and C6, are used for training with the third for testing. The adopted training/testing setup is as illustrated
in Table 3.

The loss function utilized in model training is the mean squared error between ground truth and predicted values, as
given by Equation (8).39

loss = 1
n

n∑

i=1

||ytruthi − ypredi
||
2
. (8)

The adaptive momentum estimation (Adam) optimization function was used for model weight updates at train time, with
an exponentially decaying learning rate from an initial value of 0.01. The choice of initial learning rate value was from
random experimentation. The adopted indices for evaluating model performance were the mean absolute error (MAE)
and mean absolute percentage error (MAPE) between the truth and predicted wear values, as given by Equations (9) and
(10), respectively.
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MAE = 1
n

n∑

i=1

||ytruthi − ypredi
|| . (9)

MAPE = 1
n

n∑

i=1

ytruthi − ypredi

ytruthi

× 100%. (10)

The model was developed using Tensorflow Keras® deep learning library in Python® environment. The computing
resource utilized was an Intel® Core i5 3GHz 4GB RAM CPU, with additional hardware acceleration provided via a GPU
through the Google® Colab platform.

5.3 RESULTS AND DISCUSSION

The performance of the proposed model under the three train/test regimes was evaluated. Its performance on wear
progression determination for the three cutter histories as compared to the ground truth data is as shown in the wear
progression plots of Figure 5.

It can be seen that the model is able to track the wear trends closely for the three cutter histories, to within an average
MAPE boundary of 6%. The model’s performance shows that the absolute error variation is comparatively slightly elevated
during the initial rapid wear phase as compared to the constant and final failure phases. This however does not penalize
the model negatively as crucial diagnostic and prognostic decision information such as condition-based tool change is
taken in the final wear phase. The model’s performance on different indices is as summarized in Table 4.

The model’s performance on the MAE metric was further compared to three other reported models utilizing the
same monitoring data. The models are the time distributed convolutional-LSTM (TDConvLSTM),33 temporal convo-
lutional network (TCN),42 and bi-directional LSTM (BiLSTM).43 The TDConvLSTM uses convolutional-LSTM layers
for processing both spatial and temporal dependencies in the data in one layer rather than using two separate steps.
The TCN on the other hand uses dilated convolutional layers utilizing causal padding to extract the time dependen-
cies without peeping into the future. The BiLSTM on the other hand uses BiLSTM layers to learn time dependencies
in sequences from both directions. The aforementioned models reported significant state-of-art results on the same

F I G U R E 5 Regressive wear plots; predicted versus truth data

T A B L E 4 Model performance evaluation on different indices

Index C1 C4 C6 Units

MSE 8.0 10.9 16.1 ×10−5mm2

RMSE 8.9 10.4 12.6 𝜇m

MAE 5.7 7.3 8.5 𝜇m

Abbreviations: MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error.
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Models

M
M
A
E

F I G U R E 6 Evaluated mean absolute error comparison on different models

dataset while utilizing a similar train/test regime as used in this paper. This allows for a baseline validation compari-
son. The dataset used for training all the aforementioned baseline models was first preprocessed though before feeding
to the model. The model developed in this study works directly on raw noisy data as input. The performance of the
developed model versus the comparison models on the MAE metric is summarized using bar charts in Figure 6. It
is seen that the model’s performance is well comparable to other reported work. The elimination and minimization
of noise and redundancies in raw sensory data coupled with parallel processing of all monitoring data for extraction
of long-range global dependencies enabled the model’s comparatively good performance. The attained results is with-
out model hyper-parameters optimization being carried out, thus enhanced performance is expected with parameter
optimization.

Even though the transformer encoder of the developed model does not utilize positional encodings for time stamp
mapping, the model’s performance proves that the extracted global dependencies of the processed time series feature
vectors are a good abstract mapping of the input monitoring sensor signals, as compared to the favored LSTM or TCN
networks, without the overhead computational costs. The processing of global relations as opposed to the short-term
memory deficient recurrent approaches allows for automatic handling of comparatively long input sequences. More-
over, additional benefits of transformer use such as model interpretability, though not explored in this study, can now
be harnessed. Additionally, prior inputs preprocessing is eliminated as evidenced by the denoising and scaling capa-
bilities of the initial feature processing block. The model can thus be used for the real-time tool wear monitoring
task.

6 CONCLUSION

An end-to-end deep model has been developed for the tool wear monitoring task. The model has three main func-
tional blocks, that is, data denoising and feature selection, transformer encoder, and supervised learning. The denoising
and feature selection block enables the model to process raw multisensor data directly without need for preprocess-
ing or scaling, as is conventional with deep models. On the other hand, the transformer encoder allows learning
of global dependencies in a time-series sequence without regard to positional or time steps order. This provides
a good alternative to the conventionally used recurrent networks. The supervised learning block is used to relate
learned features to the monitored tool condition. The models’ performance was evaluated on experimental data from
a CNC milling process, with further validation involving results comparison with other reported models utilizing same
data-set. The model is able to track tool flank wear within an average MAE of 5.7, 7.3, and 8.5𝜇m for the three cut-
ters under evaluation. The overall prediction accuracy derived from the MAPE metric translates to an average 93%
across all the cutters considered. The performance attained is well comparable to other state-of-art results on the same
dataset.

Future work will involve performing model hyper-parameters optimization and introduction of positional encod-
ing for the transformer encoder in order to further associate sequential time stamp inputs, as well as model
interpretability.
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