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𝑬∗ Primary control reference representing 𝑟.𝑚. 𝑠 output voltage 

𝑬𝒃𝒂𝒕            Nonlinear voltage (unit: 𝑉) 

𝑬𝑳                                Daily energy consumption 

𝑬𝟎               Open-circuit voltage (OCV) of the battery at full capacity 

(unit: 𝑉) 

𝑬𝒗/∆𝑬𝒗      Voltage prediction error/change in voltage error (unit: 𝑉) 

𝑭𝒅                Viscous damping (unit: 𝑁.𝑚. 𝑠) 

𝑭𝒓               Minimum ripple frequency component in the current (unit: 𝐻𝑧) 

𝑭𝒔               Switching frequency for inverter PWM signals (unit: 𝐻𝑧) 

𝒇𝒔𝒘𝒊𝒕𝒄𝒉𝒊𝒏𝒈   Switching frequency (unit: 𝐻𝑧) 

𝑮 𝑺𝑹              Solar radiation (unit:𝑊/𝑚2) 
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𝑮𝑰𝑵𝑮 The incident irradiance 

𝑮𝑷𝑽/𝑮𝑾𝑻𝑮/

𝑮𝑩𝑬𝑺𝑺/𝑮𝑩𝑪𝟏/

𝑮𝑩𝑩𝑪/𝑮𝑴/𝑮𝑳    

Transfer functions of solar PV, Wind, BESS, Boost Converter, 

Buck-Boost Converter, Inverter/Microgrid system, and Load, 

respectively 

𝑮𝑺𝑻𝑪 Solar irradiance at standard test condition (STC) (= 1000 𝑊/

𝑚2) 

𝑯 Model horizon  

𝑯𝒎 The equivalent inertia constant of the generator rotor 

(unit:𝐾𝑔.𝑚2) 

𝑰                Battery current (unit:𝐴) 

𝑰∗ Complex conjugate current 

𝒊𝒌              Instantaneous current (unit:𝐴) 

𝑰𝒎𝒑 Max Power Current (unit:𝐴 𝑑𝑐) 

𝑰𝑷𝒉−𝑺𝑻𝑪     Photovoltaic Current at STC (unit:𝐴) 

𝑰𝑷𝑽            PV cell output current (unit: 𝐴) 

𝑰𝒔𝒂𝒕𝟏/𝑰𝒔𝒂𝒕𝟐  Saturation currents of the first and second diodes (unit:𝐴) 

𝑰𝒔𝒄              Short-circuit Current (unit: 𝐴 𝑑𝑐) 

𝒊𝒔𝒅, 𝒊𝒔𝒒 The 𝑑 −axis and 𝑞 −axis currents (unit:𝐴) 

𝑱                 Objective Function/Cost Function  

𝑱𝒑(𝒌) Predicted output with MPC 

𝑲/𝑲𝟏          Polarization resistance coefficient (unit: Ω) 

𝒌𝒄 Temperature coefficient 

𝑲𝒑/𝑲𝒔/𝑲𝑽  Max Power/ Voltage/Short-circuit current temperature 

coefficient (unit: %/0𝐶) 

𝑲𝑷𝑨, 𝑲𝑰𝑨/

𝑲𝑷𝑽, 𝑲𝑰𝑽         

Proportional/Integral controller specification of the 

current/voltage controller 

𝑲𝑷𝑽/𝑲𝑾𝑻𝑮/

𝑲𝑩𝑬𝑺𝑺/𝑲𝑩𝑪𝟏/

𝑲𝑩𝑩𝑪/𝑲𝑴/𝑲𝑳     

Amplification factors of solar PV, wind, BESS, Boost Converter, 

Buck-Boost Converter, Inverter/Microgrid system, and Load, 

respectively 
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𝑳𝒔𝒅, 𝑳𝒔𝒒      The inductance of the PMSG generator (unit:𝐻) 

𝑴 Control horizon 

𝑴𝒑 (%)                       Percentage overshoot/undershoot 

𝑵 Prediction horizon 

𝑵𝒈 Generator efficiency 

𝑵𝒎 Number of Distributed Generation (DG) units 

𝒑        The number of pole pairs (unit: dimensionless) 

𝑷𝑩𝑨𝑻 Battery capacity (𝐴ℎ𝑟) 

𝑷𝑬𝒗           Previous voltage error (unit:𝑉) 

𝑷𝒈𝒆𝒏(𝒕) Total generated power to cater for load demand 

𝑷𝒎/𝑷𝒎𝒑/𝑷𝒓/𝑷𝒔            Aerodynamic wind turbine power/Max Power/Rated power of 

microgrid/ Power stored or drawn from the BESS power (unit:𝑊) 

𝑷𝑷𝑽−𝒐𝒖𝒕(𝑷𝑷𝑽)/

𝑷𝑾𝑻−𝒐𝒖𝒕(𝑷𝑾𝑻)           

Power generated from a PV system/Power generated from a wind 

turbine (WT) unit (unit:𝑊) 

𝑷𝒓𝒆𝒏,𝒅𝒆𝒎(𝒕) The demanded RES energy 

𝑷𝑺𝑻𝑪 Maximum power at standard test condition 

𝑸𝒊 Weighting matrix representing the penalization for control errors 

𝒓 Radius of the paddle of wind turbine 

𝑹 Set point/Reference matrix for microgrid dynamic model 

𝑹𝒊                                Weighting matrix representing the penalization for control 

increments 

𝑹𝑰/𝑹𝒔/𝑹𝒔𝒉       Internal/Series/Parallel resistance (unit:𝛺) 

𝑹(𝒌) Discrete reference value for microgrid discrete time model 

representing the available PV and WT power 

𝑺 Apparent power/Total power (𝑉𝐴) 

𝒕 𝒐𝒓 𝒕𝟏                          Time slot (in hours) over which the microgrid should be operated 

𝑻𝑪/𝑻𝑺𝑻𝑪               Module Ambient temperature/Temperature at Standard Test 

Condition (STC) (unit: 0𝐶)  

𝑻𝒇               Static friction (unit:𝑁.𝑚) 
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𝒕𝒑 Peak time 

𝑻𝑷𝑽/𝑻𝑾𝑻𝑮/

𝑻𝑩𝑬𝑺𝑺/𝑻𝑩𝑪𝟏/

𝑻𝑩𝑩𝑪/𝑻𝑳  

Time constants of solar PV, wind, BESS, Boost Converter, Buck-

Boost Converter, and Load, respectively 

𝒕𝒓                                 Rise time 

𝒕𝒔                                 Settling time 

𝑻𝒔 Sampling time 

𝑻𝜸 Reference temperature 

𝒖 𝑟 −dimensional control vector or input vector 

𝒗                 Wind speed of the site (𝑚/𝑠) 

𝑽𝒂𝒄/𝑽𝒅𝒄                           Inverter output voltage/Input DC voltage (unit:𝑉) 

𝑽𝒃𝒂𝒕𝒕           Terminal voltage (unit:𝑉)  

𝑽𝒄−𝒐𝒖𝒕        DC-DC converter output voltage 

𝑽𝑫/𝑽𝑻 Diode voltage/Diode thermal (unit:𝑉) 

𝑽𝒎𝒑/𝑽𝒐𝒄                          Max Power Voltage/ Open-circuit Voltage (unit:𝑉𝑑𝑐) 

𝒗𝟎
∗ VCVSI reference voltage 

𝑽𝑷𝑪𝑪 Point of Common Coupling voltage 

𝑽𝑷𝑽             PV cell output voltage (unit:𝑉) 

𝑽𝒓𝒆𝒇             Set microgrid DC voltage (unit:𝑉) 

𝒗𝒔𝒅 , 𝒗𝒔𝒒 The 𝑑 −axis and 𝑞 −axis voltages (unit:𝑉) 

𝒙 𝑛 −  Dimensional state vector 

𝑿𝒂𝒃𝒄/𝑿𝒅𝒒𝒛  PMSG variables in the stationary/rotating coordinates 

𝒚 𝑚 −dimensional output vector 

𝒚𝒌               Terminal voltage (unit: 𝑉) 

𝒛𝒌               Battery’s State of Charge (SoC) 

𝝆            Air density of the power generation site (unit:𝑘𝑔/𝑚3) 

η/𝜼𝑩/𝜼𝒗         Efficiency/BESS efficiency/Voltage efficiency (unit: %) 

𝝀          Tip speed ratio of the rotor blades (unit:𝑚) 
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𝝀𝒃 Self-discharge rate of the BESS 

𝜹 Phase difference between converter output voltage & common 

AC bus 

𝜷          Blade pitch angle (unit:𝑑𝑒𝑔𝑟𝑒𝑒𝑠) 

𝝉𝟏/𝝉𝟐         Current control-inner loop/Voltage control-outer loop time 

constant 

𝝎 Angular frequency (unit:𝑟𝑎𝑑/𝑠) 

𝝎∗ Primary control reference representing angular frequency 

(unit:𝑟𝑎𝑑/𝑠) 

𝝎𝒔        Generator’s electrical rotational speed (unit:𝑟𝑎𝑑/𝑠) 

𝝍𝒑/𝝍𝒔𝒅/𝝍𝒔𝒒        Permanent flux/ The 𝑑 − and 𝑞 −component of instantaneous 

stator flux (unit:𝑊𝑏) 

𝜺 The error between the predicted and actual voltage of PCC (5%) 
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ABSTRACT 

The concept of a microgrid is increasingly attracting interest among researchers and 

investors. This is because it offers a promising technology for utilizing distributed 

renewable energy generation resources, notably Photovoltaic (PV) and wind generation 

systems. However, the off-grid or on-grid utilization of a microgrid with PV and wind 

generation systems presents power quality challenges due to their intermittency in power 

outputs and voltage variations. This problem is mainly addressed within the converter 

section of the microgrid using Maximum Power Point Tracking (MPPT) algorithms and 

voltage regulation strategies using a Microgrid Control System (MCS). A majority of the 

existing MCSs still depict some inadequacies in their ability to optimize voltage regulation 

with intelligence while working for the non-linearities in the microgrid. This research 

aimed at developing a Microgrid Multi-level Control System (MMCS) for a PV-Wind 

hybrid microgrid system based on Genetic Algorithm-Adaptive Neuro-Fuzzy Inference 

System-Model Predictive Control-(GA-ANFIS-MPC). To achieve this, the PV-Wind 

hybrid microgrid model that incorporates a Battery Energy Storage System (BESS) was 

first created in MATLAB/SIMULINK. Two microgrid models have been developed: a 

scalable Simulink Case Study Model from the underlying mathematical equations and a 

nested voltage-current loop-based Transfer Function model. Next, the GA-ANFIS-MPC-

based MCS was designed in two hierarchical levels. The first level is the GA-ANFIS 

primary controller, which has been used as an MPPT algorithm to optimize the converter 

outputs and regulate the microgrid output voltage amid power generation variations. The 

second level of control is the MPC secondary controller, which controls BESS's charging 

and discharging. In addition, the Proportional plus Integral plus Derivative (PID) regulator 

control method and the Search Space Restricted-Perturb and Observe (SSR-P&O) were 

developed to validate the performance of the GA-ANFIS-MPC controller using the 

simulation model built in MATLAB/SIMULINK. The results and performance obtained 

indicated that both the GA-ANFIS primary controller and the MPC secondary controller 

are superior to the SSR-P&O and PID in terms of reduced rise time, settling time, 

overshoot, and the ability to handle non-linearities in the microgrid. The GA-ANFIS 

primary controller recorded the best performance followed by the MPC secondary 

controller. The MPC controller, though with an increased computation time, was seen to 

have a better response than the GA-ANFIS controller in terms of reduced overshoot in 

voltage regulation. However, the GA-ANFIS controller has a better response than the 

MPC controller in terms of reduced rise time and settling time. The main contribution of 

this study is the designed GA-ANFIS-MPC based MCS that improves voltage responses 

and also charging and discharging of BESS in the PV-Wind Hybrid microgrid system. 

Consequently, this improves microgrids' performance in supplying power to targeted 

remote locations and local communities not connected to the main grid. It also acts as a 

stepping stone towards realizing the smart grid.  

Keywords - BESS, GA-ANFIS-MPC, Microgrid, Perturb and Observe (P&O), 

Photovoltaic, PV-Wind hybrid system. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

In the recent past, there has been an increasing need to shift focus on power generation 

from environmentally unfriendly conventional sources such as diesel or coal plants to 

clean and renewable sources such as Photovoltaic (PV) and wind (Ahmed et al., 2015; 

Aminu & Solomon, 2016; Bidram et al., 2017).  However, the main bottleneck in utilizing 

these renewable resources has been the proper control and management of their power 

outputs (Nanda et al., 2021; Sawle et al., 2016). This is mainly attributed to the intermittent 

nature of PV and wind resources (Badwawi et al., 2015; Borazjani et al., 2014; Palizban 

& Kauhaniemi, n.d.; Shen, 2017). The scenario is even more challenging when adopting 

a hybrid of such sources such as the combination of PV and wind generation sources.  One 

solution has been to pool the resources into a microgrid. In its basic form, a microgrid may 

be viewed as a small local and controllable power system whose main objective is to serve 

or electrify remote communities (Nanda et al., 2021; Sawle et al., 2016). Microgrids can 

be operated in grid-connected mode and off-grid mode (Z. Chen et al., 2017; Hossain et 

al., 2017; Jadav et al., 2017; Ton & Systems, 2015).  

Microgrids are known to experience various technical challenges such as errors in the 

regulation of voltage and frequency, loss in efficient load sharing and improper co-

ordination of Distributed Energy Resources (DERs). Further, there are concerns regarding 

smooth microgrid re-synchronization with the main grid for grid-connected systems, 

control of power flow between the microgrid and the main grid and optimization of its 

operating cost. This provides the foundation leading to the study problem in which there 

is need to develop an appropriate microgrid control system to mitigate against ensuing 

power quality issues. The main factors leading to the problem include the intermittent 

nature of PV and wind resources, the power quality issues pertaining to voltage and 
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frequency and the ability of the control system to act with intelligence as well as dealing 

with non-linearities in the microgrid.  

Several studies have been done on the modeling of hybrid PV-wind energy systems. For 

instance, M. Jayachandran et al. (Jayachandran & Ravi, 2017) designed and optimized an 

Islanded Hybrid Microgrid System (IHMS) in which Particle Swarm Optimization (PSO) 

was used to obtain the lowest cost with a shorter computation time than the Genetic 

Algorithm (GA). The distributed inverter control strategy is proposed by A. Khalil (Khalil 

et al., 2016), for load power sharing between PV and Wind, whereas G. Ma’slak and P. 

Orłowski (Orłowski, 2022) used switched Model Predictive Control (MPC). The MPPT 

algorithms for a PMSG-based wind energy conversion system (WECS) are reported by P. 

Sahin et al. (Sahin et al., 2017) using P&O MPPT.  

Several authors have applied Artificial Intelligence (AI) techniques in microgrid control. 

S. Korjani et al.  (Korjani et al., 2017) applied a Genetic Algorithm (GA) to solve a 

microgrid-clustering problem while minimizing power exchanges. K. Abdulhussein et al. 

(Sumarmad et al., 2022) proposed three algorithms, namely PID, Artificial Neural 

Networks (ANN), and Fuzzy Logic Control (FLC), for voltage regulation in a hybrid 

microgrid system. The MPPT controller is based on the P&O method. The results 

simulated in MATLAB & SIMULINK depicted the FLC to be better than the PID and 

ANN on account of efficiency and precision. D. Gamage et al. (Gamage et al., 2021) 

designed an ANFIS controller for an off-grid PV microgrid with a battery and 

supercapacitor. The simulated results indicated better performance of the ANFIS in 

voltage regulation compared with other controllers such as FLC and conventional PI.  

For efficient performance of a microgrid, a reliable Microgrid Control System (MCS) with 

suitable control algorithms is required. Over the last decade, several control strategies 

have been developed for use in microgrid environments. These control strategies and 

architectures include hierarchical control schemes, conventional and modified droop 

control methods, Model Predictive Control (MPC), artificial intelligence control methods, 

and commercial microgrid systems (LI & NEJABATKHAH, 2014; L. Meng et al., 2017; 
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Minchala-Avila et al., 2015; Reshma Mary Thomas & Deepu Jose, 2015). However, 

developing specific control strategies and schemes that apply to a hybrid microgrid system 

is still challenging. It has been attracting the attention of many researchers world-wide to 

date. This study aimed to bridge the gap by developing a Microgrid Multi-level Control 

System (MMCS) utilizing Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System-

Model Predictive Control (GA-ANFIS-MPC) for a Photovoltaic-Wind hybrid generation 

microgrid system.  

1.2 Problem Statement 

The development and utilization of microgrid systems face technical, integration, and 

sustainability challenges. A Photovoltaic-wind microgrid system may become unstable 

due to the intermittency of the micro sources as well as when faults and other disturbances 

occur (Borges et al., 2017; Du et al., 2017; Morstyn et al., 2018; T. Wang et al., 2019). 

This leads to variations in voltage and power outputs. In addition, for off-grid microgrid 

systems, there are voltage deviations associated with load changes, low inertia of the 

microgrid, as well as dynamics of the Battery Energy Storage System (BESS). This means 

there is always a great challenge in voltage control in off-grid microgrid systems. To 

address this, appropriate control strategies are required to ensure stability and power 

quality, especially in the off-grid mode of operation where the microgrid does not receive 

support from the grid, which comes at an added cost. The literature reviewed and studies 

conducted have revealed that every control strategy has its merits and demerits and is 

specific to the needs of the microgrid for which it was designed (ABB Power, 2015; 

Aminu & Solomon, 2016; GE Digital Energy, 2012; Huang et al., 2011; Jain & Arya, 

2015; Jayachandran & Ravi, 2017; Katiraei et al., 2017; Lavanya & Senthil Kumar, 2018; 

Nanda et al., 2021; Szeidert et al., 2016).  

Conventional controllers such as Proportional-plus Integral (PI), Proportional-plus 

Integral-plus Derivative (PID) and droop-based control methods are simple and easy to 

implement. However, their performances are degraded in microgrids, characterized by 

uncertainties leading to a constantly changing structure and configuration. This is because 
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such controllers have static parameters obtained based on a linear mathematical model of 

the system and cannot respond favorably to the dynamic changes in a microgrid.  

For the Model Predictive Controller (MPC), the computation of the control law is more 

complex compared with conventional or artificial intelligent based controllers. Further, 

the success of an MPC controller in microgrids when acting alone mainly depends on the 

accuracy of the process model which is not easy to obtain. Adaptive Neuro-Fuzzy 

Inference System (ANFIS), though having the intelligence and learning ability, does not 

provide optimal results when deployed alone. The Genetic Algorithm (GA) controller 

provides optimized performance but it’s random or unguided mutation may pose 

challenges to the stability and accuracy of the microgrid controller when used alone.  

1.3 Justification 

The conventional control methods for regulating microgrid voltage, such as Proportional 

plus Integral plus Derivative (PID) control, require accurate mathematical models of the 

microgrid which may be difficult to obtain. Further, such methods exhibit serious 

struggles with non-linearities, rendering degraded performance under practical conditions. 

On the other hand, artificial intelligence-based control strategies such as Fuzzy Logic 

Control (FLC) and Artificial Neural Networks (ANN)-based methods do not require 

accurate mathematical models of the microgrid. These techniques can also handle the 

nonlinear dynamics of the microgrid system.  

Considering the mentioned challenges, the strategy implemented for control of a 

microgrid with PV-wind hybrid generation systems is a Microgrid Multi-level Control 

System (MMCS). The MMCS is based on the GA-ANFIS-MPC algorithms in which a 

hybrid Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System (GA-ANFIS) acts as 

the primary controller and the Model Predictive Control (MPC) as the secondary 

controller, the two hierarchical levels complementing one another. The MPC strengthens 

model-based prediction to handle BESS voltage dynamics while enforcing requisite 
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constraints. The GA-ANFIS algorithm on the other hand deploys PV-Wind power 

generation data-driven predictions to regulate the microgrid voltage. 

The designed GA-ANFIS-MPC MMCS offers several advantages over other existing or 

possible microgrid control schemes. First, it responds better to the changes in the 

microgrid as the GA-ANFIS-MPC parameters can be adjusted offline and online, and the 

GA-ANFIS has been trained to offer intelligence to the control system. The result is 

improved control and voltage regulation, particularly in the off-grid mode. The secondary 

MPC algorithm prevents over-charging or over-discharging of the Battery Energy Storage 

System (BESS). It compensates for voltage deviations introduced by implementing the 

GA-ANFIS primary controller. There is also an efficient load sharing and coordination of 

distributed PV-wind generation micro sources and prediction of their power outputs. 

Finally, there is enhanced handling of transients and re-establishing the prescribed 

microgrid operating point. The research outcome enhances control of microgrid voltage 

to supply quality power to remote locations and rural areas not connected to the main grid. 

From economic and industrial perspectives, the developed Multi-level Control System 

(MMCS) ensures lower energy costs by efficiently using Solar and Wind energy sources 

and the charging/discharging of the BESS. With the controller installed, the owner of the 

microgrid ends up spending the least amount possible on electricity at reduced 

maintenance costs while enjoying continuity of energy supply. It also predicts both future 

load and the projected generation which inevitably leads to significant savings while at 

the same time, increasing energy efficiency and reliability. In addition, the MMCS 

enhances security and resiliency thereby guaranteeing a consistent energy supply by the 

smart microgrid which is a key requirement in many industries. 1.4 Objectives 

1.4.1 Main Objective 

To develop a Microgrid Multi-level Control System (MMCS) for a Photovoltaic-Wind 

Hybrid generation system based on Genetic Algorithm-Adaptive Neuro-Fuzzy Inference 

System-Model Predictive Control (GA-ANFIS-MPC). 
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1.4.2 Specific Objectives 

i. To develop a mathematical, simulation, and case study model for a Photovoltaic-

Wind hybrid generation microgrid system using state space representation in 

MATLAB/SIMULINK. 

ii. To design a Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System (GA-

ANFIS) based MCS to control the voltage supplied by the PV-Wind hybrid 

generation microgrid system. 

iii. To design a Model Predictive Controller (MPC) to regulate and control Battery 

Energy Storage System (BESS) charging and discharging in the Photovoltaic-

Wind hybrid generation microgrid system.  

iv. To apply the developed GA-ANFIS-MPC-based multilevel MCS to an off-grid 

Photovoltaic-Wind Hybrid generation system case study and evaluate the 

performance compared to the Proportional plus Integral plus Derivative (PID) 

control method. 

1.5 Scope 

 This study focused on the voltage control problem of an off-grid microgrid containing 

PV-wind and BESS using the GA-ANFIS-MPC algorithms. Modeling, design, and 

implementation of the entire microgrid have been done in MATLAB/SIMULINK for the 

generation side, power electronic interfaces, and the control system. Studies associated 

with the frequency control problem, load side, and grid-connected systems are beyond the 

scope of the conducted work.  

The Simulink-based Case Study was built around a 10𝑘𝑊 Solar PV system with peak 

current of 16𝐴 and voltage 654𝑉 simulated at irradiance of 1𝑘𝑊/𝑚2 at 250 𝐶. The Wind 

Generation System used a West-wind 6.4𝑚, 10𝑘𝑊 Wind Turbine with a rated base speed 

of 12𝑚/𝑠. The DC-DC converter was a modified Interleaved Boost Converter (IBC)  both 

for the PV and wind sections of the microgrid while the inverters deployed were also two-

parallel three-level Voltage Source Converter (VSC) for the PV and wind microgrid. 
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There is also a Transfer Function (TF) based Simulink Case Study built around the 

schematic small-signal mathematical TF model of the studied microgrid. 

1.6 Organization of Thesis 

The thesis is organized into five chapters, including the introduction chapter, which forms 

Chapter 1. Chapter 2 deals with Literature Review where an overview of related work, 

microgrid concepts, GA, ANFIS, and MPC basics, and the research gaps are presented.  

Chapter 3 handles Methodology. First, it describes the modeling and analysis of the PV-

Wind microgrid system and the design of the Perturb and Observe (P&O) and PID 

controller for the same system for benchmarking. Secondly, the GA-ANFIS primary 

controller and the MPC BESS charging/discharging controller are designed separately and 

applied to the system. Finally, the MATLAB/SIMULINK models are created, and the 

overall simulation setup is developed to test the GA-ANFIS-MPC algorithms' 

performance.  

Chapter 4 presents the Results obtained from the simulation models, and those obtained 

from the case study developed. The performance of GA-ANFIS and MPC is compared 

with that of conventional PID controllers and the P&O method. The comparison is done 

in a MATLAB/SIMULINK environment, and the results are verified.  

Chapter 5 concludes the work performed in the study based on the results obtained and 

highlights the possible limitations. Moreover, further research work that can be carried 

out to improve the present scenario is mentioned. This section is followed by the reference 

materials that have been used in the development of the thesis. Finally, appendices outline 

the supplementary information, relevant to the study. 

1.7 Thesis Contribution 

The main contribution of this work is the developed Microgrid Multi-level Control System 

(MMCS) based on GA-ANFIS-MPC algorithm for off-grid Photovoltaic-Wind Hybrid 
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generation systems. The main areas are the Photovoltaic-wind-based MCS's design, 

modeling, and analysis. Other contributions of this study include: 

 The designed GA-ANFIS primary controller optimizes the converter outputs and 

performs better than the PID or SSR-P&O algorithms. 

 The interleaving of PV and wind micro sources, DC-DC boost converters, the 

BESS, and the three-phase parallel inverters provided scalability and modularity. 

 Modifying the equations and models specified in Table 2.4 under section 2.7 of 

the Literature Review. 

 Presentation of a unique model of the combined 10 𝑘𝑊 PV-wind microgrid with 

interleaving technique and its mathematical transfer function model.  

 The designed MPC secondary controller optimizes the BESS charging and 

discharging and whose performance is better than the PI (D) controller. 

 The research outcome enhances control of microgrid voltage to supply quality 

power to remote locations and rural areas not connected to the main grid. 

1.8 Assumptions of the Study 

The following assumptions have been made in the study: 

1. While it was noted that microgrids have varied capacities and can be operated off-

grid or in grid-connected modes, this study considered a microgrid having a power 

output of 10 𝑘𝑊 and is operated in an off-grid mode.  

2. The primary GA-ANFIS controller was trained offline with labeled training data 

while the secondary MPC controller was also designed offline before deployment. 

3. The data used in the design of the GA-ANFIS controller was pre-processed using 

MATLAB codes and converted into a form that the GA-ANFIS required, making 

the designed GA-ANFIS controller universally acceptable and not limited by the 

utilized dataset. The study used MATLAB&SIMULINK R2019a. This form of 

data is available on request.  
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4. The Solar and Wind raw data before transformation and further modifications was 

obtained from the National Solar Radiation Database (NSRDB) provided by the 

National Energy Research Laboratory (NREL). The data is freely and publicly 

available at https://nsrdb.nrel.gov/data-viewer as well as in the System Advisor 

Model (SAM) version SAM 2018.11.11 provided freely by NREL (Blair et al., 

2018). The site considered was Juja, Kiambu, Kenya with Latitude 1.095161S and 

Longitude 37.01249E for the period 2017 to 2019 with a spatial resolution of 4𝑘𝑚 

by 4𝑘𝑚.  Portions of the extracted data set have been provided in Appendix 4. 

5. Battery charging and discharging models and processes have been assumed similar 

so that the response of the BESS has been reported mainly within the discharging 

framework.  

  

https://nsrdb.nrel.gov/data-viewer
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter presents existing modeling and control techniques for microgrids as well as 

the research gaps that have been addressed in the study undertaken. It begins with an 

overview of the emerging power grids followed by the key elements of a hybrid 

photovoltaic-wind microgrid system. The chapter then proceeds to present microgrid 

control methods and a detailed review of hybrid controllers and selected existing studies. 

Finally, it concludes with a summary of research gaps and proposed approach. 

2.1 Emerging Power Grids  

There has been an increase in small-scale locally generated and distributed power 

utilization to facilitate rural electrification using distributed sources of clean energy, 

resulting in power configurations referred to as mini-grid, microgrid, nanogrid, and 

picogrid. Table 2.1 summarizes these emerging power grids, which have varied definitions 

among researchers, countries, and industries; thus, the entries made are typically for 

illustration purposes. In terms of commonly used sizes and the context of Table 2.1, the 

terminologies are interpreted as follows (Anvari-Moghaddam et al., 2021; Yahyaoui, 

2018):   

1. A mini-grid refers to a renewable-based small-scale power generation and 

distribution network with a capacity of 10kW and above (i.e., typically 10kW 

to 10MW).   

2. A microgrid is a smaller system that acts as a single controllable entity 

concerning the grid with a capacity below 10kW. It can connect to and 

disconnect from the grid, which allows it to be operated in grid-connected or off-

grid mode. Recent studies have depicted different views of a microgrid in terms 

of capacity, from tens of kilowatts (kW) to a few megawatts (MW). This study 
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considers a microgrid whose nominal power output is 10 kW and is operated in 

an off-grid mode.  

3. A nano grid is a small electrical domain with a power capacity not exceeding 

5kW and is limited to a single building structure, primary load, or a network of 

isolated loads.  

4. A pico grid is even smaller, consisting of a solar home system with a power 

capacity under 250W meters, providing just enough power for lighting and 

charging mobile phones.  

Table 2.1: Emerging Power Grids 

Grid Function AC/

DC 

Voltage   Power Connection 

to Grid 

Storag

e 

Mini-

grid 

Local AC/

DC 
230
− 400𝑉 𝐴𝐶,
> 60𝑉 𝐷𝐶 

10𝑘𝑊
− 10𝑀𝑊 

In principle, 

no but can 

be on-grid 

Mostly 

Micro

grid 

Distributed AC/

DC 
230
− 400𝑉 𝐴𝐶, 
 24 − 60𝑉 𝐷𝐶  

< 10𝑘𝑊 Possible Mostly 

Nano

grid 

Leisure telecom 

household 

AC/

DC 
< 24𝑉 𝐷𝐶 < 5𝑘𝑊 No, only 

possible to 

microgrid 

Yes 

Pico 

grid 

Telemetry 

phone charging 

DC < 12𝑉 𝐷𝐶 < 0.25𝑘𝑊 Off-grid Yes 

2.2 Hybrid Photovoltaic-Wind Microgrid System 

This section presents the key elements that constitute a Hybrid Photovoltaic -Wind 

Microgrid System. It introduces the general framework of a Microgrid Control System 

(MCS), Classification of Microgrid and the Generation Sources in a hybrid Photovoltaic 

and Wind Energy System.  

2.2.1 Microgrid Control System (MCS)  

A Microgrid Control System (MCS) is a supervisory-based control architecture that 

enables efficient and cost-effective utilization and integration of Distributed Energy 
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Resources (DERs), loads, and energy storage in a localized framework (Borges et al., 

2017; Du et al., 2017; Morstyn et al., 2018; T. Wang et al., 2019).  Figure 2.1 shows a 

microgrid control system with solar PV and wind as the principal micro sources (Sawle et 

al., 2016).  

If running, the power obtained from the wind turbine and the backup generator is first 

rectified before being injected into the DC bus. In contrast, power from the PV system is 

injected directly into the DC bus. The battery storage stores excess power generated to 

reduce the hours the generator may run. A microgrid control system is required to regulate 

and optimize the utilization of power generated by these sources, which may be coupled 

directly to the DC bus at the Point of Common Coupling (PCC) and subsequently to the 

AC bus via an inverter. The loads, classified as low priority, essential AC, and dump, are 

connected to the load bus.  

Wind
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Figure 2.1: Block Diagram of Microgrid Control System 

In general, the main roles of a microgrid control system are as follows (Ahmed et al., 

2015; Bidram et al., 2017; Nanda et al., 2021; Sawle et al., 2016; Shen, 2017): First is the 

regulation of voltage and frequency for both grid-connected and off-grid modes. Second, 

it provides efficient load sharing, co-ordination of DERs, and microgrid re-
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synchronization with the main grid for grid-connected systems. Third, it controls power 

flow between the microgrid and the main grid and optimizes its operating cost by allowing 

the incorporation of various constraints in the microgrid optimization problem. Finally, it 

appropriately handles transients and re-establishes prescribed conditions when 

transitioning between the modes. 

2.2.2 Classification of Microgrid  

Two broad categories of microgrid based on the type of power handled are AC microgrid 

and DC microgrid (Bidram et al., 2017; Z. Chen et al., 2017; Jadav et al., 2017; Morstyn 

et al., 2018). In terms of the operation principle, microgrids can operate in two modes: 

grid-connected mode and off-grid mode (Lei et al., 2016; LI & NEJABATKHAH, 2014; 

Minchala-Avila et al., 2015; Reshma Mary Thomas & Deepu Jose, 2015). Based on the 

grid connection status of a microgrid, it can be categorized into two: permanently isolated 

microgrid in which stand-alone networks supply all the power demanded by loads in the 

isolated network. This scenario is typical of remote areas or isolated communities where 

high transmission costs and losses render connection to the grid uneconomical (Ahmed et 

al., 2015; Aminu & Solomon, 2016; Bidram et al., 2017). Second is the grid-tied 

microgrid, which is capable of generating power within its distribution networks and 

importing and exporting power from and to a utility source.   

2.2.3 Generation Sources in Hybrid Photovoltaic and Wind Energy System  

The Hybrid Photovoltaic-Wind microgrid architecture of Figure 2.1 can be realized by 

integrating Photovoltaic (PV) and wind energy systems. However, the sizing of PV 

modules, wind turbines, and storage systems and determining control settings and 

operating strategies are interdependent (Sawle et al., 2016).  

2.2.3.1 PV System 

The power generated from a PV system concerning solar radiation (SR), denoted by 𝑃𝑃𝑉, 

is given by equation (2.1) (T. Wang et al., 2019). 
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𝑃𝑃𝑉 = 𝑃𝑆𝑇𝐶
𝐺𝐼𝑁𝐺
𝐺𝑆𝑇𝐶

(1 + 𝑘𝑐(𝑇𝐶 − 𝑇𝛾))                                      (2.1) 

where 𝑃𝑃𝑉   is the power generated from a PV system, 𝐺𝐼𝑁𝐺 , is the incident irradiance, 𝑃𝑆𝑇𝐶 , 

is maximum power at standard test conditions, 𝐺𝑆𝑇𝐶 , is irradiance at standard test 

conditions, 𝑘𝑐, is the temperature coefficient, 𝑇𝐶 , is the module temperature, and 𝑇𝛾, is the 

reference temperature (T. Wang et al., 2019). 

2.2.3.2 Wind Turbine Generator System 

The electrical power generated from a Wind Turbine (WT) unit, 𝑃𝑊𝑇 , can be specified as 

a cubic polynomial concerning the wind speed at the monitoring station according to 

equation (2.2) (T. Wang et al., 2019). 

𝑃𝑊𝑇 =
1

2
𝜌𝜋𝑅2𝑣3𝐶𝑝                                                     (2.2) 

where 𝑃𝑊𝑇 , is the power generated from a WT system, 𝑅 is the radius of the paddle of the 

wind turbine, 𝜌 is the air density of the monitoring area, 𝑣 is the wind speed of power 

generation area, and 𝐶𝑝, is the conversion efficiency of the wind power (T. Wang et al., 

2019). 

The Permanent Magnet Synchronous Generator (PMSG) WT with a Voltage Source 

Converter (VSC) is preferred by most manufacturers as it is more efficient and reliable. 

Its advantages over a Doubly Fed Induction Generator (DFIG) include gearless 

construction, no need for a DC excitation system, and the ability to extract maximum wind 

power. A simplified PMSG equivalent circuit 𝑑𝑞-coordinate frame model is represented 

in Figure 2.2 (Amara et al., 2020; C. N. Wang et al., 2014). 
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Figure 2.2: Simplified 𝒅 − 𝒒 Coordinate Frame PMSG Model 

The generator is modeled in 𝑑𝑞-coordinates in which the current equations for the 𝑑 −axis 

and 𝑞 −axis are given by equations (2.3) and (2.4), whereas equation (2.5) defines the 

electromagnetic torque in the rotor, 𝑇𝑒 (Amara et al., 2020; C. N. Wang et al., 2014).  

𝑑𝑖𝑠𝑑
𝑑𝑡

= −
𝑅𝑠
𝐿𝑠𝑑

𝑖𝑠𝑑 + 𝜔𝑠
𝐿𝑠𝑞

𝐿𝑠𝑑
𝑖𝑠𝑞 +

1

𝐿𝑠𝑑
𝑣𝑠𝑑                                 (2.3) 

𝑑𝑖𝑠𝑞

𝑑𝑡
= −

𝑅𝑠
𝐿𝑠𝑞

𝑖𝑠𝑞 − 𝜔𝑠 (
𝐿𝑠𝑑
𝐿𝑠𝑞

𝑖𝑠𝑑 +
1

𝐿𝑠𝑞
𝜓𝑝) + 

1

𝐿𝑠𝑞
𝑣𝑠𝑞          (2.4) 

𝑇𝑒 = 1.5𝑝[𝜓𝑝𝑖𝑠𝑞 + 𝑖𝑠𝑑𝑖𝑠𝑞(𝐿𝑠𝑑 − 𝐿𝑠𝑞)]                                 (2.5) 

where, 𝑣𝑠𝑑 , 𝑣𝑠𝑞  and 𝑖𝑠𝑑, 𝑖𝑠𝑞  are the 𝑑 −axis and 𝑞 −axis voltages and currents, 

respectively, 𝜔𝑠 is the generator’s electrical rotational speed, 𝐿𝑠𝑑 and 𝐿𝑠𝑞 are the generator 

inductance, 𝜓𝑝 is permanent flux, 𝑅𝑠 is the stator’s resistance, and 𝑝 is the number of pole 

pairs. 

Using the PMSG transient model, which is the Park model, the stator voltage equation is 

defined by equation (2.6) (Sumathi et al., 2015; Yahyaoui, 2018):  

(
𝑣𝑠𝑑
𝑣𝑠𝑞
) = −𝑅𝑠 (

𝑖𝑠𝑑
𝑖𝑠𝑞
) −

𝑑

𝑑𝑡
(
𝜓𝑠𝑑
𝜓𝑠𝑞

) + 𝜔𝑠 (
0 −1
1 0

) (
𝜓𝑠𝑑
𝜓𝑠𝑞

)       (2.6) 
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where, 𝑣𝑠𝑑 , 𝑣𝑠𝑞, 𝑖𝑠𝑑 , 𝑖𝑠𝑞 , 𝜓𝑠𝑑, and 𝜓𝑠𝑞 are, respectively, 𝑑 − 𝑞 instantaneous stator voltage, 

current, and flux.  

The stator flux linkages are defined as equation (2.7) 

(
𝜓𝑠𝑑
𝜓𝑠𝑞

) = (
𝐿𝑙𝑠 + 𝐿𝑑𝑚 0

0 𝐿𝑙𝑠 + 𝐿𝑞𝑚
) (
𝑖𝑠𝑑
𝑖𝑠𝑞
) + (

𝜓𝑝
0
)                (2.7) 

where 𝐿𝑑𝑚 and 𝐿𝑞𝑚 are respectively the stator and rotor 𝑑 − and 𝑞 −axis mutual 

inductances, 𝐿𝑙𝑠 is the leakage inductance of stator winding, 𝜓𝑝 is the flux linkage 

produced by the permanent magnet. The electromagnetic torque now becomes equation 

(2.8) (Grzegorz Ma´slak and Przemysław Orłowski, 2022; Jayachandran & Ravi, 2017): 

𝑇𝑒 = 2𝑝(𝜓𝑠𝑑𝑖𝑠𝑞 − 𝜓𝑠𝑞𝑖𝑠𝑑) = 𝑝(𝜓𝑝𝑖𝑠𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑠𝑑𝑖𝑠𝑞)  (2.8) 

where, 𝐿𝑑 = 𝐿𝑙𝑠 + 𝐿𝑑𝑚, 𝐿𝑞 = 𝐿𝑙𝑠 + 𝐿𝑞𝑚. 

In the case of a directly coupled multipole PMSG, the stator resistance is much smaller 

than the synchronous reactance. Moreover, the difference between the 𝑑 − and 𝑞 − axis 

mutual inductance is small. With these considerations, equation (2.8) reduces to equation 

(2.9) (Grzegorz Ma´slak and Przemysław Orłowski, 2022; Jayachandran & Ravi, 2017; 

C. N. Wang et al., 2014): 

𝑇𝑒 = 2𝑝(𝜓𝑓𝑖𝑠𝑞)                                                         (2.9) 

For a PMSG, the mechanical torque (𝑇𝑚) and electrical torque (𝑇𝑒)  can be given by 

equations (2.10) and (2.11), respectively (C. N. Wang et al., 2014): 

𝑇𝑚 =
𝑃𝑚
𝜔𝑚

                                                                      (2.10) 
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𝑇𝑒 =
𝑃𝑒
𝜔𝑒
=  

1

𝑝

𝑃𝑒
𝜔𝑚

                                                     (2.11) 

where 𝜔𝑚, 𝜔𝑒, 𝑃𝑒, 𝑃𝑚 and 𝑝 are the rotor mechanical speed, rotor electrical speed, the 

electrical power of the PMSG, the mechanical power of the PMSG, and the number of 

pole pairs, respectively.  

Considering a gearless small wind turbine PMSG system, the rotor mechanical speed is 

assumed to equal the rotor electrical speed. Therefore, the mechanical power of the PMSG 

is expressed as equation (2.12): 

𝑃𝑚 = 𝑇𝑚𝜔𝑚 =  
𝑇𝑒𝜔𝑒
𝑃
                                                     (2.12) 

The generator equation of motion can be used to compute variations in the generator speed 

arising from a difference in electrical and mechanical torque as given by equation (2.13): 

𝑑𝜔𝑚
𝑑𝑡

 =
1

2𝐻𝑚
(𝑇𝑚 − 𝑇𝑒)                                      (2.13) 

where 𝐻𝑚 represents the equivalent inertia constant of the generator rotor.  

The generator output active power delivered to the load  𝑃𝐿 can be determined from 

equation (2.14):  

𝑃𝐿 = 𝑃𝑚 − 𝑃𝐶𝑢,𝑠  = 1.5[𝑣𝑠𝑑𝑖𝑠𝑑 + 𝑣𝑠𝑞𝑖𝑠𝑞]               (2.14) 

where the stator winding loss 𝑃𝐶𝑢,𝑠 is given by equation (2.15): 

𝑃𝐶𝑢,𝑠 = 3𝐼𝑠
2𝑅𝑠                                                     (2.15) 

The generator output reactive power delivered to the load 𝑃𝑄  is given by equation (2.16):  
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𝑃𝑄 = 1.5[𝑣𝑠𝑞𝑖𝑠𝑑 + 𝑣𝑠𝑑𝑖𝑠𝑞]                                        (2.16) 

The R.M.S stator current and voltage 𝐼𝑠 and 𝑉𝑠 respectively, can be computed from 

equations (2.17) and (2.18):  

𝐼𝑠  = √
(𝑖𝑠𝑑

2 + 𝑖𝑠𝑞
2)

√2
                                        (2.17) 

𝑉𝑠  = √
(𝑣𝑠𝑑

2 + 𝑣𝑠𝑞2)

√2
                                        (2.18) 

2.3 Microgrid Control Methods 

Existing microgrid architectures and control strategies include: hierarchical control 

schemes, conventional and modified droop control methods, Model Predictive Control, 

nonlinear programming algorithms, artificial intelligence control methods, and 

commercial microgrid systems. 

2.3.1 Hierarchical Control Architecture 

The control objectives of microgrids can be considered in terms of a hierarchical control 

structure, as shown in Figure 2.3 (Ahmed et al., 2015; Bidram et al., 2017). This view 

leads to a multilevel control structure to address a microgrid system's different design and 

performance goals. The primary control level operates at the fastest timescale and 

encompasses the distributed PV-wind micro sources' internal voltage and current control 

loops. It is responsible for stabilizing the voltage and frequency within the microgrid.  

Consequently, it deals with local measurements and does not need a communication 

system. It also curtails the occurrence of circulating currents representing harmonics and 

provides for the reconfiguration capability of the DERs. It is also necessary for active and 
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reactive power regulation, usually achieved by droop-based controls (Ahmed et al., 2015; 

Aminu & Solomon, 2016; Bidram et al., 2017; Nanda et al., 2021).  
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Figure 2.3: Hierarchical Control Levels of a Microgrid 

The secondary control, also known as the microgrid Energy Management System (EMS), 

is utilized to compensate for the variations in voltage and frequency due to actions by the 

primary controls. It ensures reliable, secure, and efficient operation of microgrids in either 

grid-connected or off-grid mode (Nanda et al., 2021; Sawle et al., 2016). The secondary 

control is the highest level for a microgrid operating in off-grid mode. It can be realized 

using two main approaches: centralized and decentralized architectures (Borazjani et al., 

2014; Nanda et al., 2021; Palizban & Kauhaniemi, n.d.). Centralized control uses a 

communication system with a Microgrid Central Controller (MCC) located far from the 

micro sources. The central system collects data from all sensors, computes the control 

variable for various control equipment, and then sends them to each controller, thereby 

managing the entire system. An example is Microgrid Supervisory Control And Data 

Acquisition (MicroSCADA) (Borazjani et al., 2014; Ton & Systems, 2015). It is 

recommended for certain small microgrids and those with shared goals and thus should 

cooperate. However, with growth in source data, the centralized approach is not fast 



20 

enough, hinders up-scaling, is uneconomical, and creates a single point of failure for the 

microgrid system.  

Decentralized control is preferred for interconnected microgrids from different vendors, 

which should make independent decisions about their operating conditions. The microgrid 

control system incorporates intelligent control for each micro source. It reduces the 

network complexity, allows easy scalability (future extension), improves power supply 

reliability, is more economical, and offers bi-directional power flow. However, a 

disadvantage of this approach is the load-dependent frequency and amplitude deviations 

due to the utilization of the droop control method to adjust the active and reactive power 

in primary control [8], [9]. Finally, the tertiary control is at the highest level and operates 

at the slowest timescale. It manages the bidirectional power flow between the microgrid 

and the main grid. This facilitates an economical and optimal operation of the hierarchical 

control structure (Bidram et al., 2017).   

Several control techniques, as shown in Figure 2.4, (Bidram et al., 2017), have been 

proposed in the literature for the inner-loop control and primary control and are deployed 

according to the characteristics of the microgrid (Borges et al., 2017; Du et al., 2017; GE 

Digital Energy, 2012; Jayachandran & Ravi, 2017; Lavanya & Senthil Kumar, 2018; 

Morstyn et al., 2018; T. Wang et al., 2019). The aim is to improve the power quality, 

disturbance rejection, and voltage or current tracking of the inverter output (ABB Power, 

2015; Hossain et al., 2017). Conventional (active power control/frequency droop 

characteristic and reactive power control/voltage droop characteristic) and modified droop 

control methods have been widely utilized in microgrid systems, particularly for inner 

control loops/primary control [1]-[4], [8]–[11], [13]–[16], (Lavanya & Senthil Kumar, 

2018). Droop control methods do not require communication links between the converters 

and, hence, are considered autonomous and wireless control strategies [2]. 
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Control Strategies for PV-Wind 
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Figure 2.4: Inner-Loop Control and Primary Control Techniques  

2.3.2 Droop Control Methods 

A typical conventional droop control method is shown in Figure 2.5 (Bidram et al., 2017).  
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Figure 2.5: Conventional Droop Method 
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The primary control techniques are mostly implemented in active/reactive power (PQ) or 

voltage control modes. 

i. PQ Control Mode: Here, the DG active and reactive power supply is regulated 

based on predetermined reference points. A current-controlled voltage source 

inverter (CCVSI) is used for its implementation (Bidram et al., 2017). The power 

source supplies stable power output irrespective of any variations in voltage, 

frequency, or load (Shen, 2017). 

ii. Voltage Control Mode (VCM): The DG functions as a voltage-controlled voltage 

source inverter (VCVSI), implying that the reference voltage 𝑣0
∗, is obtained 

through droop characteristics using the primary control. Li and Nejabatkhah (LI & 

NEJABATKHAH, 2014) reported that VCM-based techniques are acquiring more 

attention as they can emulate a synchronous generator's behavior. The VCM nested 

voltage and current control loops are shown in Figure 2.6 (Bidram et al., 2017). It 

is seen that such a control strategy injects the current signal as feedback.  
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Figure 2.6: Voltage and Current Control Loops in Voltage Control Mode 

If this model were to be applied in small-scale off-grid systems with PV-wind sources, the 

major concern would be how to improve the power quality in the presence of non-linear 

and single-phase loads and due to the low inertia presented by the microgrid. One direct 
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way to improve the power quality suggested in (Bidram et al., 2017) and (Hossain et al., 

2017) is to modify the control structure by adopting a low pass filter both in the feed-

forward inner current loop and the feedback outer voltage loop.  

Consider an equivalent circuit of a VCVSI coupled to an AC bus as shown in Figure 2.7, 

where the VCVSI is modeled as an AC source, with a voltage of 𝐸∠𝛿,  the common AC 

bus voltage is  𝑉𝑐𝑜𝑚∠0, and the 𝑍∠𝜃 is the combined impedance of the line and the 

converter output. 

With this, the complex power delivered to the common AC bus is given by equation 

(2.19): 

𝑆 = 𝑃 + 𝑗𝑄 = 𝑉𝑐𝑜𝑚𝐼
∗ =

𝑉𝑐𝑜𝑚𝐸∠𝜃 − 𝛿

𝑍
−
𝑉2𝑐𝑜𝑚𝐸∠𝜃

𝑍
                               (2.19) 

where 𝛿 is the phase difference between the converter output voltage and the common AC 

bus.  
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Figure 2.7: Simplified Diagram of a Converter Connected to the Microgrid 

From equation (2.19), the real and reactive powers are calculated as: 
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{
 

 𝑃 =
𝑉𝑐𝑜𝑚𝐸

𝑍
𝑐𝑜𝑠(𝜃 − 𝛿) −

𝑉2𝑐𝑜𝑚
𝑍

𝑐𝑜𝑠 𝜃,                            

𝑄 =
𝑉𝑐𝑜𝑚𝐸

𝑍
𝑠𝑖𝑛(𝜃 − 𝛿) −

𝑉2𝑐𝑜𝑚
𝑍

𝑠𝑖𝑛 𝜃                               

(2.20) 

Assuming that the effective line impedance,  𝑍∠𝜃, is purely inductive, 𝜃 = 900 Equation 

(2.20) yields equation (2.21): 

{
𝑃 =

𝑉𝑐𝑜𝑚𝐸

𝑍
𝑠𝑖𝑛 𝛿,                                              

𝑄 =
𝑉𝑐𝑜𝑚𝐸 𝑐𝑜𝑠 𝛿 − 𝑉

2
𝑐𝑜𝑚

𝑍
                               

                (2.21𝑎) 

Equation (2.21a) can be simplified further into equation (2.21b) when 𝛿, is considered 

small enough such that, 𝑠𝑖𝑛 𝛿 ≈ 𝛿 and 𝑐𝑜𝑠 𝛿 ≈ 1.  

{
𝑃 =

𝑉𝑐𝑜𝑚𝐸

𝑍
𝛿,                                              

𝑄 =
𝑉𝑐𝑜𝑚𝐸 − 𝑉

2
𝑐𝑜𝑚

𝑍
                               

                      (2.21𝑏) 

These assumptions are very important as they enable the application of frequency and 

voltage droop characteristics to fine-tune the reference voltage of the VCVSI, as depicted 

earlier in Figure 2.5, which is based on  

{
𝜔 = 𝜔∗−𝐷𝑃𝑃,                            
𝐸 = 𝐸∗−𝐷𝑄𝑄,                              

                                    (2.22) 

where 𝜔∗ and 𝐸∗, are the primary control references representing angular frequency and 

r.m.s output voltage, respectively, of the DG at the no-load condition.  

Modifications of the droop coefficients, 𝐷𝑃 and 𝐷𝑄 ,  is mostly achieved by using heuristic 

or tuning algorithms (such as particle swarm optimization (PSO), Genetic Algorithms 

(GA), Interior Search Algorithm (ISA), etc.). In the heuristic approach, 𝐷𝑃 and 𝐷𝑄 Are 
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obtained based on the converter power rating and the maximum allowable deviations in 

voltage and frequency. For example, in a microgrid with 𝑁𝑚 DGs, constraints put on the 

determination of 𝐷𝑃 and 𝐷𝑄 , are as given in equation (2.23):  

{
𝐷𝑃1𝑃𝑛1 = 𝐷𝑃2𝑃𝑛2 = ⋯ = 𝐷𝑃𝑁𝑚𝑃𝑛𝑁𝑚 = ∆𝜔𝑚𝑎𝑥,                            

𝐷𝑄1𝑄𝑛1 = 𝐷𝑄2𝑄𝑛2 = ⋯ = 𝐷𝑄𝑁𝑚𝑄𝑛𝑁𝑚 = ∆𝐸𝑚𝑎𝑥,                              
(2.23) 

where ∆𝜔𝑚𝑎𝑥 and ∆𝐸𝑚𝑎𝑥, designate the maximum allowable angular frequency and 

voltage deviations, respectively, while 𝑃𝑛𝑖 and 𝑄𝑛𝑖, represent the nominal active and 

reactive powers of the 𝑖𝑡ℎ DG (Bidram et al., 2017). Contrary to the active load-sharing 

technique, the conventional droop method can be implemented without any 

communication links; hence, it is more reliable. 

However, some of its drawbacks include (Bidram et al., 2017), (Hossain et al., 2017; LI 

& NEJABATKHAH, 2014; L. Meng et al., 2017; Reshma Mary Thomas & Deepu Jose, 

2015). 

i. The approach handles only one control variable for each droop characteristic thus, 

it is impossible to achieve multiple control objectives simultaneously. For 

instance, a design trade-off must be considered between the control system's time 

constant and the voltage and frequency regulation.  

ii. Development of the conventional droop method assumes that the effective 

impedance between the VCVSI and the AC bus is highly inductive. However, this 

assumption does not hold in microgrid applications where the low-voltage 

transmission lines are majorly resistive. This renders equation (2.21a) and (2.21b) 

invalid in microgrid systems. 

iii. In a microgrid, frequency is a global quantity, whereas the voltage is not. 

Consequently, the reactive power control in equation (2.22) may adversely affect 

the voltage regulation for critical loads. 
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Further, the conventional droop method cannot distinguish the load current harmonics 

from the circulating current for non-linear loads. This leads to distortion of the DG output 

voltage by the current harmonics. These challenges may be addressed by adjusting the 

conventional droop method to minimize the total harmonic distortion (THD). 

The following techniques have been proposed for adjusting the conventional droop 

method (Bidram et al., 2017), (Hossain et al., 2017; LI & NEJABATKHAH, 2014; L. 

Meng et al., 2017; Reshma Mary Thomas & Deepu Jose, 2015). 

a) Adjustable load sharing method-in which the time constant of the active and reactive 

controllers can be altered without affecting the DG voltage and frequency.  

b) VPD/FQB Droop method-The voltage active power droop and frequency-reactive 

power boost (VPD/FQB) characteristics approach is proposed for tackling the 

challenges of low-voltage microgrids with highly resistive transmission lines. 

Assuming resistive effective line impedance (i.e., 𝜃 = 00) as is the case in low-voltage 

transmission lines and also considering 𝛿 being small enough, making 𝑠𝑖𝑛  𝛿 ≈ 𝛿, 

then equation (2.20) can be reduced into equation (2.24): 

{
𝑃 ≈

𝑉𝑐𝑜𝑚𝐸 − 𝑉
2
𝑐𝑜𝑚

𝑍
,                            

𝑄 ≈ −
𝑉𝑐𝑜𝑚𝐸

𝑍
𝛿                             

                                    (2.24) 

The VPD/FQB technique can also be altered to vary the controller time constant without 

changing voltage and frequency based on equation (2.25) and Figure 2.8 (Bidram et al., 

2017), (Hossain et al., 2017; LI & NEJABATKHAH, 2014; L. Meng et al., 2017; Reshma 

Mary Thomas & Deepu Jose, 2015).  

{
𝐸 = 𝐸∗−𝐷𝑃𝑃,                               
𝜔 = 𝜔∗+𝐷𝑄𝑄,                              

                                    (2.25) 
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However, it is highly dependent on system parameters, thereby restricting its application. 

Moreover, the VPD/FQB technique may malfunction when subjected to non-linear loads 

and hence cannot assure sustained voltage regulation. The regulation of voltage and 

frequency in a microgrid is such that in the grid-connected mode, PQ control is preferred. 

In contrast, a constant voltage and frequency control strategy is favored in the islanded 

mode.   

(a)
(b)

0 0
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PmaxP
minQ maxQ Q






 

Figure 2.8: Droop/Boost Characteristics For Low-Voltage Microgrids: a) VPD and 

b) FQB Characteristic 

2.3.3 Model Predictive Control  

The Model Predictive Control (MPC) is presented in (Du et al., 2017; Morstyn et al., 2018; 

Nanda et al., 2021; Shen, 2017). The MPC method uses a prediction model based on 

existing system knowledge and future predictions to determine the control variables in 

real time (online) for every sampling period. From this, the optimal value of the control 

variable in the predictive function is selected for the next sampling period (time step)  [6], 

[19]. Thus, an optimization model covering a finite horizon is deployed at every discrete 

time step to generate a control action sequence, from which the first action is often utilized. 
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Using the renewed system state and future information, the system then moves to the next 

time step, and the above computation is repeated [20].   

Figure 2.9 shows the MPC block diagram, which can be viewed as a closed-loop system 

due to the continuous modulation of control variables to compensate for prediction 

inaccuracies (Seborg E. Dale, 2003).  

The present values of the output variables are predicted using the process model. The 

residuals, denoting deviations of the actual outputs from the predicted outputs, form the 

feedback signal to a prediction block. The predictions are fed into two types of MPC 

calculations executed at every sampling instant: set-point and control calculations. The set 

points are typically computed each time the control calculations are performed. 

However, set-points may also be known in advance and thus may need not to be 

calculated. Inequality constraints on the input and output variables, e.g., upper and lower 

limits, can be incorporated in either type of calculation. 
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Figure 2.9: Block Diagram for Model Predictive Control  
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The MPC makes calculations based on present measurements and predicted future output 

values. The basic formulation of the MPC control problem or algorithms requires five 

major elements: process model, performance index, constraints, optimization method, and 

receding horizon principle. Figure 2.10 shows the principle of MPC, where 𝑦  is the actual 

output, 𝑦,̂ is the predicted output, and 𝑢 is the control input (Seborg E. Dale, 2003).  

Taking the current sampling instant as 𝑘, the MPC strategy calculates a set of M values of 

the input. {�̂�(𝑘 + 𝑖 − 1|𝑘), 𝑖 = 1, 2, … ,𝑀}, where 𝑀 is the control horizon. This set 

comprises the current input �̂�(𝑘) and 𝑀 − 1 future inputs. The input is kept constant after 

the M-control moves. The outputs are calculated so that a set of predicted 

outputs �̂�(𝑘 + 𝑖), 𝑖 = 1,2, … ,𝑁}, where 𝑁 is the prediction horizon, optimally achieves 

the set point. The control calculations are based on optimizing an objective function 

(performance index), which penalizes the deviations of the predicted outputs, �̂�(𝑘 + 𝑖|𝑘) 

from the reference trajectory  𝑟(𝑘 + 𝑖|𝑘) and the variations in the control input ∆𝑢(𝑘 +

𝑖|𝑘) (Kerdphol et al., 2017; Seborg E. Dale, 2003).   
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Figure 2.10: Basic Principle of the MPC  
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For example, for a linear system, the cost function can be formulated as a sum of quadratic 

functions and is given as in equation (2.26): 

𝐽 =∑[�̂�(𝑘 + 𝑖|𝑘) − 𝑟(𝑘 + 𝑖|𝑘)]𝑇
𝑁

𝑖=1

𝑸𝑖[�̂�(𝑘 + 𝑖|𝑘) − 𝑟(𝑘 + 𝑖|𝑘)]

+ ∑[∆𝑢(𝑘 + 𝑖|𝑘)]𝑇
𝑀−1

𝑖=0

𝑹𝑖[∆𝑢(𝑘 + 𝑖|𝑘)]                                                 (2.26) 

where 𝑦 is the controlled variable, 𝑟  is the set point, ∆𝑢 is the manipulated variable 

increment, 𝑸𝑖 is a weighting matrix representing the penalization parameters for control 

errors and 𝑹𝑖, is a weighting matrix representing the penalization parameters for control 

increments. 𝑁 is known as the prediction horizon, and 𝑀 is known as the control horizon 

(such that after 𝑀 control changes, the control action is maintained constant). Matrices 𝑸𝑖 

and  𝑹𝑖, are real, symmetric, positive, semi-definite matrices. The general simplified cost 

function expressed in matrix notation becomes equation (2.27): 

𝐽 = [𝒀 − 𝑹]𝑇𝑸𝑖[𝒀 − 𝑹] + 𝑼
𝑇𝑹𝑖𝑼                                                                 (2.27) 

The MPC method can be realized in centralized or decentralized schemes and has been 

widely used as an inverter control strategy (Shen, 2017) and to solve the problem of real-

time economic dispatch and power exchange between the microgrid and the Energy 

Storage (ES) or utility system (Du et al., 2017; Morstyn et al., 2018). With the cost 

function at hand, the next step is getting predictions based on a prediction model. Various 

MPC prediction models can be adopted, including Impulse Response Models, Step 

Response Models, Transfer Function Models, and State Space Models.  

The state space algorithm has been adopted in the undertaken study. The discrete-time 

form of the state space model is as highlighted in equations (2.28) and (2.29): 

𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝑢(𝑘)                                        (2.28) 
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𝑦(𝑘) = 𝑪𝑥(𝑘)                                                          (2.29) 

which is converted into incremental form as given in equations (2.30) and (2.31): 

[
𝒙(𝑘 + 1)

𝒖(𝒌)
]

⏟      
𝒙𝒑(𝒌+𝟏)

= [
𝑨 𝑩
𝟎 𝑰

]
⏟    

𝑭

[
𝒙(𝑘)

𝒖(𝒌 − 𝟏)
]

⏟      
𝒙𝒑(𝒌)

+ [
𝑩
𝑰
]

⏟
𝑮

∆𝑢(𝑘)            (2.30) 

𝒚(𝑘) = [𝑪 𝟎]⏟    
𝑯

[
𝒙(𝑘)

𝒖(𝒌 − 𝟏)
]

⏟      
𝒙𝒑(𝒌)

                                    (2.31) 

These equations can be written as in equation (2.32) and (2.33): 

�̃�(𝑘 + 1) = 𝑭�̃�(𝑘) + 𝑮∆𝑢(𝑘)                                    (2.32) 

𝒚(𝑘) = 𝑯�̃�(𝑘)                                                          (2.33) 

where 𝑭, 𝑮 and 𝑯 are as defined in equation (2.34): 

 𝑭 = [
𝑨 𝑩
𝟎 𝑰

] , 𝑮 = [
𝑩
𝑰
] ,𝑯 = [𝑪 𝟎]                                   (2.34) 

The incremental form model reduces steady-state errors. The design of MPC may 

incorporate constraints, which are broadly classified as hard and soft constraints as well 

as input, output or state constraints. Typically, the input, output and state constraints are 

specified as in equation (2.35) (Kerdphol et al., 2017; Seborg E. Dale, 2003). 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑖) ≤ 𝑢𝑚𝑎𝑥, 𝑖 ∈ {𝑘, 𝑘 + 𝑁𝑢 − 1}

𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑖) ≤ 𝑦𝑚𝑎𝑥 , 𝑖 ∈ {𝑘 + 1, 𝑘 + 𝑁2}

𝑿𝑚𝑖𝑛 ≤ 𝒙𝒑(𝒊) ≤ 𝑿𝑚𝑎𝑥, 𝑖 ∈ {𝑘 + 1, 𝑘 + 𝑁2}
}                                                 (2.35) 
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In the study undertaken the constraints are necessary to cater for limits in voltages, 

currents, frequencies, power and state of charge of batteries. The flowchart in Figure 2.11 

summarizes the seven steps undertaken in the MPC calculations, in the order they are 

performed at each control implementation time.  

Step 1 acquires new process data via the regulatory control system that is linked to the 

process. In Step 2, the new output predictions are calculated based on the process model 

and the new data whereas Step 3 determines the current control structure. 

The control structure should not change from one control execution time to another. If this 

happens, then the control calculations can become ill-conditioned, meaning that the 

available control inputs have very similar effects on two or more outputs. Such scenarios 

must be identified and rectified prior to executing the MPC calculations in Steps 5 and 6. 

Step 7 implements the calculated control actions, usually as set points to regulatory PI or 

PID control loops. Finally, decision is made by checking the tracking consensus against 

constraints and specified MPC requirements. If satisfactory, the MPC computation is 

terminated else if not, then the process is repeatedly incrementally.  
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Figure 2.11: Flow chart of MPC Algorithm 

The advantages of MPC as a tool include:  

1. The method can handle Single-Input-Single-Output (SISO) and multivariable 

systems,  

2. The process model takes care of both dynamic and static interactions between 

input, output, and disturbance variables,  

3. The formulation of MPC enables it to handle constraints on inputs and outputs in 

a systematic manner,  

4. The computations of control actions can be coordinated with the calculation of 

optimum set points,  
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5. Accurate model predictions can provide early and timely warnings of potential 

problems or system malfunctions and  

6. MPC formulation allows for closer operation of the system to the constraints and 

this contributes to higher profits.  

7. However, the principal disadvantages of MPC are:  

8. The computation of the control law is more complex compared to conventional 

controllers such as PID. 

9. Its success depends on the accuracy of process model, which may not be easy to 

realize. 

10. MPC requires hardware with a high computational ability and this is more 

expensive. 

One of the existing MPC methods for microgrids with distributed ES involves strategies 

considering only one ES system or aggregated multiple ES systems such as the two BESS 

used in (Nguyen et al., 2015). This does not account for the power flows between various 

ES systems. The other category involves strategies based on non-convex optimization. 

For example, MPC-based on non-linear programming (NLP) in unbalanced microgrids 

(Morstyn et al., 2018; Nanda et al., 2021). However, if the problem is non-convex, 

scalability is limited and the available solvers are capable of only providing locally 

optimal solutions (Morstyn et al., 2018). Recursive dynamic programming (RDP), which 

produces a globally optimal solution, may be an alternative for the ES system optimal 

power flow problem. However, its numerical complexity increases with the number of ES 

systems (Morstyn et al., 2018). 

Morstyn et al. (Morstyn et al., 2018), proposed a new convex MPC strategy for solving 

the dynamic optimal power flow problem between battery energy storage systems 

distributed in an AC microgrid. The problem formulation is based on a linear 𝑑–𝑞 

reference frame VCM and linearized power flow approximations. The performance of the 

strategy was evaluated from the real-time digital simulations conducted for an islanded 

microgrid based on the IEEE 13 bus prototypical feeder. The system had distributed 

battery energy storage system (BESS) and intermittent PV generation. The results 
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indicated that the proposed control strategy approaches the performance of a strategy 

based on non-convex optimization, while minimizing the required computation time by a 

factor of 1000.   

Since the problem was solved as a convex Quadratically Constrained Quadratic Program 

(QCQP), for which fast and robust solvers exist, it is recommended for a real-time 

receding horizon MPC implementation (Morstyn et al., 2018). The method does not 

assume real and reactive power flows are decoupled, allowing line losses, voltage 

constraints and converter current constraints to be considered in the optimization. The 

implementation of MPC for solving nonlinear optimization problems at each time-step is 

called nonlinear MPC (NMPC) and is presented in (Nanda et al., 2021) for microgrids. 

The performance of a DC microgrid with a hybrid energy storage system having battery-

supercapacitor combination is improved using Filtration-based Model Predictive 

Controller (FB-MPC) by Abadi et al. (Ghorashi Khalil Abadi et al., 2022). The FB-MPC 

strategy has been used to carry out the sharing of power/current between the BESS and 

the supercapacitor, enabling the microgrid voltage controller to operate with higher gain 

values. 

Zhao et al. (Zhao et al., 2022) proposed an adaptive intelligent MPC for load frequency 

control in a microgrid. The results showed that the performance of the MPC based on a 

type-2 fuzzy system has the best performance followed closely with type-1 fuzzy MPC 

but both of which recorded a better performance than the traditional MPC. 

A consensus-based energy management in a DC microgrid is performed using MPC by 

Ali et al. (S. U. Ali et al., 2023). The MPC controller assists the individual controllers for 

the distributed renewable energy sources and BESS to operate as grid forming or grid 

feeding based on the power flow mode selection. It was observed that the MPC method 

exhibited settling time of less than 1 𝜇𝑠 and 5% overshoot in comparison with the PI and 

Sliding Mode Control (SMC) strategies. 
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2.3.4 Artificial Intelligence Control Methods 

When PV-wind hybrid microgrid systems are to be implemented in remote areas, which 

are ideal for stand-alone operation, it becomes challenging to acquire long-term weather 

data such as solar irradiation and wind speed to aid in generation sizing by matching actual 

generation to the load demand. Consequently, artificial intelligence techniques such as 

Artificial Neural Networks (ANN), Fuzzy Logic (FL), Genetic Algorithms (GA) and 

particle swarm optimization (PSO) become very useful in sizing stand-alone systems as 

compared with the conventional sizing method, which is highly dependent on long-term 

weather data (Badwawi et al., 2015; Borges et al., 2017; Jayachandran & Ravi, 2017; 

Sawle et al., 2016; T. Wang et al., 2019). 

2.3.4.1 Genetic Algorithm Method 

Genetic Algorithm (GA) method is a search technique and is suitable for a complex 

problem such as a PV-wind hybrid system when other techniques do not offer acceptable 

solutions.  In this case, the weather conditions are varying hourly and daily and thus will 

be different for different seasons in a year. The GA method can be deployed to aid in 

obtaining the optimum number of facilities to use based on the hourly average 

metrological and load data collected say over a few years for simulation purposes (Sawle 

et al., 2016).  Figure 2.12 shows breakdown of the GA algorithm (Korjani et al., 2017; 

Sawle et al., 2016).  
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Figure 2.12: Flow chart of GA Algorithm  

Most researchers using GA in microgrid problems such as in (Korjani et al., 2017) create 

initial population based on weather and load data sets. The data is manipulated iteratively 

using selection, crossover and mutation until a preset condition is attained. The 

implementation of GA algorithm requires that the following important parameters are 

specified: population size, maximum number of generations, number of elite 

chromosomes, selection method, crossover function and fraction, mutation function, and 

mutation rate. 

2.3.4.2 Artificial Neural Networks (ANN) 

Artificial Neural Network (ANN) mimics how the central nervous system of the human 

body functions. The basic structure of an ANN is composed of three layers, namely: input 

layer, hidden layer and output layer. The ANN has a self-learning feature, which enables 
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the algorithm to be easily designed for different operating conditions and grid disturbances 

(Hossain et al., 2017). However, it lacks performance in off-line training technique. Wang 

et al (T. Wang et al., 2019) used the Lagrange programming neural network (LPNN) in a 

hybrid microgrid to achieve optimal scheduling and management.  The objective function 

includes power generation cost, fuel cost, operating and maintenance cost and emission-

control cost. It is solved so as to minimize total cost and maximize the power generated 

by the DERs subject to some defined equality and inequality constraints. Through 

combination of the variable neurons with Lagrange neurons, the LPNN minimized the 

cost function and maximized the energy generated by the Wind Turbines (WTs) and 

Photovoltaic cells (PVs) as confirmed from the results simulated in MATLAB.  

In addition, the energy stored into and supplied from the storage system was optimized 

too. Further, the Radial Basis Function Neural Network (RBFNN) achieved day-ahead 

prediction of load demand and renewable resources. When the results of LPNN were 

compared with those of the basic PSO it was observed that the LPNN was better than the 

PSO method. For instance, when LPNN cost is $274.64 and PSO cost is $476.84, and 

defining LTP as the ratio of PSO to LPNN then the LTP becomes 1.74, indicating clearly 

that the PSO is weaker in dealing with constrained problem (T. Wang et al., 2019).   

2.3.4.3 Particle Swarm Optimization 

The Particle Swarm Optimization method (PSO), introduced in 1995, is reported in 

(Borges et al., 2017; Jayachandran & Ravi, 2017; Sawle et al., 2016; T. Wang et al., 2019) 

which can be used in optimal sizing of the hybrid energy systems. The algorithm treats 

the generation units as if they are selected particles from a swarm of particles, say 𝑝, 

within a design space, say 𝐷. The discrimination within 𝐷 is carried out based on the 

position and speed of a particle such that in every iterative process, each particle 

continuously records the best solution thus far during its flight (Sawle et al., 2016). The 

position and speed may be assigned different variables in a PV-wind microgrid 

optimization problem. Borges et al (Borges et al., 2017) applied the PSO method to solve 

a day-ahead microgrid dispatch problem taking into account uncertainties which are 
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associated with energy production by the PV and wind sources. The stated uncertainties 

were modeled by incorporating a robust approach in PSO and the method tested on 21-

bus microgrid (MG) of a university campus located in Portugal. From the test results, it 

was observed that the robust optimization approach (PSO) was more advantageous (17%) 

compared to the deterministic optimization, including worst case scenario. Although the 

execution time of PSO (2360 seconds) is comparatively high, it was acceptable for the 

day-ahead decision time. 

The success of PSO scheme is also reported by Jayachandran et al. (Jayachandran & Ravi, 

2017), where it is used in the design and optimization of a Hybrid Microgrid System 

(HMGS) using site specific solar and wind meteorological data. Specifically, in this study, 

PSO was applied in determination of the sizing of wind turbines (WT), photovoltaic (PV) 

module, battery energy storage system (BESS) and diesel generator. The contribution of 

solar PV energy was higher than the wind.  Based on the simulation results obtained in 

MATLAB and evaluated in the worst-case scenario and the sensitivity analysis conducted, 

it is observed that the PSO technique achieved the best size and configuration of PV-wind 

based HMGS. In the microgrid considered in this study, the GA has been selected over 

PSO as it can improve solution through mutation (Exploration) and crossover 

(Exploitation) operators (Korjani et al., 2017; Sawle et al., 2016). 

2.3.4.4 Fuzzy Based Controllers 

The Fuzzy Control Methods possess the ability to manage the non-linear behavior of 

complex control structures since they take advantage of heuristics and expert knowledge 

of the process under control. It is also insensitive to variations in system parameters. 

However, the strategy is relatively slow. Lavanya et al. (Lavanya & Senthil Kumar, 2018), 

refer to a Fuzzy Logic Controller (FLC) used in the non-linear DG interface for voltage 

regulation, control of real and reactive power as well as an Adaptive Linear Neuron 

(ADALINE) utilized to eliminate harmonics and unbalance compensation. The FLC is 

also implemented together with the conventional Proportional plus Integral (PI) controller 
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to regulate voltage and frequency in AC microgrid. In addition, a new intelligent droop 

control deploying adaptive neuro-fuzzy inference system (ANFIS) is mentioned in 

(Lavanya & Senthil Kumar, 2018). This is used to provide a solution for intelligent model-

free based Generalized Droop Control (GDC) and achieves desired voltage and frequency 

regulation in an islanded microgrid.  

2.3.4.5 Adaptive Neuro-Fuzzy Inference System (ANFIS) Controller 

Adaptive Neuro-Fuzzy Inference System (ANFIS) method is used as a teaching method 

for Sugeno-type fuzzy systems and was proposed by Jang in 1993 (A. Alwal et al., 2016; 

Jang, 1993).  

The method is more efficient because it combines the advantages of FLC and ANN 

approach to construct a nonlinear self-tuning controller. In addition, since the rules are in 

linguistic format, intermediate results can be analyzed and interpreted easily. A typical 

architecture of the ANFIS control structure is shown in Figure 2.13, in which a circle 

indicates a fixed node, whereas a square indicates an adaptive node.  

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
 

Figure 2.13: Typical ANFIS architecture 
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For simplicity, two inputs 𝑥, 𝑦, and one output 𝑧 structure is considered. A common rule 

set can be expressed as in equations (2.36) and (2.37) for a first-order Sugeno fuzzy model 

with two fuzzy if-then rules. 

Rule 1: If 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then: 

                                                              𝑧1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1                                            (2.36) 

Rule 2: If 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then: 

                                                               𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2                                       (2.37) 

where 𝐴𝑖  and 𝐵𝑖, are the fuzzy sets in the antecedent, and 𝑝𝑖, 𝑞𝑖, and 𝑟𝑖, are the design 

parameters that are determined during the training process. The ANFIS network structure 

is made up of a set of units (and connections) organized into five connected network 

layers, 1 to 5, as shown in Figure 2.13 (A. Alwal et al., 2016; Jang, 1993). The significance 

of each layer and detailed operation of the 2-input-1-output ANFIS structure is presented 

in (A. Alwal et al., 2016; Jang, 1993).  

The PSO acting alone depicted increased computation time and can’t improve the solution 

through mutation and crossover as does the GA. However, the GA on its own, may yield 

random mutation that may pose challenges to the stable and accurate operation of the 

microgrid when used alone. The FLC utilized alone, though depicting the ability to 

manage non-linearities while exploiting heuristics and expert knowledge, is 

comparatively slow. Therefore, in this study, a hybrid combination of GA and ANFIS has 

been chosen as the primary microgrid controller to borrow from the strengths of each 

controller. This is because the ANFIS, though possessing the intelligence and learning 

ability, it does not provide optimal results when acting alone. The Genetic Algorithm (GA) 

controller has been used to optimize the ANFIS and further reducing the settling time and 

rise time.  
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2.3.5 Software for Optimization of Microgrid Systems 

Several software tools have been developed to aid in designing and optimizing hybrid 

microgrid systems.  They also offer a means of assessing the performance of renewable 

energy systems. Most of these tools are commercial (ABB Power, 2015; GE Digital 

Energy, 2012; Katiraei et al., 2017; Sawle et al., 2016). Reference  (Sawle et al., 2016) 

presents a detailed coverage of the software tools for optimizing hybrid systems with 

predefined system configurations. The results' advantages, disadvantages, achievable 

tasks, and validity are captured. The software tools include SOMES, HOMER, HYBRID 

2, INSEL, SOLSIM, WATSUN-PV, PVSYST, PV-DESIGN PRO, RAPSIM, PHOTO, 

RAPSYS, RETScreen, ARES and PVF-chart. From these, only the first two (SOMES and 

HOMER) are recommended for PV-wind hybrid system since both have the ability to 

provide optimal design of the hybrid system. For instance, HOMER can be used to model 

both conventional and renewable energy technologies: including PV, wind turbine, diesel 

generator, fuel cell, utility grid, run-of-river hydropower, micro turbine, battery bank and 

hydrogen storage. It conducts simulation for all of the possible system configurations, 

including whether off-grid or on-grid and determines a feasible one. Next, HOMER 

estimates the installation and operation cost of the system and displays a list of 

configurations arranged according to their life cycle cost. The tool also offers a powerful 

user interface, accurate sizing and detail analysis of the system (Badwawi et al., 2015; 

Sawle et al., 2016). 

In (GE Digital Energy, 2012), the Grid IQ Microgrid Control System (MCS) developed 

by General Electric (GE) Company in 2012 is presented. This commercial supervisory 

control architecture based on U90PLUS Generation Optimizer provides optimization 

solutions for permanently islanded or grid-connected microgrids. The software can 

forecast load, renewables, and electricity prices; carry out microgrid generator unit 

commitment integration, energy storage integration, intelligent local controllers, and a 

suite of security features. 
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In (ABB Power, 2015), the “Microgrid Plus” control system based on the MGC600 series 

of controllers, developed by ABB Australia Pvt. Ltd, is introduced. This commercial 

modular, networked, and easily configured power flow and energy storage control system 

is suitable for stabilizing intermittent renewable generation such as PV and wind into 

microgrids. The system is designed for use in isolated microgrids, remote communities 

and research centers, and predominantly grid-connected microgrids, such as commercial 

and industrial complexes and education campuses.  

Katiraei et al. (Katiraei et al., 2017) capture the state of commercial microgrid controllers, 

exposing the strengths and weaknesses of adopting such microgrid control strategies. It is 

reported that currently, most suppliers offer a microgrid control solution instead of a set 

of microgrid control products that can be accessed off-the-shelf and utilized directly in a 

project by the system owner’s engineers. This situation denies the system investors some 

flexibility, scalability, and accessibility in implementing controls. In addition, although 

the proprietary approaches offer a high level of security and reliability, there are 

challenges regarding the long-run sustainability and maintainability of the proprietary 

aspects of the control system.  

Any change in the microgrid system characteristics raises maintenance costs due to 

continued vendor involvement. For example, there may be a need to incorporate a new 

generation unit such as a PV system, wind turbine, or load (due to increased demand) or 

a new component (due to technological changes). The needs to be addressed include 

standardization of the core microgrid control functions and formulation of common 

development and verification procedures for microgrid control systems. Furthermore, a 

provision should be made for interoperability regarding communication and data 

exchange among devices, remote access and control by the operator, and the 

interrelationship between protection functions and controls. 



44 

2.4 Other Control Strategies and Emerging Issues 

Jain et al. (Jain & Arya, 2015) point to ANFIS-based Generalized Droop Control (GDC), 

which is used to overcome the drawbacks of GDC-based frequency and voltage control in 

microgrids utilizing more than one DG. The ANFIS-based GDC deploys the training 

ability of the ANN to the FL to create a new hybrid technique, termed ANFIS. The ANFIS 

is trained using input-output (I/O) data saved from the GDC approach. Once a valid model 

is achieved, the ANFIS-based controller is used instead of the GDC in the inverter-

interfaced DG control structure. This approach applies to a wide range of MGs and does 

not require knowledge about the MG structure or the line parameters (Jain & Arya, 2015). 

Microgrid islanding control can be achieved through peer-to-peer or master-slave 

strategies (Huang et al., 2011; Shen, 2017). The peer-to-peer strategy allows microsources 

to be added to the microgrid without adjusting the existing control and protection set up. 

It can be implemented by droop control. The master-slave strategy is shown in Figure 2.14 

[6].   
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Figure 2.14: The Master-Slave Control Structure 
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Here, there is a master controller, while the others are slave controllers that receive 

instructions from the master controller via a communication link. In islanded mode, the 

master controller in the microgrid maintains the system frequency and power balance 

separately using a suitable algorithm. 

Shen  (Shen, 2017) adopted the droop control based on Model Predictive Control (MPC) 

in a peer-to-peer control structure. It is highlighted that when operating in the grid-

connected model, the utility grid will ensure that the microgrid has a stable voltage and 

frequency. On the other hand, when operating in islanded mode, the microgrid is required 

to sustain its stable voltage and frequency, hence droop control. 

This study considered only PV micro-source in the simulation model. However, a real 

microgrid system may incorporate additional micro-sources such as wind turbines and 

battery storage. Furthermore, the MPC controller proposed in (Shen, 2017) is developed 

for the limit step system.  

2.5 A Review of Hybrid Controllers and Selected Existing Studies  

Several studies have been done on the modeling of hybrid PV-wind energy systems. For 

instance, Jayachandran et al. (Jayachandran & Ravi, 2017) designed and optimized an 

Islanded Hybrid Microgrid System (IHMS) in which Particle Swarm Optimization (PSO) 

was used to obtain the lowest cost with a shorter computation time than the Genetic 

Algorithm (GA). Samrat et al. (Samrat et al., 2015) also studied the IHMS using a 

bidirectional DC-DC buck-boost converter controller for battery charging. At the same 

time, a three-phase voltage source inverter regulates the load voltage and frequency using 

a complex vector control scheme. Sawle et al. (Sawle et al., 2016) present several PV-

wind hybrid system combinations alongside modeling parameters of the components and 

software tools for sizing. The distributed inverter control strategy is proposed by (Khalil 

et al., 2016) for load power sharing between PV and Wind, whereas authors in  (Orłowski, 

2022) used switched Model Predictive Control (MPC).  
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Some studies have presented modeling and simulation of the generic renewable energy-

based systems, which are not specific to a microgrid, with a Permanent Magnet 

Synchronous Generator (PMSG) Wind Turbine used in studies such as (Elbeji et al., 2014; 

Kokate et al., 2019; C. N. Wang et al., 2014). The microgrid system is considered, for 

instance, in (Amara et al., 2020; Jayachandran & Ravi, 2017; Khalil et al., 2016; Orłowski, 

2022; Samrat et al., 2015). The modeling of a Battery Energy Storage System (BESS) 

using mathematical and circuit-oriented techniques is provided by authors in (Li & Ke, 

2011), while (J. Meng et al., 2018) presents the modeling of a Lithium-Ion battery with 

state of charge approximation.  

The concepts concerning the DC-DC boost converter modeling are introduced in (Abdel-

Rahim, 2020), where a high step-up DC-DC boost converter with an MPC-based MPPT 

algorithm is applied to a PV system. However, the variable switching frequencies created 

problems of optimum design, and no interleaving was used. A comparison between 

interleaved DC-DC boost converters (IBC) and the conventional boost DC-DC converter 

is presented in a general case in (Faraj & Hussain, 2020a) and IBC compared with Cuk 

Converter for PV system in (R.D Tayade & S. & Mopari, 2017), both of which reinforced 

the benefits of IBC.  

In addition, (Prabhakaran & Agarwal, 2020) applies a Single-Ended Primary Inductance 

Converter (SEPIC) type interleaved DC-DC boost converter to a bipolar DC microgrid, 

while the three-phase parallel IBC of  (Hisar, 2020) demonstrates how output ripples 

decrease with an increase in the number of parallel converters. The System Advisor Model 

(Blair et al., 2018) presented a platform to access technical details of actual microgrid 

components and data for building case studies.  

Various MPPT algorithms are presented for PV systems, namely P&O for the standalone 

PV system (ÖZEL & KARAARSLAN, 2020), P&O with confined search space in 

(Kamran et al., 2020), and P&O for the grid-connected PV system in (Mohamed & Abd 

El Sattar, 2019). The MPPT algorithms for a PMSG-based wind energy conversion system 

(WECS) are reported by authors in (Sahin et al., 2017) using P&O MPPT and in (Tounsi 
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et al., 2018) using Proportional plus Integral (PI) MPPT. Moreover, authors in (Zebraoui 

& Bouzi, 2018) compared various MPPT methods for WECS. The researchers in (Fouad 

et al., 2017) used MATLAB & SIMULINK to model microgrid system components. 

However, it has not presented the mathematical equations and equivalent circuit models 

used to create the SIMULINK models, nor has the interleaving technique been applied.  

The hybrid PV-wind system model in (Sawle et al., 2016) has a diesel generator based on 

a single diode. However, detailed equations for modeling the PV system, the WECS, and 

the SIMULINK models have not been presented and are not specific to the microgrid. 

Further, a hybrid PV-wind with storage and a diesel generator is given in (Grzegorz 

Ma´slak and Przemysław Orłowski, 2022; Samrat et al., 2015; Sawle et al., 2016; Sumathi 

et al., 2015) and without the diesel generator in (Amara et al., 2020; Fouad et al., 2017; 

Khalil et al., 2016; Kokate et al., 2019; Prabhakaran & Agarwal, 2020). Most studies, such 

as (Amara et al., 2020; Khalil et al., 2016; Mohamed & Abd El Sattar, 2019; Samrat et 

al., 2015; Sawle et al., 2016), used single-diode equivalent circuits in modeling off-grid 

PV systems owing to their simplicity and acceptable accuracy. In contrast, a few others, 

like (Priyadarshi et al., 2018; Yahyaoui, 2018), used the double diode equivalent circuit 

model, which is very accurate but requires intensive mathematical manipulation. 

Several authors have applied Artificial Intelligence (AI) techniques in microgrid control. 

Korjani et al. (Korjani et al., 2017) used a Genetic Algorithm (GA) to solve a microgrid-

clustering problem while minimizing power exchanges. The results from the IEEE 69-bus 

network showed better convergence than the Tabu Search (TS). Abdulhussein et al. 

(Hizam, 2022) proposed three algorithms, namely PID, Artificial Neural Networks 

(ANN), and Fuzzy Logic Control (FLC), for voltage regulation in a hybrid microgrid 

system. The MPPT controller is based on the P&O method. The results simulated in 

MATLAB & SIMULINK depicted the FLC to be better than the PID and ANN on account 

of efficiency and precision.  

Gamage et al. (Gamage et al., 2021) designed an ANFIS controller for an off-grid PV 

microgrid with a battery and super capacitor. The simulated results indicated better 
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performance of the ANFIS in voltage regulation (Root Mean Squared Error (RMSE) value 

=  0.137, settling time of 0.055 𝑠)  compared with other controllers such as FLC (RMSE 

value =  0.357, settling time of 0.076 𝑠) and conventional PI (RMSE value =  1.373, 

settling time of 0.25 𝑠). Truong et al. (Truong et al., 2021) controlled the inverter DC 

voltage in a hybrid solar and wind grid-tie system using an ANFIS controller. Like 

(Hizam, 2022), the MPPT controller deployed the P&O method. ANFIS controller 

performed better than the traditional PI controller in reducing overshoot and settling time. 

Bogaraj et al.(Bogaraj & Kanakaraj, 2016) report the successful utilization of ANFIS 

controller in energy prediction for an HRES and a PV system by Pawar et al. (Pawar & 

Nema, 2020).        

Bilgundi et al. (Bilgundi et al., 2022) introduced an ANFIS-optimized PI current controller 

to address the impact of frequency variations, voltage distortion, and nonlinear load 

simultaneously. The ANFIS-PI controller performed better than FLC and PI controllers 

by recording a Total Harmonic Distortion (THD) of 4.5 % compared to 12.4 % and 

22.6 % for FLC and PI controllers, respectively.  

Elsisi et al. (Elsisi et al., 2021) designed an ANFIS controller for battery charging that was 

trained using data generated by a GA-based PI controller in MATLAB & SIMULINK. 

The GA-based ANFIS controller performed better than the conventional PI controller and 

the GA-based PI controller regarding reduced overshoot and settling time.  

2.6 A Review of Techniques Involved in Battery Energy Storage System 

2.6.1 The Role of Battery Energy Storage System (BESS) in Microgrids 

The Battery Energy Storage System (BESS) is necessary for a microgrid to serve various 

functions such as (Chatzigeorgiou et al., 2024; Hannan et al., 2021):   

1. Off-grid support in which the BESS is used for energy storage in standalone 

energy systems or standalone micro-grid systems,  

2. Seasonal storage such as the ability to store energy for a longer period,  
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3. Frequency regulation and stability control where the BESS facilitates the 

maintenance of a constant frequency in the system,  

4. Reliability enhancement by improving microgrid quality of service  

5. Power quality and voltage control in which a constant voltage is maintained 

through reactive power injection,  

6. Load leveling and peak shaving where demand is transferred elsewhere and the 

peaks are minimized. 

Nikolas et al. (Chatzigeorgiou et al., 2024) conducted a detailed review of BESS-based 

solutions, focusing on applications, developments, and research trends for hybrid 

installations. Some of the studies reported capture the BESS utilization based on techno-

economic analysis, others focus on the operational control, the other category on system 

sizing, and the last group focus on demand response.  

The operation of a BESS can be deployed in any of the following six distinct modes, each 

dependent on factors such as energy capacity, irradiance availability, grid status, and 

energy demand (Anwar et al., 2024): Mode A1 (Charge and Export), Mode A2 (Export 

only), Mode A3 (Charge only), Mode B1 (Discharge and Import) Mode B2 (Import only) 

and Mode B3 (Discharge only). Kumar, (S. Kumar, 2022) introduced battery charging and 

discharging dynamics by mainly focusing on the Lead-acid and Lithium-ion BESS in 

MATLAB&SIMULINK environment.  

2.6.2 Battery Energy Storage System Types and Technologies 

BESS technologies based on electrochemical reactions are broadly classified into primary 

and secondary BESS. Primary BESS are non-rechargeable hence used only once and 

discarded such as the Zinc carbon dry cells and Alkaline cells.  Secondary BESS are 

rechargeable batteries that are reusable and include Lead-acid, Nickel Cadmium (NiCd) 

Nickel Metal Hydride (NiMH), and Lithium-ion (Li-ion) batteries (Anvari-Moghaddam 

et al., 2021; Yahyaoui, 2018), (Chatzigeorgiou et al., 2024; Hannan et al., 2021).  A 

detailed overview of different BESS technologies considering life cycle, efficiency, power 
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and energy density, advantages, limitations, and applications is provided in (Hannan et 

al., 2021). Table 2.2 shows the comparison of various BESS technologies (Anvari-

Moghaddam et al., 2021; Yahyaoui, 2018), (Hannan et al., 2021).  

Table 2.2: Battery Technologies Comparison 

 Units Lead-

acid 

Lithium-

ion 

Sodium-

ion 

Sodium-

sulphur 

Va-redox 

flow 

Life time years Not good Very good Very 

good 

Good Good 

Cycles number Not good Good Good Good Very good 

Depth of Discharge % Not good Good Very 

good 

Very 

good 

Very good 

Efficiency % Not good Very good Good Not good Not good 

Self-discharge %
/𝑑𝑎𝑦 

Good Good Good Very 

good 

Good 

Response (Charge/ 

Discharge) 

𝑠 Very 

good 

Very good Very 

good 

Good Good 

Linking with the information from Table 2.2, it is clear that the Lead-acid batteries possess 

lower energy density, has lower efficiency (80 to 85%) and charges ten times slower than 

the Lithium-ion batteries. The later possesses a higher energy density, higher efficiency 

of 95% and above and charges ten times faster than the Lead-acid BESS (S. Kumar, 2022; 

Tan, 2021). Table 2.3 compares vital parameters for the two types of batteries considered.  

2.6.3 Types of battery Energy Models 

The three main classical empirical models are the Shepherd model, the Unnewehr 

Universal model, and the Nernst model. The Shepherd model is known to perform well in 

the case of a continuously discharging current, whereas the Nernst model achieves the 

best accuracy. Electric Circuit Models (ECM) are battery models based on electrical 

equivalent circuits constructed using combinations of resistors, capacitors, voltage 

sources, and current sources. 
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Table 2.3: Comparison of Vital Parameters for the Lead Acid and Li-Ion Batteries 

Parameter Lead Acid Batteries Lithium Ion Batteries 

Life Cycle Lower life cycle (400-1500 cycles). Higher life cycle (2000-4000 

cycles). 

Deep cycle 

charging 

1. Can only handle a charge rate 0.2 

times its capacity. 

2. Charges ten times slower  

3. Can handle over-charging. 

1. Li-Ion can handle a charge rate 5 

times its capacity. 

2. Ten times faster charging time. 

3. Can’t handle over-charging 

Energy 

density/ 

Effective 

battery 

capacity/ 

power 

density 

1. Lower energy density-stores less 

energy for the same physical space. 

2. Lower power density-BESS 

created in this study using a nominal 

power density of 930 𝑘𝑊ℎ. 

3. Weigh 30% more for equivalent 

Li-ion capacity.  

1. Higher energy density-Stores 

more energy using the same 

physical space. 

2. Higher power density-BESS 

of 2713 𝑘𝑊ℎ in this study. 

3. Weigh 30% less for equivalent 

lead acid capacity. 

Discharge 

curve 

Their voltage drops significantly 

throughout the discharge rate. 

Has a nearly flat discharge curve 

(battery voltage falls very little until 

almost fully discharged).  

Efficiency  Offer 80 to 85% efficiencies 

(Amara et al., 2020).  

They are at least 95% efficient.  

Examples: the Rint model, Thevenin model, Impedance-based models, Run time-based 

models, Partnership for a New Generation of Vehicles (PNGV), and the General Non-

linear (GNL) model (Li & Ke, 2011; J. Meng et al., 2018). 

According to the Shepherd model, which is considered a voltage-current classical 

empirical battery energy model, the constant-current discharge equation is given by 

equation (2.38) (Li & Ke, 2011; J. Meng et al., 2018): 

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝐾 [
𝑄

(𝑄 − 𝑖𝑡)
] 𝑖 − 𝑅𝑖 = 𝐸0 − [

𝐾

𝑆𝑜𝐶
] 𝑖 − 𝑅𝑖                                             (2.38) 

where 𝑉𝑏𝑎𝑡𝑡 is the terminal voltage, 𝐸0 is the Full capacity battery open-circuit voltage 

(OCV), 𝑅  is the internal resistance, 𝐾 is the polarization resistance coefficient (𝛺), 𝑃𝐵𝐴𝑇  

is the battery capacity (𝐴ℎ𝑟), 𝑖 is the battery current (A), 𝑖𝑡 = ∫ 𝑖. 𝑑𝑡  (𝐴ℎ𝑟) = Charge and 

SoC is the State of Charge. 
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The State of Charge (SoC), is defined as in equation (2.39): 

𝑆𝑜𝐶 =
(𝑃𝐵𝐴𝑇 − 𝑖𝑡)

𝑃𝐵𝐴𝑇
                                          (2.39) 

2.7. Summary of Research Gaps and Proposed Approach 

Based on the literature reviewed, every control strategy has its merits and demerits as well 

as levels of efficiency and cost [1]-[14]. Consequently, every approach should be assessed 

based on the needs of the microgrid for which it was designed.  From the reviewed 

literature on microgrid modeling and control, it is clear that a microgrid control system’s 

success relies on the accuracy and dependency of the microgrid model and controller, 

which is still being improved through research.  

Conventional control methods for regulating microgrid voltage and frequency, such as PI 

control, require accurate mathematical models of the microgrid and exhibit serious 

struggles with non-linearities. On the other hand, artificial intelligence-based control 

strategies such as FLC and ANN-based methods do not require accurate mathematical 

models of the microgrid. They can handle the nonlinear dynamics of the system. This 

study addresses challenges in hybrid PV-wind microgrid modeling and control using the 

interleaving technique and the GA-ANFIS-MPC controller.  

The contribution of this work is the developed reliable and intelligent multilevel microgrid 

control scheme based on a Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System-

Model Predictive Control (GA-ANFIS-MPC) controller for a PV-Wind generation 

system. Utilizing the GA-ANFIS-MPC algorithms is meant to draw from their strengths 

while shunning their weaknesses; compensating for the inadequacies of each algorithm is 

used alone.  

In terms of interleaving technique, some existing models have not used the DC-DC 

converter interleaving technique, such as [4], [5], while in (Samrat et al., 2015), only 
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inverters are interleaved. From the perspective of control (MPPT) algorithms, some 

existing models only have MPPT on the PV side, while some have neither used the 

interleaving technique nor the GA-ANFIS-MPC. Apart from using the interleaving 

technique for micro sources, converters, and storage, the proposed model has a GA-

ANFIS controller for both PV and wind-side DC-DC boost converters and an MPC 

controller for the BESS converter. The DC-DC boost converter was modified by 

incorporating an RC circuit parallel to the output capacitor. 

A unique approach was taken in designing, modeling, and analyzing the proposed PV-

wind-based MCS by deploying mathematical and software tools to formulate a dynamic 

model of the microgrid and its case study. The application of the intelligent GA-ANFIS-

MPC microgrid control system was then conducted. The research outcome significantly 

enhances the performance of microgrids in supplying quality power to off-grid locations 

and rural areas by improving the control and tracking of voltage to ±5% of the desired 

output voltage. Table 2.4 compares the proposed and the existing hybrid microgrid 

models. 
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Table 2.4: The Proposed Versus the Existing Hybrid Microgrid Models 

Description  Existing Hybrid Microgrid Models Proposed Hybrid Microgrid Model 

Interleaving 

Technique 

1. Some existing models have not used the 

DC-DC Converter interleaving technique, 

such as (Jayachandran & Ravi, 2017), 

(Samrat et al., 2015). In (Khalil et al., 2016), 

only inverters are interleaved. 

2. Few studies reviewed used interleaved 

DC-DC converters in microgrids.  

1. Used interleaving technique for 

micro sources, converters, and storage. 

2. Used the modified DC-DC boost 

converter by incorporating an RC 

circuit in parallel with the output 

capacitor. 

Mathematical/Si

mulation 

modeling 

1. Most existing models used the single 

diode model in the PV cell for simplicity 

(Alzahrani et al., 2017; Amara et al., 2020; 

Khalil et al., 2016; Sahin et al., 2017; Samrat 

et al., 2015; Sawle et al., 2016), except 

(Priyadarshi et al., 2018; Yahyaoui, 2018). 

2. Some authors have not presented a 

SIMULINK model. 

1. Used the double-diode model in PV 

cells, which is more complex but has 

increased accuracy. 

2. A detailed, complete SIMULINK 

model has been presented. 

Control (MPPT) 

Algorithms 

Some existing models have MPPT on the PV 

side only and not on the wind side, such as 

(Korjani et al., 2017), while some with both 

have not used the interleaving technique nor 

the GA-ANFIS.  

The proposed model has a GA-ANFIS 

controller and modified P&O MPPT 

with a 15% SSR for both PV and Wind 

side DC-DC converters. 

Hybridization  

Framework 

Hybridization has been done at selected 

levels, mainly at the micro source level and 

less at the power converter, storage, and 

microgrid levels (Sawle et al., 2016), thereby 

limiting future scalability. 

Hybridization has been done at four 

levels: micro source level, power 

converter level, storage level, and 

microgrid level, thus supporting future 

expansion,  

Microsources/Co

mponents 

1. Some existing hybrid models include 

diesel generators (Grzegorz Ma´slak and 

Przemysław Orłowski, 2022; Samrat et al., 

2015; Sawle et al., 2016; Sumathi et al., 

2015). 

2. Most of the reviewed work uses standard 

components. 

1. No generator, but instead, parallel 

storage is included. 

2. Used modified models of micro 

sources and converters. 
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CHAPTER THREE 

METHODOLOGY 

This chapter presents the approach adopted in developing the Microgrid Multilevel 

Control System (MMCS) to solve the problem of power supply to communities and 

households in off-grid areas. The design task begins with problem formulation and system 

modeling followed by the development of control algorithms, which include GA-ANFIS 

and MPC for the microgrid primary and secondary control systems respectively. The 

algorithms have been tested on a microgrid case study model within a 

MATLAB/SIMULINK environment. The developed microgrid system is split into three 

sections, i.e. PV-Wind Hybrid Microgrid System Modeling and Case Study, Control 

Methods, and Simulation Models, as shown in Figure 3.1. 

PROPOSED

 MICROGRID SYSTEM

PV-WIND MICROGRID 

SYSTEM MODELING 

AND CASE STUDY

CONTROL 

METHODS

 SIMULATION 

MODELS

Modeling 

Microgrid 

Elements

Microgrid 

Case Study

Conventional 

P&O and PID

Controller

GA-ANFIS MPC

GA-ANFIS-MPC
Modeling 

PV System
Modeling 

Wind System

Modeling Power 

Conversion and 

Storage Systems  

Figure 3.1: Structure of Methodology 



56 

3.1 PV-Wind Microgrid System, Case Study Description and Problem Formulation 

3.1.1 Elements of Proposed PV-Wind Microgrid System 

Figure 3.2 shows block diagram set-up of the proposed PV-Wind microgrid system.  
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Figure 3.2: Block Diagram of Proposed Microgrid and its Control System 

The key elements of the proposed PV-Wind microgrid system with the MMCS are 

discussed as follows.  

3.1.1.1 Solar PV and Wind Power Generation System 

The microgrid system has two principal sources of power. The first source is Solar PV 

array system, which generates direct current (DC) power based on the amount of received 

solar irradiance as well as the cell temperature. This power is fed directly into a DC-DC 

converter after its voltage and current have been measured for use by the GA-ANFIS 
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controller. The solar PV power is highly intermittent owing to variations of levels of 

received solar irradiance and is only available during the day when there is sunshine. The 

second source of power is a 10𝑘𝑊 Wind Turbine (WT) based on a Permanent Magnet 

Synchronous Generator (PMSG) which generates Alternating Current (AC) power by 

utilizing wind speed. This power can be produced any time of the day as long as the wind 

speed exceeds the cut-in speed of the wind turbine.  The generated AC power is first fed 

into an uncontrolled AC-DC converter whose output voltage and current are measured for 

channeling to the GA-ANFIS controller while at the same time injecting into the DC-DC 

converter.  

3.1.1.2 Microgrid Multilevel Control System 

The focus of this study is on the Microgrid Control System, which is made up of three 

different control algorithms organized into a multi-level control structure. Figure 3.3 

shows the hierarchical structure of the designed Microgrid Multi-level Control System 

(MMCS) strategy for control of a scalable microgrid with PV-wind hybrid generation 

systems. The multilevel approach addresses several demands of a microgrid system and 

its controller (Mathew et al., 2019). As presented in Figure 3.3, the MMCS uses a 

decentralized GA-ANFIS controller supported with a centralized MPC to achieve primary 

control and secondary control respectively based on voltage/current control loops and 

feedback signals.  

The first control system is the microgrid primary controller, which operates at the fastest 

time scale and is made up of the hybrid combination of Genetic Algorithm (GA) and the 

Adaptive Neuro-Fuzzy Inference System (ANFIS) to create a GA-ANFIS controller. The 

GA is used to capture the highly variable meteorological data and utilizes this information 

to automatically tune and optimize the ANFIS controller, which is trained, based on the 

required performance of the microgrid system. 
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Figure 3.3: Microgrid Multi-Level Control System 

Thus, the ANFIS controller takes in as its inputs the measured voltage and current as well 

as the GA output signal based on the intermittent solar and wind meteorological data and 

uses this information to generate a Pulse Width Modulated (PWM) signal. The PWM 

block then generates the control signal to drive the DC-DC converters. Under control of 

the combined intelligent GA-ANFIS controller, these DC-DC converters supply a 

stabilized DC output voltage and current to the DC-bus bar.  

The second part of the Microgrid Multilevel Control System (MMCS) is made up of the 

Model Predictive Controller (MPC). It operates at a slower time scale and is used as a 

secondary controller in the microgrid system. The MPC controller controls the charging 

and discharging of the battery bank by regulating the voltage and current supplied to the 

storage system via the DC-DC converters. Under this role, key input to the MPC is the 

State of Charge (SoC) of the battery bank, which must be calculated or measured directly. 

One of the key challenges of off-grid microgrids is the variations in voltage owing to its 
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low-inertia, changes in the loads as well as the dynamics of exchange of stored energy 

between the battery bank and the DC bus. The MPC controller also requires a suitable 

discrete time state-space model of the microgrid system as well as the performance indices 

and or constraints associated with the charging and discharging of the battery bank and 

the stabilization of the system voltage.  

3.1.2 Case Study Description and Data Used in the Study 

This study focused on the voltage control problem of an off-grid microgrid containing 

PV-wind and BESS using the GA-ANFIS-MPC algorithms. Modeling, design, and 

implementation of the entire microgrid have been done in MATLAB/SIMULINK for the 

generation side, power electronic interfaces, and the control system. The Simulink based 

Case Study was built around a 10𝑘𝑊 Solar PV system with peak current of 16𝐴 and 

voltage 654𝑉 simulated at irradiance of 1𝑘𝑊/𝑚2 at 250 𝐶. The Wind Generation System 

used a West-wind 6.4𝑚, 10𝑘𝑊 Wind Turbine with a rated base speed of 12𝑚/𝑠. The 

DC-DC converter was a modified Interleaved Boost Converter (IBC)  both for PV and 

wind sections of the microgrid while the inverters deployed were also two-parallel three-

level Voltage Source Converter (VSC) for the PV and wind microgrid. There is also a 

Transfer Function (TF) based Simulink Case Study built around the schematic small-

signal mathematical TF model of the studied microgrid. While it was noted that microgrids 

have varied capacities and can be operated off-grid or in grid-connected modes, this study 

considered a microgrid having a power output of 10 𝑘𝑊 and is operated in an off-grid 

mode. The primary GA-ANFIS controller was trained offline with labeled training data 

while the secondary MPC controller was also designed offline before deployment. The 

data used in the design of the GA-ANFIS controller was pre-processed using MATLAB 

codes and converted into a form that the GA-ANFIS required, making the designed GA-

ANFIS controller universally acceptable and not limited by utilized dataset. The Study 

used MATLAB&SIMULINK R2019a. This form of data is available on request. The Solar 

and Wind raw data before transformation and further modifications was obtained from the 

National Solar Radiation Database (NSRDB) provided by the National Energy Research 



60 

Laboratory (NREL). The data is freely and publicly available at 

https://nsrdb.nrel.gov/data-viewer as well as in the System Advisor Model (SAM) version 

SAM 2018.11.11 provided freely by NREL (Blair et al., 2018). The site considered was 

Juja, Kiambu, Kenya with Latitude 1.095161S and Longitude 37.01249E for the period 

2017 to 2019 with a spatial resolution of 4𝑘𝑚 by 4𝑘𝑚. Extracted portions of the data have 

been presented in Appendix 4. Battery charging and discharging models and processes 

have been assumed to be similar so that the response of the BESS has been reported mainly 

within the discharging framework.  

3.1.3 Problem Formulation and Performance Criterion 

The development of the proposed microgrid control system involves optimization of 

objective functions, both with the GA-ANFIS and the MPC. In general, the main objective 

function involves the maximization of power generated by the PV and wind generation 

system and the surplus power to be stored in the Battery Energy Storage System (BESS). 

It is defined as in equations (3.1) and (3.2): 

𝐽 = 𝑚𝑎𝑥 𝑃 (∫ (𝑃𝑃𝑉−𝑜𝑢𝑡, 𝑃𝑊𝑇−𝑜𝑢𝑡, 𝑃𝑠)
𝑡

0

 𝑑𝑡  )                          (3.1) 

subject to 

𝑃𝑃𝑉−𝑜𝑢𝑡 ≥ 1 − 𝑃𝑊𝑇−𝑜𝑢𝑡 𝑜𝑟 ((𝑃𝑃𝑉−𝑜𝑢𝑡 + 𝑃𝑤𝑇−𝑜𝑢𝑡) ≥ 1)                    (3.2𝑎) 

𝑃𝐵𝐴𝑇𝑚𝑖𝑛 ≤ 𝑃𝑠  ≤ 𝑃𝐵𝐴𝑇𝑚𝑎𝑥, 𝑡 ≤ 𝑡1                                           (3.2𝑏) 

where 𝑃𝑃𝑉−𝑜𝑢𝑡, and 𝑃𝑊𝑇−𝑜𝑢𝑡 are respectively the power generated from a PV system and 

Wind Turbine (WT) unit, 𝑡 is the time variable in hours whose ceiling is at 𝑡1 = 24 ℎ𝑜𝑢𝑟𝑠. 
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The electrical power generated from a PV system (𝑃𝑃𝑉−𝑜𝑢𝑡) is given by equation (2.1)  

whereas the instantaneous electrical power generated from a WT unit (𝑃𝑊𝑇) is defined 

according to equation (2.2) as given under Chapter 2. 

The  𝑡 or 𝑡1 in equations (3.1) and (3.2) represents the time window (in hours) over which 

the microgrid should generate and supply power. Typically, the time window is set to 

24hrs (1day). 𝑃𝑠 is the power stored into or drawn from the BESS in time slot 𝑡 given by 

equation (3.3): 

𝑃𝑠 =
𝐶𝑊ℎ(𝑡)

𝑡
=

𝐸𝐿 × 𝐴𝐷

(𝜂𝑉 × 𝜂𝐵 × 𝐷𝑜𝐷)𝑡
                                                      (3.3) 

where 𝐶𝑊ℎ(𝑡) is Capacity of the BESS, 𝐸𝐿 is Daily energy consumption, 𝐴𝐷 is Number 

of autonomy days, 𝜂𝑉 is Voltage efficiency, 𝜂𝐵 is BESS efficiency and  𝐷𝑜𝐷 is Allowable 

depth of discharge. 

The stored or drawn power should not exceed BESS power capacity (𝑃𝐵𝐴𝑇), given by 

equation (3.4). 

𝑃𝐵𝐴𝑇(𝑡) = 𝐶𝐵(𝑡) − (1 − 𝜆)(𝐶𝐵(𝑡 − 1))                                  (3.4) 

Where, 𝑃𝐵𝐴𝑇(𝑡) ≥ 𝑃𝑠, 𝐶𝐵(𝑡) and 𝐶𝐵(𝑡 − 1) represent the available power in BESS at time 

slot 𝑡  and 𝑡 − 1 while 𝜆 denotes the self-discharge rate of the BESS. During charging 

operation of the BESS, 𝐶𝐵(𝑡) must be kept between 𝐶𝐵𝑚𝑖𝑛 and 𝐶𝐵𝑚𝑎𝑥 as in equation (3.5) 

𝐶𝐵𝑚𝑖𝑛 ≤  𝐶𝐵(𝑡) ≤    𝐶𝐵𝑚𝑎𝑥                                                 (3.5) 

The performance of the proposed GA-ANFIS-MPC algorithm in controlling output 

voltage is measured using three performance indicators: percentage overshoot/undershoot 

(% 𝑀𝑝), rise time ( 𝑡𝑟), and settling time (𝑡𝑠). The goal of the GA-ANFIS-MPC controller 

is to keep a majority or all the three indicators at a minimum.  
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The percentage overshoot is given by equation (3.6): 

% 𝑀𝑝 =
|𝐶(𝑡𝑝) − 𝐶(𝑡𝑠𝑝)|

𝐶(𝑡𝑠𝑝)
× 100%                                                       (3.6) 

with 𝑡𝑝 being the time to reach first overshoot/undershoot (Peak time), 𝐶(𝑡𝑝)  and 

𝐶(𝑡𝑠𝑝) are the maximum and the set point values of the system, respectively.  

The rise time is the time interval over which the response gets from 10% to 90% of its 

final value. The settling time is the time interval necessary for the response to fall within 

±5% of its final value. Thus, the designed Microgrid Multi-level Control System based 

on GA-ANFIS-MPC when incorporated into the PV-Wind microgrid system is required 

to regulate the voltage to within ±5% of desired output voltage and prevent BESS from 

over-charging or over-discharging. 

3.2 PV-Wind Microgrid System Modeling and Case Study 

This section of the methodology mainly corresponds to the specific objective number one 

on modeling of the proposed PV-Mind Microgrid System, including the Case Study for 

deploying the GA-ANFIS-MPC controller. However, section 3.2.8 on the Transfer 

Function Model of PV-Wind hybrid Microgrid also supports the methodology for specific 

objectives two and three. 

3.2.1 Mathematical Modeling of PV Generation System  

The PV system has been modeled in terms of an equivalent circuit using the two-diode 

model of a PV cell (the smallest unit of solar photovoltaic (PV) power generation that is 

rated at about 0.5V) as shown in Figure 3.4. The model has two diodes as well as a series 

(𝑅𝑠) and shunt resistance (𝑅𝑠ℎ,). It is used because it provides better accuracy and 

increased power extraction compared to the other two models: the one-diode model and 

the 𝑅𝑠 − 𝑅𝑠ℎ model (Priyadarshi et al., 2018; Yahyaoui, 2018). 
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Figure 3.4: Two-diode PV Model Equivalent Circuit 

The PV cell output current 𝐼𝑃𝑉, in the two-diode model of Figure 3.4 is represented by a 

nonlinear mathematical exponential expression given in Equation (3.7) (Amara et al., 

2020; Yahyaoui, 2018): 

𝐼𝑃𝑉 = 𝐼𝑃ℎ − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝑠ℎ = 𝐼𝑃ℎ − 𝐼𝐷1 − 𝐼𝐷2 −
(𝑉𝑃𝑉 + 𝐼𝑃𝑉𝑅𝑠)

𝑅𝑠ℎ
                 (3.7) 

where 𝑉𝑃𝑉, is the PV cell output voltage,  𝑅𝑠  is the Series resistance, 𝑅𝑠ℎ  is the Parallel 

resistance, 𝐼𝐷1 and 𝐼𝐷2 are, respectively, the first and second diode currents.  

The Photovoltaic Current due to irradiation 𝐼𝑃ℎ is given by equation (3.8): 

𝐼𝑃ℎ = [𝐼𝑃ℎ−𝑆𝑇𝐶 + 𝐾𝑠(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] × (
𝐺

𝐺𝑆𝑇𝐶
)             (3.8) 

where 𝑇𝑆𝑇𝐶 is the STC Temperature (Standard Test Condition = 298 𝐾), 𝐼𝑃ℎ−𝑆𝑇𝐶 is the  

STC Photovoltaic Current 𝑇𝐶 is the Ambient temperature, 𝐾𝑠 is the Short-circuit current 

coefficient, 𝐺 is the Solar radiation, and 𝐺𝑆𝑇𝐶 is the Solar irradiance at STC (=

1000 𝑊/𝑚2).  



64 

The diode currents 𝐼𝐷1 and 𝐼𝐷2 are obtained based on the standard diode current equation 

as follows in equations (3.9), (3.10) and (3.11): 

𝐼𝐷1 = 𝐼𝑠𝑎𝑡1 [𝑒𝑥𝑝 (
𝑉𝐷
𝑎1𝑉𝑇

) − 1]                                                 (3.9) 

𝐼𝐷2 = 𝐼𝑠𝑎𝑡2[𝑒𝑥𝑝 (
𝑉𝐷
𝑎2𝑉𝑇

) − 1]                                                   (3.10) 

𝐼𝑃ℎ−𝑆𝑇𝐶 =
(𝑅𝑠ℎ + 𝑅𝑠)

𝑅𝑠ℎ
𝐼𝑠ℎ𝑜𝑟𝑡−𝑆𝑇𝐶                                              (3.11) 

The PV cell output current 𝐼𝑃𝑉, in the two-diode model thus becomes equation (3.12) 

(Amara et al., 2020; Jayachandran & Ravi, 2017): 

𝐼𝑃𝑉 = 𝐼𝑃ℎ − 𝐼𝑠𝑎𝑡1 [𝑒𝑥𝑝 (
𝑉𝐷
𝑎1𝑉𝑇

) − 1] − 𝐼𝑠𝑎𝑡2 [𝑒𝑥𝑝 (
𝑉𝐷
𝑎2𝑉𝑇

) − 1] −
(𝑉𝑃𝑉 + 𝐼𝑃𝑉𝑅𝑠)

𝑅𝑠ℎ
 (3.12) 

The ideality factor 𝑎, is ideally 1 for germanium and 2 for silicon, but in practice varies 

between 1 and 2. The ideality factor of the first diode is taken to be 𝑎1 = 1  and for the 

second diode, 𝑎2 = 2. The model is simplified by assuming that the diode resistance is 

negligible and that the two reverse saturation currents 𝐼𝑠𝑎𝑡1 and 𝐼𝑠𝑎𝑡2 are equal in 

magnitude as given in equation (3.13) (Amara et al., 2020; Jayachandran & Ravi, 2017) : 

𝐼𝑠𝑎𝑡1 = 𝐼𝑠𝑎𝑡2 = 𝐼𝐷1 = 𝐼𝐷2 = 𝐼0 =
(𝐼𝑃ℎ−𝑆𝑇𝐶 − (

𝑉𝑜𝑝𝑒𝑛−𝑆𝑇𝐶
𝑅𝑠ℎ

))

(𝑒𝑥𝑝 (
𝑉𝑜𝑝𝑒𝑛−𝑆𝑇𝐶

𝑉𝑇
) − 1)

                   (3.13) 

where 𝐼0, is the Dark Saturation Current, which indicates the leakage current density 

flowing through the diode without light.  Assuming that 𝑎1=1 and 𝑎2 ≤ 2 gives equation 

(3.14): 
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𝐼𝑃𝑉 = 𝐼𝑃ℎ − 𝐼0 [𝑒𝑥𝑝 (
𝑉𝐷
𝑉𝑇
) + 𝑒𝑥𝑝 (

𝑉𝐷
𝑎2𝑉𝑇

) − 2] −
(𝑉𝑃𝑉 + 𝐼𝑃𝑉𝑅𝑠)

𝑅𝑠ℎ
               (3.14) 

It can also be shown that the diode saturation current for the two diodes, 𝐼𝐷1 and 𝐼𝐷2, can 

be expressed as in equation (3.15) (Hizam, 2022):  

𝐼𝐷1 = 𝐼𝐷2 =
𝐼𝑠ℎ𝑜𝑟𝑡−𝑆𝑇𝐶 + 𝐾𝑠(𝑇𝐶 − 𝑇𝑆𝑇𝐶)

𝑒𝑥𝑝
[(𝑉𝑜𝑝𝑒𝑛−𝑆𝑇𝐶 + 𝐾𝑉(𝑇𝐶 − 𝑇𝑆𝑇𝐶))] − 1

𝑎𝑉𝑇

       (3.15) 

Where 𝐼𝑠ℎ𝑜𝑟𝑡−𝑆𝑇𝐶 is the Short-circuit current at STC, 𝑉𝑜𝑝𝑒𝑛−𝑆𝑇𝐶 is the Open-circuit voltage 

at STC, 𝑉𝑇 is the Diode thermal voltage,  𝐾𝑉 is the Voltage temperature coefficient and 𝑎 

is the Ideal constant of the diode. 

Alternatively, the saturation current 𝐼𝐷, which depends on the temperature, can be 

determined by the expression in equation (3.16): 

𝐼𝐷 = (𝐼𝐷1) (
𝑇𝑆𝑇𝐶
𝑇𝐶
)
3

𝑒𝑥𝑝 [
𝑞𝐸𝑔
𝑎1𝐾

(
1

𝑇𝑆𝑇𝐶
−
1

𝑇𝐶
)] + (𝐼𝐷2) (

𝑇𝑆𝑇𝐶
𝑇𝐶
)
3

𝑒𝑥𝑝 [
𝑞𝐸𝑔
𝑎2𝐾

(
1

𝑇𝑆𝑇𝐶
−
1

𝑇𝐶
)]  (3.16) 

where 𝐸𝑔, is the energy band gap of the semiconductor and is ≈ 1.12𝑒𝑉 for 

multicrystalline silicon panels. For thin-film cadmium telluride (𝐶𝑑𝑇𝑒) solar cells, 𝐸𝑔 ≈

1.44𝑒𝑉  (Jayachandran & Ravi, 2017).   

The photovoltaic current generated at STC is given by equation (3.17) 

𝐼𝑃ℎ−𝑆𝑇𝐶 =
𝑅𝑠ℎ + 𝑅𝑠
𝑅𝑠ℎ

× 𝐼𝑠ℎ𝑜𝑟𝑡−𝑆𝑇𝐶                                            (3.17) 

The thermal potential of the panel 𝑉𝑇ℎ𝑒𝑟𝑚𝑎𝑙, is given by equation (3.18). 
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𝑉𝑇ℎ𝑒𝑟𝑚𝑎𝑙 =
𝑁𝑠 × 𝐾 × 𝑇𝐶

𝑞
                                                        (3.18) 

 𝑁𝑠 is the number of cells in series, 𝐾 is the Boltzmann constant [= 1.3806503 ×

10−23 𝐽/𝐾], 𝑞 is the charge of an electron [= 1.6 × 10−19C]. 

If a panel is made up of 𝑁𝑝 cells connected in parallel, then the photovoltaic current due 

to irradiation, 𝐼𝑃ℎ is given by equation (3.19). 

𝐼𝑃ℎ = 𝑁𝑝 × 𝐼𝑃ℎ−𝑐𝑒𝑙𝑙                                   (3.19) 

where 𝐼𝑃ℎ−𝑐𝑒𝑙𝑙, is the photovoltaic current for one cell. 

The saturation current 𝐼𝐷 , of the panel, is given by equation (3.20) 

𝐼𝐷 = 𝑁𝑝 × (𝐼𝐷1 + 𝐼𝐷2) = 𝑁𝑝 × 𝐼𝐷0                                      (3.20) 

where 𝐼𝐷0, is the saturation current for the two diodes in a single-cell model. 

A PV array is created when several cells are wired in series and parallel. Since the 𝑁𝑝 cells 

in the panel are connected in parallel, the voltage across the panel is still 𝑉𝑃𝑉.  

The values of  𝑅𝑠 and 𝑅𝑠ℎ are usually not supplied by the manufacturers in the datasheet. 

One way of determining these values is to extract them from the maximum power output 

formula (Sumathi et al., 2015; Yahyaoui, 2018), or a System Advisor Model (Blair et al., 

2018). To extract these values from the maximum power output formula, equations (3.21) 

and (3.22) are solved simultaneously (Jayachandran & Ravi, 2017; Sumathi et al., 2015). 
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𝑃𝑚𝑝,𝑚 = 𝑉𝑚𝑝 {𝐼𝑃ℎ + 𝐼𝐷1 [𝑒𝑥𝑝 (
𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝

𝑎1𝑉𝑇
) − 1] + 𝐼𝐷2 [𝑒𝑥𝑝 (

𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝

𝑎2𝑉𝑇
) − 1]

−
𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝

𝑅𝑠ℎ
}

= 𝑃𝑚𝑝,𝑒                                                                              (3.21) 

𝑅𝑠ℎ =
𝑉𝑚𝑝{𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝}

{𝑉𝑚𝑝𝐼𝑃ℎ − 𝑉𝑚𝑝𝐼𝐷1𝑒𝑥𝑝 [
(𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝)

𝑎1𝑉𝑇
] + 𝑉𝑚𝑝𝐼𝐷1 − 𝑉𝑚𝑝𝐼𝐷2𝑒𝑥𝑝 [

(𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝)
𝑎2𝑉𝑇

] + 𝑉𝑚𝑝𝐼𝐷2 − 𝑃𝑚𝑝,𝑒}

 

 (3.22) 

where 𝑉𝑚𝑝 and 𝐼𝑚𝑝, are respectively maximum voltage and current. 𝑃𝑚𝑝,𝑚, represents the 

maximum power obtained from a model identification approach while 𝑃𝑚𝑝,𝑒 , is the 

nominal experimental maximum power that the panel manufacturer supplies.  

3.2.2 Wind Turbine Model 

The mechanical power of the wind turbine 𝑃𝑚, in watts, is related to equation (2.2) 

excluding the generator efficiency term and is given by the cubic relationship equation 

(3.23): 

𝑃𝑚 =
1

2
𝜌𝐴𝑣3𝐶𝑝(𝜆, 𝛽)                                                      (3.23) 

where 𝜌, is the air density of the power generation site (𝑘𝑔/𝑚3), A is the area covered by 

the rotor blades, 𝑣 is the wind speed of the site (𝑚/𝑠), 𝐶𝑝, is the conversion efficiency of 

the wind power defined by the rotor blades’ tip speed ratio 𝜆 and the blade pitch angle 𝛽 

(Elbeji et al., 2014; C. N. Wang et al., 2014). 

The tip speed ratio (TSR) specifies the relation between the wind speed and the rotor speed 

as in equation (3.24) [40]: 
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𝜆 =
𝑅𝜔

𝑣 × 𝜂𝑔𝑒𝑎𝑟
                                                                  (3.24) 

where 𝜔 is the angular velocity of the blades and 𝜂𝑔𝑒𝑎𝑟, is the gear efficiency assumed to 

be unity for a PMSG directly coupled to the turbine shaft (Elbeji et al., 2014; Tounsi et 

al., 2018). 

According to Betz, (Sahin et al., 2017; Tounsi et al., 2018) 𝐶𝑝, is limited to 0.59. The 

power coefficient 𝐶𝑝(𝜆, 𝛽) can be computed from equation (3.25) (Zebraoui & Bouzi, 

2018): 

𝐶𝑝(𝜆, 𝛽) = 𝐶1 (𝐶2
1

𝜆𝑖
− 𝐶3𝛽 − 𝐶4) 𝑒𝑥𝑝 (

−𝐶5
𝜆𝑖
) + 𝐶6 𝜆      (3.25) 

where 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, and 𝐶6,  are coefficients to be specified for a given wind turbine, 

and the parameter 𝜆𝑖, is defined as equation (3.26) (Kokate et al., 2019; Tounsi et al., 2018; 

Yahyaoui, 2018; Zebraoui & Bouzi, 2018):  

1

𝜆𝑖
=

1

(𝜆 + 0.08𝛽)
−
0.035

𝛽3 + 1
                                         (3.26) 

Typical values of the factors are as follows: 𝐶1 = 0.5176, 𝐶2 = 116, 𝐶3 = 0.4, 𝐶4 = 5, 

𝐶5 = 21  and 𝐶6 = 0.0068 (Zebraoui & Bouzi, 2018).  

3.2.3 Mathematical Modeling and Design of Interleaved DC-DC Boost Converter 

For a microgrid containing a photovoltaic (PV) system and wind energy, which are known 

to have the least voltage output, the boost converter circuit is suitable to give a sufficient 

voltage at the output side (Abdel-Rahim, 2020; Faraj & Hussain, 2020b). The advantages 

of boost converters include high efficiency, ease of control, and integration (R.D Tayade 

& S. & Mopari, 2017). In this study, an Interleaved Boost Converter (IBC) has been 
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adopted. A more accurate boost converter circuit was modified by incorporating an RC 

circuit in parallel with the output capacitor, as shown in Figure 3.5. 

The interleaving technique entails realizing a converter by paralleling two or more 

converters, thus dividing the input current among the inductors. The 𝐼2𝑅 losses and the 

current stress are minimized. It significantly reduces the output current and voltage 

ripples, increasing the overall efficiency (Prabhakaran & Agarwal, 2020). The boost 

converter is modeled using the averaging method. The switching frequency is 20 𝑘𝐻𝑧, 

which is high enough to guarantee small voltage and current ripples.   
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Figure 3.5: Modified Interleaved DC-DC Boost Converter with Two Phases 

Using the averaging method, the state space equations for each of the interleaved 

converters become equations (3.27) and (3.28):  
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 [
x1̇
x2̇
] =

[
 
 
 
 −

 RL
L

−(1 − D)

L
0

(1 − D)

C
−
1

RC ]
 
 
 
 

[
x1
x2
] + [

1

L
0

] Vin + [
−(1 − D)

L
0

]Vd

= �̅� [
x1
x2
] + �̅�Vin

+ [
−(1 − D)

L
0

]Vd                                                             (3.27) 

where  

 

�̅� =

[
 
 
 
 0

−(1 − 𝐷)

𝐿
0

(1 − 𝐷)

𝐶
−
1

𝑅𝐶 ]
 
 
 
 

= 𝐴1𝐷 + 𝐴2(1 − 𝐷), �̅� = [
1

𝐿
0
] = 𝐵1𝐷 + 𝐵2(1 − 𝐷)       (3.28) 

The revised average model (considering 𝑉𝑑  and 𝑅𝐿) is an excellent approximation of the 

switch model with reduced steady-state errors.  

Table 3.1 summarizes the complete parameters of the proposed IBC converter.  

Table 3.1: Parameters of the IBC Converter 

S/No.  Parameters Value 

1 Inductors (𝐿1 = 𝐿2) 6 𝑚𝐻 

2 Capacitor (𝐶1 = 𝐶2) 1 𝜇𝐹 

3 Capacitor (𝐶𝑜𝑢𝑡) 220 𝜇𝐹 
4 Resistor (𝑅1 = 𝑅2) 10 𝑚𝛺 
5 Resistor (𝑅3 = 𝑅4) 1 𝑚𝛺 
6 Resistor (𝑅) 36 𝛺 
7 Current ripple (∆𝐼𝐿1 = ∆𝐼𝐿2) 0.7308 𝐴 

8 Voltage ripple (∆𝑉0) 41.7 𝑉 

9 Switching frequency (𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔) 20 𝑘𝐻𝑧 

The design calculations for the various parameters of the IBC are given next (Faraj & 

Hussain, 2020b; R.D Tayade & S. & Mopari, 2017).  
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- Duty Cycle. The voltage of the PV array 𝑉𝑃𝑉 is 561𝑉 and the DC link voltage of the 

inverter 𝑉𝐷𝐶 , is taken to be 695𝑉 hence the duty cycle of the IBC was calculated using 

equation (3.29) as 0.1928: 

                           𝐷 =
𝑉𝐷𝐶 − 𝑉𝑃𝑉
𝑉𝐷𝐶

                                                    (3.29) 

- Inductor 𝐿1 and 𝐿2. Taking the IBC switching frequency as 20 𝑘𝐻𝑧 to reduce the ripple 

current (∆𝐼𝐿), the inductor current the 𝐼𝐿 is calculated as 16.58 𝐴 using equation (3.30): 

𝐼𝐿 = 𝑁𝑃 × 𝐼𝑚                                   (3.30) 

where  𝑁𝑃, is the number of paralleled modules, taken as 2 and 𝐼𝑚, is the PV 

peak/maximum current, taken as 8.29 𝐴, all obtained from the PV system case study 

designed. The values of the two inductors  𝐿1 and 𝐿2 are obtained as 5.43 𝑚𝐻 ≈ 6 𝑚𝐻 

using equation (3.31): 

 

           𝐿1 =  𝐿2     =
𝑉𝑃𝑉𝐷

𝑓∆𝑖𝐿
                                                               (3.31) 

where ∆𝑖𝐿 is the ripple current set at 6% of  𝐼𝐿 , 𝐷 is the duty ratio set at 0.1928, 𝑓 is the 

converter switching frequency taken to be 20 𝑘𝐻𝑧 and 𝑉𝑃𝑉 is the PV system voltage taken 

as 561 𝑉, all the parameters having been obtained from the case study built and literature. 

-DC Link Capacitor C. The minimum value of the DC Link Capacitor 𝐶𝑚𝑖𝑛, is calculated 

as 4.463 𝜇𝐹 using equation (3.32): 

𝐶𝑚𝑖𝑛 =
𝐷

𝑅((
∆𝑉𝑜𝑢𝑡
𝑉𝑜𝑢𝑡

))𝑓
=

0.1928

36(0.06 × 695)
695

(20 × 103)
=   4.463 𝜇𝐹                        (3.32) 
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where  𝐷 is set at 0.1928, 𝑓 is taken to be 20 𝑘𝐻𝑧, 𝑅 is the load resistance taken to be 

36𝛺, 𝑉𝑜𝑢𝑡 is the maximum PV system output voltage taken as 695 𝑉, and ∆𝑉𝑜𝑢𝑡 is the 

voltage ripple taken to be 6% 𝑉𝑜𝑢𝑡 of all the parameters having been obtained from the 

case study built, best industry practice and literature. 

Taking  𝑓 = 50 𝐻𝑧, the angular frequency, 𝜔, is obtained using equation (3.33) as 

314.1592 𝑟𝑎𝑑/𝑠𝑒𝑐. 

 𝜔 =  2𝜋𝑓                                                                      (3.33) 

The value of the DC Link Capacitor C is calculated as 216.3 𝜇𝐹 ≈ 220 𝜇𝐹  using 

equation (3.34): 

𝐶 =  
𝐼𝐷𝐶

6 × 𝜔 × ∆𝑉𝐷𝐶
                                                 (3.34) 

where 𝐼𝐷𝐶 is the Input DC current taken to be 17 𝐴 from the PV array, ∆𝑉𝐷𝐶  is the dc 

voltage ripple taken to be 6% 𝑉𝐷𝐶 and of 6  is a constant factor, all the parameters having 

been obtained from the case study built, best industry practice and literature. 

3.2.4 Mathematical Modeling of Two Parallel Inverters for Microgrid Application 

The voltage-controlled voltage source inverter (VCVSI) is preferred for interfacing 

renewables in a stand-alone microgrid to the load on the grid. A VCVSI comprises four 

main elements: a DC link, an R-L-C filter, three-leg inverters, and an RL coupling 

inductor.  

The switching averaging method is used to derive the average model of a phase leg (lead). 

The variables of the stationary coordinates 𝑋𝑎𝑏𝑐 are transformed into the corresponding 

rotating coordinates 𝑋𝑑𝑞𝑧, and this simplifies the average model according to 𝑖𝑧 = 𝑖𝑧1 =

−𝑖𝑧2 ≈ 0 (Khalil et al., 2016). If the input DC power sources are assumed ideal, it gives 

equations (3.35), (3.36), and (3.37):  
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𝑑

𝑑𝑡
[
𝑖̂𝑑1
𝑖̂𝑞1
] =

1

𝐿1
[
�̂�𝑑1
�̂�𝑞1

] 𝑉𝑑𝑐1−
1

𝐿1
[
�̂�𝑑
�̂�𝑞
] − [

0 −𝜔
𝜔 0

] [
𝑖̂𝑑1
𝑖̂𝑞1
]                                     (3.35) 

𝑑

𝑑𝑡
[
𝑖̂𝑑2
𝑖̂𝑞2
] =

1

𝐿2
[
�̂�𝑑2
�̂�𝑞2

] 𝑉𝑑𝑐2 −
1

𝐿2
[
�̂�𝑑
�̂�𝑞
] − [

0 −𝜔
𝜔 0

] [
𝑖̂𝑑2
𝑖̂𝑞2
]                  (3.36) 

𝑑

𝑑𝑡
[
�̂�𝑑
�̂�𝑞
] =

1

2𝐶
([
𝑖̂𝑑1
𝑖̂𝑞1
] + [

𝑖̂𝑑2
𝑖̂𝑞2
]) − [

1

𝑅𝐶
−𝜔

𝜔
1

𝑅𝐶

] [
�̂�𝑑
�̂�𝑞
]              (3.37) 

Equations (3.35) to (3.37) can be represented in the general state space form as in 

equations (3.38) to (3.41) (Korjani et al., 2017):  

�̇̂� = 𝑨�̂� + 𝑩�̂�                                                           (3.38) 

�̂� = 𝑪�̂�                                                                     (3.39) 

where the state vector is  

�̂� = [�̂�𝑑 �̂�𝑞  𝑖̂𝑑1  𝑖̂𝑞1  𝑖�̂�2  𝑖̂𝑞2]
𝑇
                                             (3.40) 

and the control variables are  

�̂� = [�̂�𝑑1 �̂�𝑞1 �̂�𝑑2  �̂�𝑞2]
𝑇
                                                  (3.41) 

and 

𝑪 = 𝑰. 

The matrices 𝐴 and 𝐵 are given by equations (3.42) and (3.43) (Korjani et al., 2017):  
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𝑨 =

[
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝑅𝐶
𝜔

1

2𝐶

−𝜔
1

𝑅𝐶
0

−
1

𝐿1
0 0

      

0
1

2𝐶
0

1

2𝐶
0

1

2𝐶
𝜔 0 0

0 −
1

𝐿1
−𝜔

−
1

𝐿2
0 0

0 −
1

𝐿1
0

      
0 0 0
0 0 𝜔
0 −𝜔 0

]
 
 
 
 
 
 
 
 
 
 
 
 

                (3.42)  

𝑩 =

[
 
 
 
 
 
 
 
 
 

0 0 0
0 0 0

𝑉𝑑𝑐1
𝐿1

0 0
      
0
0
0

0
𝑉𝑑𝑐1
𝐿1

0

0 0
𝑉𝑑𝑐2
𝐿2

0 0 0

      

0
0

𝑉𝑑𝑐2
𝐿2

]
 
 
 
 
 
 
 
 
 

                    (3.43) 

3.2.5 Battery Energy Storage System Modeling 

The Battery Energy Storage System (BESS) is a crucial component of the proposed PV-

wind hybrid microgrid. It improves the reliability and efficiency of the system through 

energy storage (Li & Ke, 2011; Sumathi et al., 2015).   

The three traditional mathematical models (Shepherd model, Unnewehr Universal model 

and the Nernst model) can be improved in terms of accuracy by combining them into a 

single mathematical expression in equation (3.44) (Krishnan, 2021; J. Meng et al., 2018; 

S. Kumar, 2022; Tan, 2021): 

𝑦𝑘 = 𝐸0 − 𝑅. 𝑖𝑘 −
𝐾1
𝑧𝑘
− 𝐾2. 𝑧𝑘 + 𝐾3. 𝑙 𝑛( 𝑧𝑘) + 𝐾4. 𝑙 𝑛( 1 − 𝑧𝑘)                                (3.44) 
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Where 𝑦𝑘 is the terminal voltage, 𝐸0 is the open-circuit voltage (OCV) at full battery 

charge, R is the internal resistance, 𝐾1 is the polarization resistance, 𝑖𝑘 is the instantaneous 

current, 𝑧𝑘 is the battery State of Charge (SoC). 

The modified empirical battery energy model was created from the Shepherd relation and 

SimPower system battery model. Using the Shepherd relation and SimPower system 

battery model, the modified battery model representing the discharge and charge of lead-

acid batteries, respectively, are given by equations (3.45) and (3.46) (Bogaraj & 

Kanakaraj, 2016; J. Meng et al., 2018; Pawar & Nema, 2020; Truong et al., 2021). 

𝑉𝑑𝑖𝑠 = 𝐸0 − 𝐾𝑑𝑟
1

𝑆𝑜𝐶
𝑖∗ − 𝑅𝑖 − 𝐾𝑑𝑣 [

1

𝑆𝑜𝐶
− 1] + 𝑒𝑥𝑝 (𝑡)                       (3.45) 

𝑉𝑐ℎ = 𝐸0 − 𝐾𝑐𝑟
𝑃𝐵𝐴𝑇

𝑖𝑡 + 𝜆. 𝑃𝐵𝐴𝑇
𝑖∗ − 𝑅𝑖 − 𝐾𝑐𝑣 [

1

𝑆𝑜𝐶
𝑖𝑡] + 𝑒𝑥𝑝 (𝑡)                          (3.46) 

 where 𝐾𝑑𝑟 is polarization resistance coefficient (Ω),  𝐾𝑑𝑣 is polarization overvoltage 

coefficient (V/Ah), λ is the coefficient to account for the shift in polarization resistance as 

the battery gets charged,  𝑖∗ is the filtered battery current used to modify the polarization 

ohmic voltage drop, R is the internal resistance, whose value is different for charge and 

discharge, 𝑒𝑥𝑝 (𝑡) represents an exponential dynamic voltage, which accounts for the 

nonlinear hysteresis phenomenon between discharge and charge and is defined for lead-

acid batteries as equation (3.47): 

𝐸𝑥𝑝 (𝑡) = 𝐵. 𝑖. (𝑒𝑥𝑝 (𝑡) + 𝐴. 𝑢(𝑡))                                      (3.47) 

where (𝑡) =  0 for discharge and (𝑡) =1 for charge.  

The simplified General Non-linear (GNL) model, which better emulates the dynamics 

concerning the SoC operation mode, is shown in Figure 3.6.   
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+ 

− 

𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑦  

𝐸 

𝐸 = 𝐸0 −
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Figure 3.6: Electrical Equivalent Circuit-Based Battery Model 

This consists of a (ideal) voltage source in a cascade with an internal resistance to evaluate 

the battery behavior. The mathematical expression for the final controlled voltage is given 

by equations (3.48) and (3.49): 

𝐸 = 𝐸0 −
𝐾 × 𝑃𝐵𝐴𝑇

𝑃𝐵𝐴𝑇 − ∫ 𝑖 𝑑𝑡
+ 𝐴. 𝑒𝑥𝑝 (−𝐵 ∫𝑖 𝑑𝑡)                      (3.48) 

𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = 𝐸 −  𝑅𝑖𝑛 𝐼𝐵𝑎𝑡𝑡𝑒𝑟𝑦                  (3.49) 

3.2.6 Design of the Baseline Controllers 

This section presents the design of the two base line controllers i.e. Modified Search Space 

Restricted Perturb and Observe (SSR-P&O) and the Proportional plus Integral plus 

Derivative (PID) controllers. These two controllers have been selected because they are 

the industry standards when it comes to simpler, less expensive, computationally light and 

linear controllers that are applicable to Maximum Power point tracking and voltage 

regulation in microgrids. The controllers perform very well under linear conditions and 
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are widely applied in Literature to validate more complex modern controllers such as the 

GA-ANFIS-MPC controller developed in this study.  

3.2.6.1 PV System MPPT Using Modified Perturb and Observe (P&O) 

     The proposed modified P&O algorithm is based on restricting the search area within 

the PV array power curve, where the search space here has been confined to 15% instead 

of the 10% used in (Mohamed & Abd El Sattar, 2019). This is to allow for PV shading 

and due to fact that the PV system is in parallel with WT which requires a larger search 

area to accommodate the dynamics of the WT. The voltage at maximum power point, 

𝑉𝑀𝑃𝑃 is approximately 76% of the open circuit voltage, 𝑉𝑜𝑐 i.e. 𝑉𝑀𝑃𝑃 = 0.76𝑉𝑜𝑐. 

Therefore, the power curve can be partitioned into three zones called Zone 1, Zone 2, and 

Zone 3 as depicted in Figure 3.7 and whose specifications are presented in Table 3.2. The 

partitioning is done with reference to published literature (Mohamed & Abd El Sattar, 

2019) and the profile of the PV power curve.  
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Figure 3.7: Search Space Restriction of the PV System Power Curve 

Figure 3.8 shows the restricted search space P&O algorithm. In this case, the P&O 

algorithm, which has been developed using a MATLAB script/code, is implemented by 
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first measuring the voltages 𝑉𝑃𝑉1  and 𝑉𝑃𝑉2 which restricts the region containing the MPP 

within Zone 2 representing only 15% of the power curve. 

Table 3.2: Power Curve Partitioning into Zones 

Zone/Area Starting (% of  

𝑽𝒐𝒄) 
Ending (% of  𝑽𝒐𝒄) Total zone/area  (% 

of  𝑽𝒐𝒄) 
Zone 1 0 70 70 

Zone 2 70 85 15 

Zone 3 85 100 15 

Next, perturbation and observation is initiated which ends only after a few perturbation 

steps have been executed, which means that the MPP is achieved early and maintained at 

the desired point.  If there is a change in the irradiance level, a new local maximum is 

obtained just as is done with constant irradiance and is then maintained. 
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Figure 3.8: Flowchart of Improved P&O Algorithm for PV Power 

3.2.6.2 Proposed Improved P & O MPPT Algorithm for WECS 

In a wind energy conversion system (WECS), MPPT algorithms are necessary to optimize 

the energy efficiency of the system by tracking the optimum operating point/maintaining 
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the MPP. In this study, the improved P & O algorithm has been obtained by introducing 

three zones (Zones 1, 2, and 3 corresponding to 𝑉𝑤1,  𝑉𝑤2, and 𝑉𝑤3) as shown in Table 3.3 

within the WECS power curve and restricting the search to only 15% of the power curve 

as shown in Figure 3.9 and Figure 3.10. This is because the WT requires a larger search 

area to accommodate the dynamics of the WT especially around the PMSG and variations 

in wind speeds, which broaden the power curve.  

Table 3.3: WECS Power Curve Partitioning into Zones 

Zone/ 

Area 
Starting  (% of  𝑽𝒎) Ending 

 (% of  𝑽𝒎) 

Total zone/area  (% of  

𝑽𝒎) 

Zone 1 0 70 70 

Zone 2 70 85 15 

Zone 3 85 100 15 

Figure 3.11 shows the improved restricted search space WECS P&O algorithm. In this 

case, the P&O algorithm is implemented by first measuring the voltages 𝑉𝑊𝑇1  and 𝑉𝑊𝑇2 

which restricts the region containing the MPP to Zone 2. Next, perturbation and 

observation is initiated which ends only after a few perturbation steps have been executed 

𝜔𝑠𝑡𝑒𝑝 ≤ 10 which means that the MPP is achieved early and maintained at the desired 

point.  
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Figure 3.9: P&O MPPT Controller Methodology 
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Figure 3.10: Modified P&O MPPT with Search Space Restriction of the WECS 

Power Curve 
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Figure 3.11: Proposed Improved Restricted Search Space WECS P&O Algorithm 

3.2.6.3 PI/PID Controller for Benchmarking with GA-ANFIS and MPC. 

The Proportional-plus-Integral (PI) and Proportional-plus-Integral-plus-Derivative (PID) 

controller optimum gains were obtained by applying the Ziegler-Nichols ultimate cycle 

tuning method (and improved using the MATLAB PID auto-tuning tool) as  𝐾𝑝 = 1.77, 

𝐾𝐼 = 31.74, 𝐾𝐷 = 0.016 and filter coefficient 𝑁 = 2558.64. The contribution of the 
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derivative term of the PID controller was minimal; hence, the controller action was very 

close to PI. 

3.2.7 SIMULINK Case Study Models 

3.2.7.1 Case Study SIMULINK Model of a 𝟏𝟎 𝐤𝐖 PV System  

The PV modules, each 310 𝑊 having 72 cells of peak voltage 37.4 𝑉 and a peak current 

of  8.29 𝐴 are wired in series/parallel arrangements to realize the desired voltage. Figure 

3.12 shows the SIMULINK diagram of the designed 310𝑊 PV module.  

 

Figure 3.12: Simulink Diagram of a 𝟑𝟏𝟎𝐖 PV Module 

The photovoltaic generator used in the case study is a Type A panel (Jinko Solar 

JKM310M -72 panel) based on monocrystalline technology. Table 3.4 shows the technical 

specifications obtained from a System Advisor Model (SAM 2018.11.11) (Blair et al., 

2018). 
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Table 3.4: Technical Specifications of the Type a Panel and PV Array 

For PV Panel (Jinko Solar JKM310M-72 panel) 

Electrical 

Characteristics 

Parameter Value 

  Max Power-𝑃𝑚𝑝 310 𝑊 

  Open-circuit Voltage -𝑉𝑜𝑐 45.9 𝑉𝑑𝑐 
  Short-circuit Current-𝐼𝑠𝑐 8.8 𝐴𝑑𝑐 

  Max Power Voltage-𝑉𝑚𝑝 37.4 𝑉𝑑𝑐 

  Max Power Current-𝐼𝑚𝑝 8.29 𝐴𝑑𝑐 

  Efficiency-η 15.98% 

Temperature 

Coefficients 
Temperature coefficient at MPP-𝐾𝑝 −0.40%/0𝐶 

   Temperature coefficient of  Voltage-𝐾𝑉  −0.29%/0𝐶 

  Short-circuit current coefficient-𝐾𝑠 0.05 %/0𝐶 

Physical 

Characteristics 

Material Monocrystalline 

  Length by width 1.956 ×  0.992 𝑚 

  Module Area 1.940 𝑚2 

  Number of cells 72 

Additional 

Parameters 

Series resistance-𝑅𝑠 0.30353 𝛺 

  Parallel resistance-𝑅𝑠ℎ 96.1505 𝛺 

PV Array System 

𝑽𝒎𝒑𝒑 = 𝑽𝒑𝒗 654.5 𝑉 

𝑷𝒎𝒑𝒑 = 𝑷𝒑𝒗 10.537 𝑘𝑊 

𝑰𝒎𝒑𝒑 = 𝑰𝒑𝒗 𝑃𝑚𝑝𝑝

𝑉𝑚𝑝𝑝
=
10537

654.5 
= 16.1 𝐴 

No. of modules in 

series 
𝑉𝑚𝑝𝑝

𝑉𝑚
=
654.5 

37.4
= 17 

No. of modules in 

parallel 

𝐼𝑚𝑝𝑝

𝐼𝑚
=
17.8

8.29
= 2 

The designed PV array system voltage at Maximum Power Point (MPP) is injected into a 

DC-DC boost converter with PID, SSR-P & O MPPT algorithm, and GA-ANFIS-MPC 

controllers in MATLAB/SIMULINK. Figure 3.13 shows the case Study Model of a 

10𝑘𝑊 PV System Microgrid created in MATLAB/SIMULINK. There are two section of 

the PV array modules, the first one called PV Array is for linking with the MATLAB & 
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SIMULINK Array design area and the subsequent three blocks containing 5 modules each 

are marked as a 5-module PV Array 1, 2 and 3. 

 

Figure 3.13: Model of a Practical 𝟏𝟎𝐤𝐖 PV System Microgrid 

3.2.7.2. Simulink Model of PMSG Wind Generation System 

Electrical power is generated from a WTG in a two-stage process involving the PMSG for 

the electrical part of the system and a wind turbine model to extract the mechanical power 

from the wind (Elbeji et al., 2014; C. N. Wang et al., 2014). The Wind Power Generation 

System (WPGS) has been modeled using the PMSG. The case study version was created 

around a type A wind turbine (Westwind 6.4 𝑚,10 𝑘𝑊) whose 𝑘𝑊 rating is 11.48 𝑘𝑊. 
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The WPGS model consists of two main sections i.e. Wind Turbine Model (WTM) and the 

Electrical Generator Model (EGM). Table 3.5 summarizes the parameters of the WTM 

and PMSG models. 

Table 3.5: WTM Parameters and PMSG Model 

PARAMETER VALUE UNITS/REMARKS 

Nominal Mechanical Output Power 10,000 Watts (𝑊) 

Electrical Generator Base Power  11,111 Volt-amperes (𝑉𝐴) 

Base Wind Speed 12 Meters per second (𝑚/𝑠) 
Maximum power 0.73 Pu of Nominal Mechanical Power 

Base Rotational Speed 1.2 Pu of base generator speed 

Pitch angle beta 00 or 50 Deg (max power at 00) 

Stator Phase Resistance (𝑅𝑠) 0.18 Ohms (𝛺) 

Armature Inductance 0.000835 Henrys (𝐻) 

Machine Constant  0.0714394 Volt-second (𝑉. 𝑠) 
Inertia (𝐻𝑚) 0.0006214 𝐾𝑔.𝑚2 

Viscous damping (𝐹𝑑) 0.00030345 𝑁.𝑚. 𝑠 
Pole pairs          (𝑝) 4 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 ) 
Static friction (𝑇𝑓) 0 𝑁.𝑚 

Initial Conditions: 𝜔𝑚 (𝑟𝑎𝑑/𝑠), 
𝑡ℎ𝑒𝑡𝑎𝑚 (𝑑𝑒𝑔) and (𝑖𝑎, 𝑖𝑏 , 𝑖𝑐) in (𝐴) 

0 Initial conditions = 0, units as 

indicated against parameters. 

The Wind Turbine Model (WTM) has three inputs; which are the generator speed per unit 

of the base speed (synchronous speed), the blade pitch angle (𝑑𝑒𝑔), and the wind speed 

(𝑚/𝑠).  The pitch angle either can be set manually or obtained from the pitch angle 

controller for a variable pitch WTM.  The input to the pitch controller is the PMSG rotor 

speed, 𝜔𝑚𝑟𝑎𝑑/𝑠. The WTM has a single output, 𝑇𝑚 (𝑝𝑢), which is the wind turbine 

mechanical output (𝑝𝑢). This represents the torque applied to the generator shaft in per 

unit of the generator rating.  

The Electrical Generator Model (EGM) used is based on a PMSG with three phases, a 

sinusoidal back EMF waveform and a round rotor. In the case of a preset model, which is 

only available for the sinusoidal back EMF machine, the 26.13𝑁𝑚, 560𝑉𝑑𝑐 3000𝑟𝑝𝑚 −

27.3𝑁𝑚 machine model can be used as it closely mimics the case study. The mechanical 
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input is set to Torque (𝑇𝑚) since the WTM has been modeled to output 𝑇𝑚. After setting 

the configuration aspects (namely, number of phases, back EMF waveform, rotor type, 

mechanical input, and preset model); the machine parameters were computed from 

standard manufacturer specifications using the advanced area functionality of the PMSG 

block.  

The parameters were generated based on the modified Park model, i.e., the rotor flux 

position when 𝜃 = 00 is determined based on 900 behind phase A axis (modified Park). 

The generator output included:  

i. Rotor speed ωm (rad/s) 

ii. Electromagnetic torque Te(N*m) 

iii. Stator currents for each of the three phases labeled as in equation (3.50): 

𝑖−𝑎(𝐴),  𝑖−𝑏(𝐴),  𝑖−𝑐(𝐴)                                                 (3.50) 

Figure 3.14 shows Simulink diagram of the 10kW wind power generation Case Study 

System. 
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Figure 3.14: Simulink Diagram of a 10kW Wind Power Generation Case Study  

3.2.7.3 SIMULINK Design for the Interleaved DC-DC Boost Converter  

Figure 3.15 shows the simulation diagram of the suggested IBC built within MATLAB & 

SIMULINK environment with the improved MPPT algorithms for both Solar PV and 

WECS within the microgrid. Only the code implementing the MPPT and the values fed 

to the MPPT are changed in each case (Hisar, 2020). The input voltage is taken to be 𝑉𝑖𝑛 =

 561𝑉, the switching frequency is 20𝑘𝐻𝑧, the duty ratio is 𝐷 = 0.1928 (which can be 

varied using the P & O algorithm), and a resistive load 𝑅 = 36 𝛺.  
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Figure 3.15: Designed Modified IBC 

3.2.7.4 Two-Parallel Three-Level VSC for PV-Wind Microgrid Simulink Diagram 

The SIMULINK model designed in this study involves a parallel connection of two, three-

phase, three-level Neutral-Point-Clamped (NPC) Voltage Source Inverters (VSIs).  

Figure 3.16 shows the Simulink Model of the designed Two-Parallel Three-Level VSC 

for PV and Wind Microgrid.  The inverter, which is connected to the PV system DC-DC 

boost converter, utilizes IGBT as switching device with neutral clamped diodes 

(Priyadarshi et al., 2018).  The other inverter of the parallel pair is connected to the wind 

turbine DC-DC boost converter and is designed using MOSFETs and neutral point 

clamped diodes. 
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Figure 3.16: Two-Parallel Three-Level VSC for PV and Wind Microgrid Simulink 

Diagram 

MOSFETs are preferred for breakdown voltages less than 250𝑉, are cheaper and also 

operate at a higher switching frequency (above 20𝑘𝐻𝑧). On the other hand, the IGBT is 

used at frequencies below 20𝑘𝐻𝑧 with a higher breakdown voltage of more than 400𝑉 

and is costlier than the MOSFETs. For these reasons, the two devices have been chosen 

for use in the two inverters. Both inverters use the Sinusoidal Pulse Width Modulation 

(SPWM) modulation strategy (S. A. Rahman Kashif, 2021). To run the model, the 

(unbounded) variables 𝑇𝑠 (e.g. 𝑇𝑠 = 0.01𝑠) and frequency 𝑓 (.e.g. 𝑓 = 50𝐻𝑧) were first 

declared.  The discrete powergui’s are set typically at 10−6 𝑠 for the two inverters and at 

10−6 𝑠 for the voltage measurement scopes. 
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3.2.7.5 BESS Case Study Model  

The BESS model has been created in MATLAB/SIMULINK using equations (3.51) to 

(3.54) (derived from equations (3.45 and 3.46)), in addition to information gathered from 

literature, particularly (Krishnan, 2021; S. Kumar, 2022). The values of SoC vary as the 

value of the DC Voltage source of around 600 𝑉. If the DC voltage exceeds the battery’s 

nominal voltage, then SoC will remain the same, i.e., 1. If the battery’s nominal voltage 

exceeds the DC Voltage, then SoC will decrease. A load profile can be established to 

discharge the battery while simultaneously it is charged by a DC Voltage source.   

Table 3.6 shows the charge/discharge parameters used in the simulated case for the two 

types of batteries considered. All parameters were verified against the existing 

manufacturer’s data sheets and literature (Hisar, 2020; S. Kumar, 2022; Tan, 2021). For 

the lead-acid battery type, the model uses equations (3.51) and (3.52) (S. Kumar, 2022; 

Tan, 2021): 

Discharge model (𝑖∗ > 0): 

𝑓1(𝑖𝑡, 𝑖
∗, 𝑖, 𝐸𝑥𝑝) = 𝐸0 − 𝐾.

𝑃𝐵𝐴𝑇
𝑃𝐵𝐴𝑇 − 𝑖𝑡

. 𝑖∗ − 𝐾.
𝑃𝐵𝐴𝑇

𝑃𝐵𝐴𝑇 − 𝑖𝑡
. 𝑖𝑡 + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒−1 (

𝐸𝑥𝑝(𝑠)

𝑆𝑒𝑙 (𝑠)
. 0)   

 (3.51) 
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Table 3.6: Charge/Discharge Parameters for the Two Types of Batteries Considered 

S/No.  Parameter Lead Acid Lithium-Ion 

Charge parameters 

1 Battery Nominal Voltage (𝑉) 600 600 

2 Battery Rated Capacity (𝐴ℎ) 5000 5000 

3 Battery Initial State of Charge (%) 100 100 

4 Battery Response Time (𝑠) 30 30 

Discharge parameters  

1 Maximum Capacity (𝐴ℎ)   5208.33 5000 

2 Cut-off Voltage (𝑉)  450 450 

3 Fully-Charged Voltage (𝑉) 653.29 698.39 

4 Nominal discharge current (𝐴)  1000 2173.91 

5 Internal Resistance (𝛺) 0.0012 0.0012 

6 Capacity (𝐴ℎ) at Nominal Voltage 1551.39 4521.74 

7 Exponential Zone [Voltage (𝑉), Capacity 

(𝐴ℎ)] 

[610.86, 16.67] [648.23, 245.65] 

8 Discharge current [[𝑖1,  𝑖2,  𝑖3, … ][𝐴] 50 50 

Charge model (𝑖∗ < 0): 

𝑓2 (𝑖𝑡, 𝑖
∗, 𝑖, 𝐸𝑥𝑝)

= 𝐸0 − 𝐾.
𝑃𝐵𝐴𝑇

|𝑖𝑡| + 0.1. 𝑃𝐵𝐴𝑇
. 𝑖∗ − 𝐾.

𝑃𝐵𝐴𝑇
𝑃𝐵𝐴𝑇 − 𝑖𝑡

. 𝑖𝑡

+ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒−1 (
𝐸𝑥𝑝(𝑠)

𝑆𝑒𝑙 (𝑠)
. 1𝑠)                                                                    (3.52)  

 For the Lithium-Ion battery type, the model uses equations (3.53) and (3.54) (J. Meng et 

al., 2018; S. Kumar, 2022): 

Discharge model (𝑖∗ > 0): 

𝑓1 (𝑖𝑡, 𝑖
∗, 𝑖, ) = 𝐸0 − 𝐾.

𝑃𝐵𝐴𝑇
𝑃𝐵𝐴𝑇 − 𝑖𝑡

. 𝑖∗ − 𝐾.
𝑃𝐵𝐴𝑇

𝑃𝐵𝐴𝑇 − 𝑖𝑡
. 𝑖𝑡 + 𝐴. 𝑒𝑥𝑝(−𝐵. 𝑖𝑡)                (3.53) 
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Charge model (𝑖∗ < 0) (Krishnan, 2021; S. Kumar, 2022): 

𝑓2(𝑖𝑡, 𝑖
∗, 𝑖, ) = 𝐸0 − 𝐾.

𝑃𝐵𝐴𝑇
|𝑖𝑡| + 0.1. 𝑃𝐵𝐴𝑇

. 𝑖∗ − 𝐾.
𝑃𝐵𝐴𝑇

𝑃𝐵𝐴𝑇 − 𝑖𝑡
. 𝑖𝑡 + 𝐴. 𝑒𝑥𝑝(−𝐵. 𝑖𝑡)      (3.54) 

where 𝐴 is the Exponential voltage (𝑉), 𝐵 is the Exponential capacity, (𝐴ℎ−1) and 𝐸𝑏𝑎𝑡 is 

the nonlinear voltage (𝑉).  

The performance of the BESS is tested with the output of a modified interleaved DC-DC 

Boost Converter (DBC) developed earlier via a controlled voltage source as shown in 

Figure 3.17. 

Soc, I & V Outputs

Soc, I & V Outputs

Scope10 = Vout, Iout, Ic

 

Figure 3.17: The BESS Model Connected with the Modified IBC in MATLAB & 

SIMULINK 
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3.2.8 Transfer Function Model of PV-Wind Hybrid Microgrid  

3.2.8.1 Overall Transfer Function Model of the PV-Wind Hybrid Microgrid 

The microgrid’s mathematical transfer function model has been created to study the 

working of the proposed GA-ANFIS-MPC controller in regulating the microgrid’s voltage 

within the context of transient response. The derivation of the proposed PV-Wind 

Microgrid mathematical model using the Transfer Function is challenging due to the 

nonlinear components in the microgrid, such as the solar PV, PMSG-wind turbine, BESS, 

IBCs, and the VSI inverters (Kumar et al., 2020; Pavan Kumar & Bhimasingu, 2021). The 

microgrid is generally a multi-input, multi-output (MIMO) system with dual control loops, 

namely, outer voltage and inner current control loops (Kumar et al., 2020; Pavan Kumar 

& Bhimasingu, 2021).  

Researchers have modeled the RES components in microgrids by assuming a transfer 

function model with a time lag under small-signal considerations (M. Ali et al., 2021; c et 

al., 2019; Kumar et al., 2020; Pavan Kumar & Bhimasingu, 2021). 

As reported by (Kumar et al., 2020), the output power (in watts) of the PV system given 

in equation (3.55) indicates that power is linearly proportional to solar radiation 𝐺𝑆𝑅 

(𝑊/𝑚2), assuming ambient temperature (𝑇𝑐), surface area (𝐴), and efficiency (𝜂𝑃𝑉) are 

constant.  

𝑃𝑃𝑉 = 𝜂𝑃𝑉𝐴𝐺𝑆𝑅  {1 − (0.005(𝑇𝑐 + 25))}                                              (3.55) 

In the Transfer Function modeling of the hybrid microgrid under study, the following 

assumptions have been made, which also form the limitations of the study: 

i. The PV & WTG are operating at their MPP. 

ii. The ambient temperature, irradiance, insolation, wind speed, etc., do not vary with 

time; thereby, the MPP of the PV array & WTG are also fixed. 
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iii. The voltage and current output of the inverter are in phase. Therefore, the system 

works at a unity power factor, and no reactive power is supplied to the load. 

iv. When the change in the voltage (ΔV) is positive, BESS status is charging, or else 

it is discharging. 

In this study, the mathematical transfer function models for a solar PV plant, wind turbine 

generator, and BESS have been portrayed as first-order lagging systems of gains 

(𝐾𝑃𝑉, 𝐾𝑊𝑇𝐺 , 𝐾𝐵𝐸𝑆𝑆) and time constants (𝑇𝑃𝑉, 𝑇𝑊𝑇𝐺 , 𝑇𝐵𝐸𝑆𝑆) as given in equations (3.56), 

(3.57), and (3.58), respectively (M. Ali et al., 2021; c et al., 2019; Kumar et al., 2020; 

Mohanty et al., 2017). 

𝐺𝑃𝑉 =
𝐾𝑃𝑉

𝑠𝑇𝑃𝑉 + 1
                                                               (3.56) 

𝐺𝑊𝑇𝐺 =
𝐾𝑊𝑇𝐺

𝑠𝑇𝑊𝑇𝐺 + 1
                                                          (3.57) 

𝐺𝐵𝐸𝑆𝑆 =
𝐾𝐵𝐸𝑆𝑆

𝑠𝑇𝐵𝐸𝑆𝑆 + 1
                                                         (3.58) 

Similarly, the transfer function of the boost converter assuming any resistive load is 

considered as a first-order system given by equation (3.59): 

𝐺𝐵𝐶 =
𝛥𝑉𝑜𝑢𝑡(𝑠)

𝛥𝑉𝑖𝑛(𝑠
=

𝐾𝐵𝐶
𝑠𝑇𝐵𝐶 + 1

                                                         (3.59) 

where 𝐾𝐵𝐶 and 𝑇𝐵𝐶 , represent the amplification factor and time constant, respectively. 

The Transfer Function (TF) of the 6-switch three-phase two-level inverter without any 

Low Pass Passive filter circuit is approximately defined as a first-order lagging system by 

equation (3.60) (Mohanty et al., 2017). 
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𝐺𝐼𝑛𝑣 =
𝑉𝑜(𝑠)

𝑉𝑟𝑒𝑓(𝑠
=

𝐾𝑖𝑛𝑣
𝑠𝑇𝑖𝑛𝑣 + 1

                                                         (3.60) 

Figure 3.18 shows the complete mathematical transfer function model of the PV-wind 

hybrid microgrid based on small-signal low-order dynamic models of the individual 

components. The PMSG’s output is rectified and measured for channeling to the GA-

ANFIS-MPC controller while simultaneously injecting it into the DC-DC converter. The 

PV system has been modeled using an equivalent circuit at the cell level based on the two-

diode model to achieve better accuracy and increased power extraction (Abdel-Rahim, 

2020). 
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Figure 3.18: Schematic Small-Signal Mathematical Transfer Function Model of the 

PV-Wind Hybrid Microgrid with GA-ANFIS-MPC 
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The PV array system’s Maximum Power Point (MPP) voltage is fed to the IBC with the 

GA-ANFIS-MPC algorithm. The schematic diagram of the microgrid in Figure 3.18 was 

transformed into a controlled equivalent transfer function model viewed in terms of a 

small-signal-based dual voltage-current (V/I) controller TF model, as shown in Figure 

3.19 (Pavan Kumar & Bhimasingu, 2021).   

+ 

− 

+ 

− 

Inner Current Control

Outer Voltage Control

1

𝑠𝐶𝑓 + 𝐺𝑓
 

1

𝑠𝐿𝑓 + 𝑅𝑓
 

𝑠𝐾𝑃𝑉 + 𝐾𝐼𝑉
𝑠

 
𝑉0
𝑟𝑒𝑓 (𝑠) 𝑉0(𝑠) 𝑠𝐾𝑃𝐴 + 𝐾𝐼𝐴

𝑠
 

 

Figure 3.19: Reduced Dual-Loop V/I Controlled Microgrid 

Table 3.7 depicts each subsystem’s transfer functions and corresponding parameters (M. 

Ali et al., 2021; Pavan Kumar & Bhimasingu, 2021). 
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Table 3.7: The transfer Functions and Related Parameters Used in Each Subsystem  

Subsystem Transfer Function Parameters 

Solar PV plant 
𝐺𝑃𝑉 =

𝐾𝑃𝑉
𝑠𝑇𝑃𝑉 + 1

 
𝐾𝑃𝑉 = 1, 𝑇𝑃𝑉 = 0.03𝑠 

Wind Turbine 

Generator (WTG) 
𝐺𝑊𝑇𝐺 =

𝐾𝑊𝑇𝐺
𝑠𝑇𝑊𝑇𝐺 + 1

 
𝐾𝑊𝑇𝐺 = 1, 𝑇𝑊𝑇𝐺 = 1.5𝑠 

BESS 
𝐺𝐵𝐸𝑆𝑆 =

𝐾𝐵𝐸𝑆𝑆
𝑠𝑇𝐵𝐸𝑆𝑆 + 1

 
𝐾𝐵𝐸𝑆𝑆 = 1.8, 𝑇𝐵𝐸𝑆𝑆 = 0.001𝑠 

DC-DC Boost 

Converter 
𝐺𝐵𝐶1 =

𝐾𝐵𝐶1
𝑠𝑇𝐵𝐶1 + 1

 
𝐾𝐵𝐶1 = 2.5, 𝑇𝐵𝐶1 = 0.01𝑠 

DC-DC Buck-Boost 

Converter 
𝐺𝐵𝐵𝐶 =

𝐾𝐵𝐵𝐶
𝑠𝑇𝐵𝐵𝐶 + 1

 
𝐾𝐵𝐵𝐶 = 1.5, 𝑇𝐵𝐵𝐶 = 0.1𝑠 

Inverter/Microgrid 

system 
𝐺𝑀 =

𝐾𝑀
2𝑠𝐻 + 𝐷

 
𝐾𝑀 = 1.8, 𝐻 = 2, 𝐷 = 0.015𝑝𝑢/𝐻𝑧, 

 𝐻 = 0.085 𝑝𝑢. 𝑠 
Load 

𝐺𝐿 =
𝐾𝐿

𝑠𝑇𝐿 + 1
 

𝐾𝐿 = 2, 𝑇𝐿 = 0.04𝑠 

The overall TF was obtained using the block diagram reduction procedure, the small signal 

model pole-zero cancellation (MPZC), and the power quality requirements specified by 

IEEE-1547 and IEEE-519 standards. The TF relating the output to input for the system is 

given by equations (3.61), (3.62) and (3.62) (Pavan Kumar & Bhimasingu, 2021): 

𝑉0(𝑠)

𝑉0
𝑟𝑒𝑓(𝑠)

= 𝐶𝑙𝑜𝑠𝑒𝑑𝑙𝑜𝑜𝑝𝑜𝑓(𝐹1(𝑠) × 𝐹2(𝑠) × 𝐹3(𝑠))                              (3.61) 

where  

{
  
 

  
 𝐹1(𝑠) =

𝐾𝐼𝑉 + 𝑠𝐾𝑃𝑉
𝑠

𝐹2(𝑠) = 𝐶𝐼. 𝑙𝑜𝑜𝑝 (
𝐾𝐼𝐴 + 𝑠𝐾𝑃𝐴

𝑠(𝑠𝐿𝑓 + 𝑅𝑓)
) =

𝐾𝐼𝐴 + 𝑠𝐾𝑃𝐴

𝑠2𝐿𝑓 + (𝑅𝑓 + 𝐾𝑃𝐴)𝑠 + 𝐾𝐼𝐴

𝐹3(𝑠) =
1

𝐺𝑓 + 𝐶𝑓𝑠

                             (3.62) 
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{∴
𝑉0(𝑠)

𝑉0
𝑟𝑒𝑓(𝑠)

=
(𝐾𝑃𝐴𝐾𝑃𝑉)𝑠

2 + (𝐾𝐼𝑉𝐾𝑃𝐴 + 𝐾𝑃𝑉𝐾𝐼𝐴)𝑠 + 𝐾𝐼𝐴𝐾𝐼𝑉

(
(𝐿𝑓𝐶𝑓)𝑆

4+(𝑅𝑓𝐶𝑓+𝐺𝑓𝐿𝑓+𝐾𝑃𝐴𝐶𝑓)𝑠
3+(𝐺𝑓𝑅𝑓+𝐾𝑃𝐴𝐺𝑓+𝐾𝑃𝐴𝐾𝑃𝑉+𝐶𝑓𝐾𝐼𝐴)𝑠

2

(𝐾𝐼𝐴𝐾𝑃𝐴+𝐺𝑓𝐾𝐼𝐴+𝐾𝐼𝑉𝐾𝑃𝐴)𝑠+𝐾𝐼𝐴𝐾𝐼𝑉
)
     (3.63)  

To obtain one of the simulated scenarios, the model-based pole-zero cancellation (MPZC) 

technique was applied by setting 𝐺𝑓 = 0, 𝐾𝐼𝑉 = 0, and the filter parameter (𝐶𝑓) specified 

in Table 3.8 alongside the resultant computed values presented in Table 3.8. With these,  

the ultimate equations are given in equation (3.64) for the conventional best (CC) and 

equation (3.65) for MPZC (Pavan Kumar & Bhimasingu, 2021). 

{
𝑉0(𝑠)

𝑉0
𝑟𝑒𝑓(𝑠)

|

𝐶𝐶

=
1.99𝑠2 + 68.72𝑠 + 190.17

0.001𝑠4 + 0.18𝑠3 + 5.47𝑠2 + 68.72𝑠 + 190.17
         (3.64) 

 

{
𝑉0(𝑠)

𝑉0
𝑟𝑒𝑓(𝑠)

|

𝑀𝑃𝑍𝐶

=
𝑠 + 56.08

0.001𝑠3 + 0.163𝑠2 + 5.97𝑠 + 56.08
         (3.65) 
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Table 3.8: Parameters Used for the 𝐕/𝐈 Controller Equivalent Transfer Function 

Parameter Description  Specification 

𝑃𝑟 Microgrid rated power 25 𝑘𝑊 

𝑉𝑑𝑐 Inverter Input DC voltage 540 𝑉 

∆𝑉𝑎𝑐 The maximum deviation in the inverter output voltage  ±62 𝑉 

𝐹𝑠 Inverter switching frequency for PWM signals 15 𝑘𝐻𝑧 

𝐹𝑟 Minimum current ripple frequency  600 𝐻𝑧 

𝐶𝑓 Filter capacitance 50 𝜇𝐹 

𝐿𝑓 Filter inductance  1.35 𝑚𝐻 

𝑅𝑓 Filter resistance 0.1 𝛺 

𝐺𝑓 Filter conductance 0 𝑚ℎ𝑜 

𝜏1 Inner current control loop time constant  15 𝑚𝑠 
𝜏2 Outer voltage control loop’s time constant  90 𝑚𝑠 
𝐾𝑃𝐴 Proportional controller specification of the current 

controller 
0.12 

𝐾𝐼𝐴 Integral controller specification of the current controller 6.7 

𝐾𝑃𝑉 Proportional controller specification of the voltage 

controller 
5.65𝑒−4 

𝐾𝐼𝑉 Integral controller specification of the voltage controller 0 

3.2.8.2 TF Model of the Microgrid System with Hybrid GA-ANFIS Controllers 

The schematic model of the studied PV-wind hybrid microgrid and the individual 

components’ transfer function (TF) based on small-signal low-order dynamic models with 

the GA-ANFIS controller has been shown in Figure 3.20. The PMSG’s output is rectified 

and measured for channeling to the GA-ANFIS controller while simultaneously injecting 

it into the DC-DC converter. The PV system has been modeled using an equivalent circuit 

at the cell level based on the two-diode model to achieve better accuracy and increased 

power extraction (Abdel-Rahim, 2020). The PV array system’s maximum power point 

(MPP) voltage is fed to the IBC with the GA-ANFIS controller algorithms. 
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Figure 3.20: Schematic Mathematical Transfer Function Model of the PV-Wind 

Hybrid Microgrid with Hybrid GA-ANFIS Controller 

3.2.8.3 TF Model of the Photovoltaic-Wind Microgrid System with MPC Controller 

The schematic model of the studied PV-wind hybrid microgrid and the individual 

components’ transfer function (TF) based on small-signal low-order dynamic models with 

MPC controller is shown in Figure 3.21. 
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Figure 3.21: Schematic Small-Signal Mathematical Transfer Function Model of the 

PV-Wind Hybrid Microgrid with MPC Controller 

3.3. Design of the Proposed GA-ANFIS Controller  

The control method presented in this section (i.e. GA-ANFIS) supports the realization of 

specific objective number two. The first step in choosing a control strategy is to determine 

whether the microgrid will be grid- connected off-grid, or making transitions between the 

two. If grid-connected, the microgrid control strategy is dictated by the utility. On the 

other hand, in off-grid mode of operation, the control strategy is determined by a set of 

factors including type of micro sources and net capacity, capacity of available energy 

storage, type of load and ownership. This study focused on off-grid mode of operation. 
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3.3.1 GA-ANFIS Primary Microgrid Control System 

This section corresponds to the specific objective two and presents the design of the 

Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System (GA-ANFIS) controller. The 

GA-ANFIS controller has been used as a Maximum Power Point Tracking (MPPT) 

algorithm to optimize the converter outputs and provide voltage regulation amid power 

generation variations. The performance of the GA-ANFIS algorithm was compared with 

the Search Space Restricted-Perturb and Observe (SSR-P&O) and the Proportional-plus-

Integral-plus-Derivative (PID) controllers using a simulation model built in 

MATLAB/SIMULINK.  

3.3.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) Control Structure 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is the training tool for Sugeno-

type fuzzy systems (Gamage et al., 2021). ANFIS is more efficient because it infuses the 

merits of the FLC and ANN techniques to create a robust nonlinear self-tuning controller. 

The ANFIS rules are in linguistic format, making it easier to analyze and interpret 

intermediate results (Aloo et al., n.d.). The ANFIS control structure consists of a network 

of units and connections forming a five-layer connected network with layers 1 to 5, as 

depicted earlier in Figure 2.13 under Literature Review (Bogaraj & Kanakaraj, 2016; 

Truong et al., 2021). The significance of each layer and detailed operation of the 2-input-

1-output ANFIS structure are presented in (Gamage et al., 2021). The hybrid-learning 

algorithm automatically achieves the ANFIS controller’s tuning. The algorithm uses a 

combination of the least-square estimation (for output membership functions) and a 

backpropagation algorithm (for output and input membership functions) to generate the 

teaching signal (Pawar & Nema, 2020).  

Assuming two inputs 𝑥, 𝑦, and one output 𝑧 structure for simplicity, a rule set can be 

expressed in equations (3.66) to (3.69) for a first-order Sugeno fuzzy model with 49 fuzzy 

if-then rules. 



104 

Rule 1: If 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then: 

                                                              𝑧1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1                                            (3.66) 

Rule 2: If 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then: 

                                                               𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2                                       (3.67) 

Rule 3: If 𝑥 is 𝐴3 and 𝑦 is 𝐵3, then: 

                                                               𝑧3 = 𝑝3𝑥 + 𝑞3𝑦 + 𝑟3                                       (3.68) 

⋮ 
⋮ 

Rule 49: If 𝑥 is 𝐴49 and 𝑦 is 𝐵49, then: 

                                                               𝑧49 = 𝑝49𝑥 + 𝑞49𝑦 + 𝑟49                                       (3.69) 

where 𝐴𝑖  and 𝐵𝑖  denote the fuzzy sets in the antecedent, and 𝑝𝑖, 𝑞𝑖, and 𝑟𝑖, are the design 

parameters computed while executing the training. The parameters that were trained are 

𝐴𝑖 and 𝐵𝑖 of the premise parameters and 𝑝𝑖, 𝑞𝑖, and 𝑟𝑖, of the consequent parameters. Here, 

𝑥 = 𝐴𝑖 represents the PV-wind Power Generation Error, 𝑦 = 𝐵𝑖  the change in PV-wind 

Power Generation Error and 𝑧 represents the GA-ANFIS Output. Part of the data used for 

the GA-ANFIS training and overall design is presented in Appendix 4, such as Table A4.5. 

3.3.3 Flow chart of Proposed Genetic Algorithm (GA) 

The GA-ANFIS primary controller is required to generate appropriate pulse width 

modulated (PWM) control signals necessary to regulate and stabilize the converter voltage 

and is made up of two parts.  Figure 3.22 presents the flow chart of the GA part of the 

control system.     
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Figure 3.22: Flow Chart of Proposed Genetic Algorithm (GA) 

The first portion is the GA unit used to obtain optimal generation outputs of PV and WT 

of the microgrid system based on the available meteorological data. The rest of the steps 

are as follows: 

1. In step 1, the inputs to the GA, primarily the wind speed, solar irradiance, cell 

temperature, and BESS data representing the initial population, are specified.  

2. The captured data is modeled in step 2 using different functions to create clusters 

denoting average seasonal variations in the weather and storage performance 

corresponding to subset input selection. The outputs of this step include data about 
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PV output (𝑃𝑃𝑉−𝑜𝑢𝑡), wind turbine (𝑃𝑊𝑇−𝑜𝑢𝑡), and the BESS stored/drawn power 

(𝑃𝑠).  

3. Step three, corresponds to the determination of computational fitness and 

represents the calculation of the objective function, which is done according to the 

objective function in equation (3.1) guided by the power balance equation (3.70) 

and the constraints defined by equation (3.2): 

𝑃𝑇 = 𝑃𝑊𝑇𝐺 + 𝑃𝑃𝑉 ∓ 𝑃𝑠                                                          (3.70) 

where 𝑃𝑇 , is the total power generated in the microgrid. 

4. In step four, the GA is taken through iterative optimization where it manipulates 

the prescribed data sets using selection, crossover, and mutation processes of the 

standard GA algorithm. If the stop condition has not been reached, it jumps to the 

modeling step; else, it proceeds to the optimized results, i.e., optimum 𝑃𝑃𝑉−𝑜𝑢𝑡, 

𝑃𝑊𝑇−𝑜𝑢𝑡, and 𝑃𝑠. 

5. In the last step, this data is applied in the training of ANFIS in the second part of 

the proposed GA-ANFIS controller.  

The GA algorithm was implemented using a program written in MATLAB in which all 

the important parameters were specified, including population size, the maximum number 

of generations, the number of elite individuals, selection method, crossover function and 

fraction, mutation function, and mutation rate. 

3.3.4 Flow Chart of Proposed GA-Optimized ANFIS Controller 

The flowchart of Figure 3.23 shows the GA-optimized ANFIS algorithm (Aloo et al., 

2023).  
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Figure 3.23: Steps for GA-Optimized ANFIS Controller Design 

 The GA-optimized results (𝑃𝑃𝑉−𝑜𝑢𝑡, 𝑃𝑊𝑇−𝑜𝑢𝑡, and 𝑃𝑠) are presented to the ANFIS 

alongside the measured values of 𝑉 and 𝐼 and the expected DC-DC converter output 

voltage (𝑉𝑟𝑒𝑓). The reference voltage is computed using predetermined conditions 

according to the power balance equation. The generated output voltage (𝑉𝑐−𝑜𝑢𝑡) is 

compared with the set reference voltage (𝑉𝑟𝑒𝑓) to generate the  voltage error (𝐸𝑣) and 

change in the voltage error (∆𝐸𝑣) which form the final inputs to the ANFIS part of the  
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GA-optimized ANFIS controller. The output is a control output voltage signal used to fire 

the PWM operator that runs the DC-DC converter.   

Once a new set of training data is created, the same is used to compute the ANFIS values 

in terms of  reference microgrid DC voltage (𝑉𝑟𝑒𝑓) and DC-DC converter output voltage 

(𝑉𝑐−𝑜𝑢𝑡)  for each input. A comparison is made between 𝑉𝑐−𝑜𝑢𝑡 and 𝑉𝑟𝑒𝑓, and if equal, no 

action is taken. If the two are not equal, the voltage error (𝐸𝑣) and change in voltage error 

(∆𝐸𝑣) are obtained using 𝑉𝑐−𝑜𝑢𝑡, 𝑉𝑟𝑒𝑓, and 𝑃𝐸𝑣, where 𝑃𝐸𝑣, is the previous voltage error. 

All the ANFIS values are checked, and its learning parameters are supplied.    

A hybrid algorithm of the least squares method and the backpropagation gradient descent 

method is used to train the ANFIS. The training parameters of the ANFIS controller 

specified during its design are the number of fuzzy rules, the number of linear and 

nonlinear parameters, the number of nodes, and the number of training, checking, and 

testing data pairs. Once trained according to the tolerance or criteria set, the GA-ANFIS 

controller generates a suitable output control signal. This control signal is sent to the PWM 

module that produces PWM signals fed to the DC-DC converter to regulate the converter 

output voltage.  

Supervised learning was used in the ANFIS design because labeled training data was 

available. The data was obtained from the designed model run with the SSR-P&O and a 

MATLAB code, according to the generation data available at the National Renewable 

Energy Laboratory (NREL) site (Blair et al., 2018). The data used in the design of the 

GA-ANFIS controller was pre-processed using MATLAB codes and converted into a 

form that the GA-ANFIS required, making the designed GA-ANFIS controller universally 

acceptable and not limited by utilized dataset. This form of data is available on request.  

The Solar and Wind raw data before transformation and further modifications was 

obtained from the National Solar Radiation Database (NSRDB) provided by the National 

Energy Research Laboratory (NREL). The data is freely and publicly available at 

https://nsrdb.nrel.gov/data-viewer as well as through the System Advisor Model (SAM) 
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version SAM 2018.11.11 provided freely by NREL (Blair et al., 2018). The site 

considered was Juja, Kiambu, Kenya with Latitude 1.095161S and Longitude 37.01249E 

for the period 2017 to 2019 with a spatial resolution of 4𝑘𝑚 by 4𝑘𝑚. The parameters of 

the designed integrated GA and ANFIS system are captured in Table 3.9. 

Table 3.9: GA-ANFIS System Parameters 

GA Parameters 

PopulationType Double Vector 

PopulationSize 50 

Elite Count (0.05*PopulationSize) Adapted in simulations 

Crossover Fraction (0.8) Adapted in simulations 

Migration Interval 20 

Migration Fraction 0.2 

Generations (100*number of variables) 300 

PenaltyFactor (InitialPenalty = 10) 100 

StallGenLimit 50 

ANFIS Parameters 

Number of nodes 115 

Number of linear parameters 147 

Number of nonlinear parameters 224 

Total number of parameters  371 (premise=28, consequent =349) 

Number of training data pairs 54 (57.4%) 

Number of checking data pairs 20 (21.3%) 

Number of testing data pairs 20 (21.3%) 

Number of fuzzy rules 49 

Training method Hybrid learning algorithm 

Designated epoch number  50 

ANFIS training error tolerance 0.001 

Figure 3.24 shows the surface plots capturing the inputs and output of the designed ANFIS 

at a particular instant of simulation. Input 1 represents the voltage error (𝐸𝑣) and input 2 

the change in the voltage error (∆𝐸𝑣) whereas the output is the control output voltage 

signal for generating the PWM signals for the DC-DC Converter.  

In Figure 3.25, the structure of the designed ANFIS controller is shown, where a total of 

49 rules are generated from the 7x7 input membership functions. It has 115 nodes, 147 

linear parameters and 224 nonlinear parameters. 
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Figure 3.24: The Inputs and Output of the Designed ANFIS 
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Figure 3.25: The Structure of the Designed ANFIS 

3.3.5 Combined SIMULINK Model with a Case Study for the PID, and GA-ANFIS 

Controllers 

The consolidated 10 𝑘𝑊 microgrid SIMULINK case study model of Figure 3.26 with the 

GA-ANFIS Controller was obtained by integrating the individual models for the 10 𝑘𝑊 

solar PV system, the 10 𝑘𝑊 wind energy system, the designed IBCs, and the BESS. 

Figure 3.27 shows the MATLAB/SIMULINK Transfer Function (TF) Model of the 

proposed PV-Wind hybrid microgrid to test the SSR-P&O, PID, ANFIS performance, and 

GA-ANFIS controllers.  
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Figure 3.26: GA-ANFIS Controller in the SIMULINK Model of the Microgrid Case 

Study with IBC 
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Figure 3.27: Simulink Transfer Function Model of Proposed PV-Wind Hybrid 

Microgrid with PID and GA-ANFIS Controllers 

3.4 Design of the MPC Secondary Microgrid Control System for BESS 

This section corresponds to the specific objective three and presents the design of the 

Model Predictive Controller (MPC). The MPC controller has been realized using codes 

and MATLAB & SIMULINK MPC controller Toolbox. 
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3.4.1 Structural aspects of the Model Predictive Controller (MPC) 

Figure 3.28 is a generalized block diagram depicting the structural aspects of the Model 

Predictive Controller (MPC), which are useful in the development of this type of control 

strategy for the proposed system. As can be seen, the MPC is a discrete-time controller, 

which takes in discrete reference value, 𝑅(𝑘) representing the available PV and WT power 

and compares it with the predicted value �̂�(𝑘). In case of discrepancies between the two, 

the error generated, 𝑒(𝑘) is adjusted according to an objective function within stipulated 

constraints (Aloo et al., n.d.).   
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MPC Predictive 
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Figure 3.28: Block Diagram Structure of the MPC Controller 

An optimization solver is then used to solve an optimization problem and its output, 𝑢(𝑘), 

is applied to a discrete linear model of the PV-WT model of the proposed microgrid 

system. The actual output 𝑦(𝑘), the changes in the controller output ∆𝑢(𝑘), state variables 

∆𝑥(𝑘), and the output at a previous sampling instant 𝑦(𝑘 − 1) are used by the MPC 

predictive model to generate the predicted output �̂�(𝑘) (M. R. Chen et al., 2019; Dongol 

et al., 2018). 
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3.4.2 Microgrid State-Space Models for MPC Controller Design 

The state-space model of the PV-Wind hybrid microgrid has been obtained from equation 

(3.65), repeated here in equation (3.71) but in a reorganized form for convenience: 

𝑉0(𝑠)

𝑉0
𝑟𝑒𝑓(𝑠)

= {(
1000

𝑠3 + 163𝑠2 + 5970𝑠 + 56080
)} × {(𝑠 + 56080)}         (3.71) 

From the equation (3.71), the microgrid system transfer function has been separated into 

two cascaded blocks as shown in Figure 3.29. The first block contains a denominator and 

a gain of 1000 whereas the second block contains the numerator term (𝑠 + 56080). 

𝟏𝟎𝟎𝟎

𝒔𝟑 + 𝟏𝟔𝟑𝒔𝟐 + 𝟓𝟗𝟕𝟎𝒔+ 𝟓𝟔𝟎𝟖𝟎
 

 

𝒔+ 𝟓𝟔.𝟎𝟖 

𝑉𝑜
𝑟𝑒𝑓 (𝑠) 

𝑉𝑜(𝑠) 
𝑉1(𝑠) 

 

Figure 3.29: Cascaded Block Diagram Structure of PV-Wind microgrid TF 

Using the Bush form or companion form or controllable canonical form of state space 

representation, the state variables for the first block have been selected as successive 

derivatives to get equation (3.72): 

𝑥1 = 𝑣1(𝑡),  𝑥2 = 𝑣1̇(𝑡), 𝑥3 = 𝑣1̈(𝑡)                       (3.72) 

Then defining state variables by differentiating both sides of equation (3.72), gives 

equation (3.73): 

�̇�1 = 𝑣1̇(𝑡) = 𝑥2   𝑥2̇ = 𝑣1̈(𝑡) = 𝑥3, 𝑥3̇ = 𝑣1⃛(𝑡)

= −56080𝑥1 − 5970𝑥2 − 163𝑥3

+ 1000𝑣0
𝑟𝑒𝑓                                    (3.73) 
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By taking the output as 𝑥1 = 𝑣1(𝑡), and using the vector-matrix notation, the state space 

representation of the system in continuous-time form is given as in equation (3.74):  

[
�̇�1
�̇�2
�̇�3

] = [
0 1 0
0 0 1

−56080 −5970 −163
] [

𝑥1
𝑥2
𝑥3
] + [

0
0

1000
] 𝑣0

𝑟𝑒𝑓                               (3.74) 

The output 𝑣1(𝑡) is given by equation (3.75) 

                                                                        𝑣1(𝑡) = [1 0 0] [

𝑥1
𝑥2
𝑥3
]                         (3.75) 

The second transfer function with just the numerator yields equation (3.76): 

𝑉0(𝑠) = (𝑠 + 56.08)𝑉1(𝑠)                                        (3.76) 

Incorporating the definitions of the phase variables utilized in the first block and writing 

the terms in the reverse order to conform to an output equation gives equation (3.77): 

𝑣0(𝑡) = 56.08𝑥1(𝑡) + 𝑥2(𝑡)                                       (3.77) 

Therefore, the second block creates a linear combination of the state variables formulated 

in the first block. In other words, the denominator (and the gain of 1000 representing the 

input reference voltage) yields the state equations while the numerator produces the output 

equation. The complete state-space representation of the microgrid system is as given in 

equations (3.74) and (3.78):  

                                                                        𝑣0(𝑡) = [56.08 1 0] [

𝑥1
𝑥2
𝑥3
]                         (3.78) 

Now, the general state space model equations of a time invariant system (linear or 

nonlinear) are defined by equations (3.79 and 3.80):  
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�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡)                                    (3.79) 

           𝑦(𝑡) = 𝑪𝑥(𝑡) +

𝑫𝑢(𝑡)                                 (3.80) 

where 

𝑥 = 𝑛 −  Dimensional state vector, 𝑢 = 𝑟 −dimensional control vector or input vector, 

𝑦 = 𝑚 −dimensional output vector,  𝑨 – 𝑛 × 𝑛 state matrix,  𝑩– 𝑛 × 𝑟 input or control 

matrix, 𝑪 – 𝑚 × 𝑛 output matrix and  𝑫 – 𝑚 × 𝑟 direct transition matrix. 

Comparing equations (3.74 and 3.78) with equations (3.79 and 3.80) respectively, we 

obtain equation (3.81) and (3.82):  

  

𝑨 = [
0 1 0
0 0 1

−56080 −5970 −163
] , 𝑩 = [

0
0

1000
]                            (3.81)  

𝑪 = [56.08 1 0],𝑫 = [0]                                        (3.82) 

Figure 3.30 shows an equivalent block diagram that vividly captures the state space model 

of the PV-Wind microgrid system. 

163 5970 56080
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∫  ∫  ∫  
𝐾 = 1000 

56.08 

+ + + 

+ + 

+ 

− 

𝑉𝑜
𝑟𝑒𝑓 (𝑡) 

𝑉𝑜(𝑡) 

 

Figure 3.30: State Variable Diagram of PV-Wind Microgrid System 
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The discrete-time state-space model of the microgrid was obtained from the continuous-

time state space using MATLAB functions and scripts based on a Zero-Order Hold (ZOH) 

with appropriate sample times as given in Figure A3.1.  

For instance, the discrete-time transfer function with a sample time of 0.2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and 

no fractional delays in the input yields equation (3.83) and that with the input delayed by 

two samples is given by equation (3.84):  

ℎ𝑑1 =
𝑉0(𝑧)

𝑉0
𝑟𝑒𝑓(𝑧)

=
0.9219𝑧2 + 0.02599𝑧 − 4.637𝑒 − 06

𝑧3 − 0.05224𝑧2 + 7.522𝑒 − 05𝑧 − 6.95𝑒 − 15
            (3.83) 

ℎ𝑑2 =
𝑉0(𝑧)

𝑉0
𝑟𝑒𝑓(𝑧)

= 𝑧−2 ∗
0.8375𝑧3 + 0.1103𝑧2 + 1.773𝑒 − 05𝑧 − 1.398𝑒 − 13

𝑧3 − 0.05224𝑧2 + 7.522𝑒 − 05𝑧 − 6.95𝑒 − 15
  (3.84) 

It is noted that the discretization algorithm absorbs the residual half-period delay into the 

coefficients of hd1 in equation (3.83). 

The discrete-time state-space model can be obtained directly from the continuous-time 

transfer function based on ZOH with a sample time, 𝑇𝑠 of 0.2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and sampling 

instant 𝑘 using the MATLAB script as given in Figure A3.2 as in equations (3.85) and 

(3.86):  

[

𝑥1(𝑘 + 1)
𝑥2(𝑘 + 1)
𝑥3(𝑘 + 1)

]

= [
0.005269   0.01249 0.01075
−0.02512 −0.05872 −0.04826
0.0564 0.1311 0.1057

] [

𝑥1(𝑘)
𝑥2(𝑘)
𝑥3(𝑘)

]

+ [
−0.003141
0.0141
0.2613

] 𝑣0
𝑟𝑒𝑓(𝑘)                                                                            (3.85) 
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                                                                        𝑣0(𝑘) = [0 1.953 3.423] [

𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)
]              (3.86) 

Now, for time-invariant (linear or nonlinear) discrete-time systems, the general state 

equation may be written as defined by equations (3.87 and 3.88):  

𝑥(𝑘 + 1) = 𝑨𝒅𝑥(𝑘) + 𝑩𝒅𝑢(𝑘)                           (3.87) 

𝑦(𝑘) = 𝑪𝒅𝑥(𝑘) + 𝑫𝒅𝑢(𝑘)                           (3.88) 

Where 𝑥 is 𝑛 −  Dimensional state vector, 𝑢 is  𝑟 −dimensional control vector or input 

vector, 𝑦 is  𝑚 −dimensional output vector, 𝑨𝒅 is  – 𝑛 × 𝑛 state matrix, 𝑩𝒅 is  𝑛 × 𝑟 input 

or control matrix,  𝑪𝒅 is 𝑚 × 𝑛 output matrix and 𝑫𝒅 is  𝑚 × 𝑟 direct transition matrix. 

Comparing equations (3.85 and 3.86) with equations (3.87 and 3.88) respectively, we 

obtain equation (3.89):  

 𝑨𝒅  = [
0.005269   0.01249 0.01075
−0.02512 −0.05872 −0.04826
0.0564 0.1311 0.1057

] , 𝑩𝒅 = [
−0.003141
0.0141
0.2613

], 

 𝑪𝒅  = [0 1.953 3.423], 𝑫𝒅  = [0]                                                                                      (3.89)    

Also, the discrete-time state space matrices 𝑨𝒅, 𝑩𝒅, and 𝑪𝒅 can be obtained as defined in 

equations (3.90), (3.91) and (3.92) (Ghiasi et al., 2022): 

𝑨𝒅  = 𝑒
𝐴𝑇𝑠                                                       (3.90) 

𝑩𝒅  = ∫ 𝑒𝐴𝜏
𝑇𝑠

0

𝑩𝑑𝜏                                                      (3.91) 
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𝑪𝒅   = [0 1.953 3.423]                                                    (3.92) 

The equations given in (3.90)-(3.92) are used as the predictive model in the proposed 

MPC. 

In the simulated microgrid case study SIMULINK model, the parameters defined in 

equations (3.74) and (3.78) for the continuous-time state space model and equations (3.85) 

and (3.86) for the discrete-time state space change dynamically according to equations 

(3.93, 3.94 and 3.96):  

𝑨 =

[
 
 
 
 
 
 
 
 
 
 −

1

𝑇𝐵𝐸𝑆𝑆
0 0

0 −
1

𝑇𝑃𝑉
0

0 0 −
1

𝑇𝑊𝑇𝐺

0 0
1

𝑇𝑊𝑇𝐺

−
1

2𝐻

1

2𝐻
0

     

0 0
1

𝑇𝐵𝐶1
0

0
1

𝑇𝐵𝐵𝐶
1

𝑇𝑊𝑇𝐺
0
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1

2𝐻
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]
 
 
 
 
 
 
 
 
 
 

                                (3.93) 

𝑩 = [
1

𝑇𝐵𝐸𝑆𝑆

1

𝑇𝑊𝑇𝐺
0 0 −

1

2𝐻
]𝑇                                                    (3.94)  

𝑪 = [0 0 0 0 1]𝑇                                                                   (3.96)  

Now, referring back to equations (3.85) and (3.86), the subsequent set of equations 

describe the microgrid with emphasis on the BESS. In this context, the states of the system  

𝑥(𝑡) is a vector whose elements are SoC of the BESS (SoC(t)), 𝑃𝑃𝑉(𝑡), 𝑃𝑊𝑇𝐺(𝑡) and the 

total generated power to cater to load demand, 𝑃𝑔𝑒𝑛(𝑡). The input vector of the system 

𝑢(𝑡) is constituted of BESS power, 𝑃𝑆(𝑡), the demanded RES energy, 𝑃𝑟𝑒𝑛,𝑑𝑒𝑚(𝑡) and the 

generated renewable power injected into the BESS, 𝑃𝑏𝐶𝑖(𝑡). The definitions of the state 
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vector, the input vector, and the output vector of the system are as expressed in equations 

(3.97), (3.98), and (3.99): 

𝑥 (𝑡) = [𝑆𝑂𝐶(𝑡)     (𝑃𝑃𝑉(𝑡) +  𝑃𝑊𝑇𝐺(𝑡))     𝑃𝑔𝑒𝑛(𝑡)]
𝑇                  (3.97) 

𝑢 (𝑡) = [𝑃𝑠(𝑡)     𝑃𝑟𝑒𝑛,𝑑𝑒𝑚(𝑡)     𝑃𝑏𝐶𝑖(𝑡)]
𝑇                  (3.98) 

𝑦 (𝑡) = [𝑆𝑂𝐶(𝑡)     (𝑃𝑃𝑉(𝑡) +  𝑃𝑊𝑇𝐺(𝑡))     𝑃𝑔𝑒𝑛(𝑡)]
𝑇                  (3.99) 

Now, the proposed MPC utilizes the performance index to regulate microgrid voltage and 

guarantee BESS's smooth charging and discharging. 

The BESS-based microgrid relations are as defined in equations (3.100), (3.101), and 

(3.102), which are expressed in state space form in equation (3.103), and the output of the 

system is as given in equation (3.104):  

𝑆𝑂𝐶(𝑡 + 1) = 𝑆𝑂𝐶(𝑡) − 𝐾𝐵𝐸𝑆𝑆 𝑇𝐵𝐸𝑆𝑆 (𝑃𝑠(𝑡) − 𝑃𝑏𝐶𝑖(𝑡))                             (3.100) 

(𝑃𝑃𝑉(𝑡) +  𝑃𝑊𝑇𝐺(𝑡))(𝑡 + 1)  = 𝑃𝑟𝑒𝑛,𝑑𝑒𝑚(𝑡)   +  𝑃𝑏𝐶𝑖(𝑡)                                  (3.101) 

𝑃𝑔𝑒𝑛(𝑡 + 1)  = 𝑃𝑠(𝑡) +  𝑃𝑟𝑒𝑛,𝑑𝑒𝑚(𝑡)                                         (3.102) 

[

𝑆𝑂𝐶(𝑡 + 1)

(𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇𝐺(𝑡))(𝑡 + 1)

𝑃𝑔𝑒𝑛(𝑡 + 1)

] = [
1 0 0
0 0 0
0 0 0

] [

𝑆𝑂𝐶(𝑡)

(𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇𝐺(𝑡))(𝑡)

𝑃𝑔𝑒𝑛(𝑡) 

] + 

[
−𝐾𝐵𝐸𝑆𝑆 𝑇𝐵𝐸𝑆𝑆 0 𝐾𝐵𝐸𝑆𝑆 𝑇𝐵𝐸𝑆𝑆

0 1 1

1 1 0

] [

𝑃𝑠(𝑡)

𝑃𝑏𝐶𝑖(𝑡)

𝑃𝑔𝑒𝑛(𝑡)
]                              (3.103) 



122 

𝑦(𝑡) = [
1 0 0
0 1 0
0 0 1

] [

𝑆𝑂𝐶(𝑡)

(𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇𝐺(𝑡))(𝑡)

𝑃𝑔𝑒𝑛(𝑡) 

]                          (3.104) 

From equations (3.103) and (3.104), the BESS matrix dynamics on the microgrid, 

represented by the matrices 𝑨, 𝑩, and 𝑪 have the form defined in equations (3.105): 

 

𝑨 = [
1 0 0
0 0 0
0 0 0

] , 𝑩 = [
−𝐾𝐵𝐸𝑆𝑆 𝑇𝐵𝐸𝑆𝑆 0 𝐾𝐵𝐸𝑆𝑆 𝑇𝐵𝐸𝑆𝑆

0 1 1

1 1 0

]  𝑪 = [
1 0 0
0 1 0
0 0 1

]        (3.105) 

  

3.4.3 The Model Predictive Controller (MPC) Design for BESS 

The initial energy stored in BESS and the energy of the BESS at any instant of time is 

given respectively by equations (3.106) and (3.107) (Basantes et al., 2023):  

𝐸 (𝑡) = 𝐸0 + 𝜂𝐵𝐸𝑆𝑆,𝐶 × 𝑃𝑏𝐶𝑖(𝑡)
𝑃𝑏𝑑𝑐𝑖(𝑡)

𝜂𝐵𝐸𝑆𝑆,𝐷
                     (3.106) 

𝐸 (𝑡) = 𝐸(𝑡 − 1) + 𝜂𝐵𝐸𝑆𝑆,𝐶 × 𝑃𝑏𝐶𝑖(𝑡)
𝑃𝑏𝑑𝑐𝑖(𝑡)

𝜂𝐵𝐸𝑆𝑆,𝐷
                    (3.107) 

where 𝐸0  is the initial energy of the BESS,  𝐸 (𝑡) is instantaneous of the BESS power, 

discharging mode, 𝐸(𝑡 − 1) represents BESS energy at the previous instant, 𝜂𝐵𝐸𝑆𝑆,𝐶 and 

𝜂𝐵𝐸𝑆𝑆,𝐷, respectively represent the battery performance in the charging and discharging 

modes of operation.  
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The percentage of energy stored in the BESS is a function of the BESS SoC, as shown in 

equation (3.108) (Topa Gavilema et al., 2023):  

𝑆𝑂𝐶 (𝑡 + 1) = 𝑆𝑂𝐶(𝑡) −
𝜂𝐵𝐸𝑆𝑆𝑇𝑠
𝑃𝐵𝐴𝑇,𝑚𝑎𝑥

𝑃𝑠(𝑡)                       (3.108) 

where 𝑆𝑜𝐶(𝑡) is defined as the ratio between the present BESS capacity, 𝑃𝑠(𝑡, ) and the 

maximum BESS capacity, 𝑃𝐵𝐴𝑇,𝑚𝑎𝑥, expressed in 𝑘𝑊ℎ,  for each sampling instant 𝑇𝑠. To 

simplify the optimization problem with the MPC controller, it is assumed the performance 

of the BESS during charging and discharging is the same as introduced with the BESS 

performance factor, 𝜂𝐵𝐸𝑆𝑆 .  

Using SoC, the boundary constraint of the BESS to ensure it is operated within safe 

operating zones and prolong its life span is defined according to equation (3.109):  

𝑆𝑜𝐶 𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶(𝑡) ≤ 𝑆𝑜𝐶 𝑚𝑎𝑥                        (3.109) 

The constraint defined in equation (3.110) is necessary to prevent the BESS from 

simultaneous charging and discharging and those of equations (3.111), (3.112) and (3.113) 

are capacity constraints associated with the power limits of the BESS (Basantes et al., 

2023):  

𝑋𝐵𝐸𝑆𝑆,𝐶(𝑡) + 𝑋𝐵𝐸𝑆𝑆,𝐷(𝑡) ≤ 1                                    (3.110) 

0 ≥ 𝑃𝑏 𝐶𝑖(𝑡) ≥ −(𝑃𝐵𝐴𝑇,𝑚𝑎𝑥) × 𝑋𝐵𝐸𝑆𝑆,𝐶(𝑡)                                    (3.111) 

0 ≤ 𝑃𝑏𝑑𝑐𝑖(𝑡) ≤ (𝑃𝐵𝐴𝑇,𝑚𝑎𝑥) × 𝑋𝐵𝐸𝑆𝑆,𝐶(𝑡)                                    (3.112) 

𝑃𝑠(𝑡) ≤ (𝑃𝐵𝐴𝑇,𝑚𝑎𝑥)                                    (3.113) 
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3.4.5 MPC Controller Objective Function for the Microgrid 

The formulation of an objective function for an MPC controller in a microgrid control 

problem requires knowledge of the control set, plant dynamics, and constraints. There are 

two main categories of MPC controllers based on the control set, i.e., the Finite Control 

Set (FCS) (Ghiasi et al., 2022) and the Continuous Control Set (CCS) MPC. Implementing 

the former requires a modulator with a variable switching frequency, whereas the latter 

deploys a modulator and a constant switching frequency. Further, the response of CCS 

MPC can be easily compared with that of the PI and PID controllers.  

The MPC controller is a multivariable control algorithm utilizing a family of controllers. 

Therefore, the computation of optimal control moves entails solving a multi-faceted 

optimization problem specified by a cost or objective function. The quadratic cost function 

for a general optimal control problem has been given in equation (2.10) under the 

Literature Review.  On this basis, a general optimization problem for the microgrid 

problem can be defined as in equation (3.114) (Ghorashi Khalil Abadi et al., 2022),(L. 

Wang, 2016),(Syed & Khalid, 2023): 

𝐽 =∑[𝑸𝒊(𝑌 − 𝑅)]
2

𝑁

𝑖=1

+ ∑ 𝑹𝑖[∆𝑈]
2 

𝑀−1

𝑖=0

                                            (3.114) 

where 𝑌 is the output vector of the system, 𝑸𝒊, a weighting factor to penalize variations in 

the predictions, 𝑅 is the reference representing the desired microgrid operating point, 𝑹𝑖, 

is the weighting factor to scale the increments in the microgrid input signal (∆𝑈), 𝑁 is the 

prediction horizon, and 𝑀 the control horizon.  

The output vector of the system 𝑌 and the optimal control vector ∆𝑈 (which contains the 

increments of the microgrid input signal ∆𝑢(𝑘), ∆𝑢(𝑘 + 1), ∆𝑢(𝑘 + 2),………∆𝑢(𝑘 +

𝑀 − 1)   are related in a more compact form through equation (3.115): 

𝑌 = 𝑭𝑥(𝑡) + 𝑮∆𝑈                                            (3.115) 
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where matrices 𝑭 and 𝑮 are defined in equations (3.116) and (3.117) linked to equation 

(3.105) (Elmouatamid et al., 2019),(Akpolat et al., 2022): 

 𝑭 =

[
 
 
 
 
𝑪𝑨
𝑪𝑨𝟐

𝑪𝑨𝟑

.
𝑪𝑨𝑷]

 
 
 
 

= [
𝑪𝑨
𝑪𝑨𝟐

𝑪𝑨𝟑
]                                                       (3.116) 

𝑮 =

[
 
 
 
 
 
𝑪𝑩 𝟎 𝟎 . . 𝟎

𝟎𝟎𝟎 𝑪𝑩 𝟎 . . 𝟎

𝑪𝑨𝟐𝑩 𝑪𝑨𝑩 𝟎𝟎𝟎 . . 𝟎

. . . . . .

. . . . . .
𝑪𝑨𝑷−𝟏𝑩 𝑪𝑨𝑷−𝟐𝑩 𝑪𝑨𝑷−𝟑𝑩 . . 𝑪𝑨𝑷−𝑴𝑩]

 
 
 
 
 

                                   

= [
𝑪𝑩 𝟎 𝟎
𝟎𝟎𝟎 𝑪𝑩 𝟎
𝑪𝑨𝟐𝑩 𝑪𝑨𝑩 𝟎𝟎𝟎

]                                                                         (3.117) 

The vector 𝑈(𝑘) is computed so that it is used to minimize the predicted errors over the 

prediction horizon, 𝑁 and the size of the control move over the control horizon, 𝑀. The 

objective function for the proposed MPC controller has two augmented parts to cater for 

BESS control and for voltage regulation in the microgrid, respectively and is as defined 

in equation (3.118): 

𝐽 =∑[  [𝑐𝑐ℎ(𝑃𝑏𝐶𝑖(𝑘) − 𝑃𝑏𝑑𝑐𝑖(𝑘)) + 𝑐𝑑𝑖𝑠(𝑃𝑏𝑑𝑐𝑖(𝑘) − 𝑃𝑏𝑐𝑖(𝑘))

𝑁

𝑖=1

+ 𝑐𝑠𝑜𝑐 (𝑆𝑂𝐶(𝑘) − 𝑆𝑂𝐶𝑟𝑒𝑓(𝑘))
2

+ [𝑉(𝑘) − 𝑉𝑟𝑒𝑓(𝑘)]
2 ]

+ ∑ 𝑹𝒊[𝑈(𝑘)]
2 

𝑀−1

𝑖=0

                                                                                   (3.118) 
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subject to the following constraints equations (3.119) to (3.123) and equation (3.70) (Félix 

Garcia-Torres, Carlos Bordons, 2020): 

1. Battery power limits in equations (3.119) and (3.120):  

𝑃𝑏𝑐𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑏𝐶𝑖(𝑘) ≤ 𝑃𝑏𝑐𝑖,𝑚𝑎𝑥                                          (3.119) 

𝑃𝑏𝑑𝑐𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑏𝑑𝑐𝑖(𝑘) ≤ 𝑃𝑏𝑑𝑐𝑖,𝑚𝑎𝑥                                          (3.120) 

2. State of charge (SoC) limits given in equation (3.121): 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶(𝑘) ≤ 𝑆𝑜𝐶,𝑚𝑎𝑥                                          (3.121) 

3. Voltage limits defined in equation (3.122):  

𝑉𝑚𝑖𝑛 ≤ 𝑉(𝑘) ≤ 𝑉𝑚𝑎𝑥                                          (3.122) 

4. Control input limits as given in equation (3.123): 

𝑈𝑚𝑖𝑛 ≤ 𝑈(𝑘) ≤ 𝑈𝑚𝑎𝑥                                          (3.123) 

5. The power balance equation (3.70). 

In equation (3.118), 𝑐𝑐ℎ and 𝑐𝑑𝑖𝑠 are respectively the cost of charging and discharging the 

BESS per unit of power (usually taken as positive values). 𝑃𝑏𝐶𝑖(𝑘) and 𝑃𝑏𝑑𝐶𝑖(𝑘) represent 

the charging and discharging power of the BESS, at time step 𝑘, respectively.  𝐽 is the total 

performance index or cost function to be minimized, 𝑁 is the prediction horizon (number 

of control intervals), 𝑀 is the number of control moves, and 𝑅 a positive definite weighting 

factor or penalty term used to balance deviations in voltage and also to control the input 

effort.  𝑉(𝑘) and 𝑉𝑟𝑒𝑓(𝑘), respectively denote the microgrid voltage and the desired 
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reference voltage at time step 𝑘, 𝑈(𝑘) represents the control input at time step 𝑘 and equals 

to (𝑃𝑊𝑇𝐺 + 𝑃𝑃𝑉 ∓ 𝑃𝑠).  

The first component of the objective function is introduced to aid in optimizing the BESS 

charging and discharging in the PV-Wind hybrid microgrid subject to the stipulated 

constraints. Its parameters involve: 𝑃𝑏𝑐𝑖(𝑘),  𝑃𝑏𝑑𝑐𝑖(𝑘), 𝑆𝑂𝐶(𝑘) and 𝑆𝑂𝐶𝑟𝑒𝑓(𝑘). 

The goal of the second portion of the objective function is to perform voltage regulation 

by minimizing the variation of the microgrid converter voltage from the desired reference 

subject to the stipulated constraints and has the terms: 𝑉(𝑘), 𝑉𝑟𝑒𝑓(𝑘) and 𝑈(𝑘) =

(𝑃𝑊𝑇𝐺 + 𝑃𝑃𝑉). The MPC controller designed is a linear finite-horizon MPC controller.  

The BESS is kept as much as possible near its maximum SoC by adhering to the 

constraints, while avoiding discharging it below a set threshold to avert a deep discharge 

of the BESS. The SoC, one of the input parameters to the MPC controller, is acquired by 

predicting the BESS charge/discharge current.  

3.4.6 The Proposed Model Predictive Controller (MPC) for BESS 

Figure 3.31 shows the flow chart of the proposed MPC algorithm. The role of the Model 

Predictive Controller (MPC) in the proposed microgrid control system is to perform power 

control of the Battery Energy Storage System (BESS). This is necessary to avoid over-

charging or over-discharging the BESS. To achieve this, the MPC controller takes in 

predicted PV and WT power and sampled State of Charge (SoC) values of the BESS, 

which are applied as feedback signals. Next, an initial prediction model is obtained.  
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Figure 3.31: Steps for Proposed MPC Controller Design 

The power flow within the PV, WT, and BESS system is required to satisfy the power-

flow balance relationship of equation (3.70) which has been re-organized for convenience 

when designing the MPC controller and its code development to equation (3.124):   
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𝑃𝑃𝑉−𝑜𝑢𝑡 𝑖 + 𝑃𝑊𝑇−𝑜𝑢𝑡 𝑖 − 𝑃𝐿 𝑖 = 𝑃𝑏𝑐 𝑖 + 𝑃𝑏𝑑𝑐 𝑖 + 𝑃𝐿 𝑜𝑠𝑠  𝑖                                           (3.124) 

where    𝑃𝑃𝑉−𝑜𝑢𝑡 𝑖  and 𝑃𝑊𝑇−𝑜𝑢𝑡 𝑖 are the available power from PV and WT,  𝑃𝐿 𝑖 is the 

load power demand, 𝑃𝑏𝑐 𝑖 and 𝑃𝑏𝑑𝑐 𝑖, are the charging and discharging power of the BESS 

while 𝑃𝐿 𝑜𝑠𝑠  𝑖 denotes power losses in the microgrid, all considered at the 𝑖𝑡ℎ sampling 

instant. 

The model of the system is then obtained. Using the DTSS model of the system, the initial 

values and constraints, if any, of the model are predicted. An expanded state space model 

discrete-time state space (DTSS) is then obtained, for instance, by introducing an 

expanded state vector or, the microgrid   impedance, 𝑍𝐿 into expressions for state variable 

𝑥 and the output variable 𝑦. This is followed by initializing key parameters of the MPC 

design namely, maximum number of sampling instants (𝑇𝑚𝑎𝑥), prediction horizon (𝑁), 

control horizon (𝑀), weighting vectors  𝑸𝒊 and 𝑹𝒊 and setting 𝑘 = 1. 

Next, the cost function 𝐽 is defined and this forms the basis for calculating the control 

command𝑢(𝑘 + 1),, which represents the change value of the BESS value.  The calculated 

value of control command 𝑢(𝑘) is then incorporated into the system to be controlled, and 

the voltage at the common point of coupling 𝑃𝐶𝐶, 𝑉𝑃𝐶𝐶, measured. At the same time, the 

predicted value of the voltage at 𝑃𝐶𝐶, 𝑉∗𝑃𝐶𝐶, is obtained, and the two values of voltages 

are then compared. If they are equal, the algorithm joins the initial prediction model.  

 On the other hand, if they are not equal, it means there is a voltage prediction error. This 

prompts the need to solve the optimal control problem whose outcome is the optimal 

control values for the battery-connected DC-DC converter obtained as 

𝑢 𝑖, 𝑢 𝑖+1, 𝑢 𝑖+2 , … , 𝑢 𝑖+𝑁−1 .  Out of these values, the optimal value or vector, usually the 

first value  𝑢 𝑖 , is stored. The stored optimal value is sent to the battery DC-DC converter. 

Again, the power variables and battery SoC are measured. These values are used at the 

next sampling instant to generate PV and WT prediction corrections and battery SoC 

updates. In the proposed system, 𝑥(𝑘) represents the total power of PV, WT, and BESS, 



130 

while  𝑦(𝑘) denotes the voltage at the PCC. 𝑃 𝑃𝑉−𝑜𝑢𝑡(𝑘), 𝑃 𝑊𝑇−𝑜𝑢𝑡(𝑘) and 𝑃 𝑏𝑎𝑡(𝑘), are 

the measured PV, WT, and BESS power, respectively. 𝑃 𝑃𝑉−𝑜𝑢𝑡(𝑘 + 1), 𝑃 𝑊𝑇−𝑜𝑢𝑡(𝑘 + 1) 

and 𝑃 𝑏𝑎𝑡(𝑘 + 1) are the predicted values of PV, WT, and BESS power, respectively.  

The microgrid impedance parameters, 𝑍𝐿 , is usually unknown and varies from one system 

to another. This value can be corrected per the error between the predicted and actual 

voltage of PCC, set at 𝜀 ≤ 0.05. The prediction error obtained at every sampling instant 

is used to correct the model, and this happens repeatedly as long as the proposed MPC 

secondary controller is running. With this, in addition to managing the charging and 

discharging of BESS, the MPC algorithm also compensates for deviations in voltages 

created because of the implementation of the primary GA-ANFIS controller. 

The proposed MPC has been selected over the conventional charging control methods and 

other commercial devices because it offers a better performance in charging and 

discharging batteries, which is complex and nonlinear. This is in terms of improved 

regulation of charging and discharging voltages, State of Charge (SoC), energy 

management, charging time, and charging efficiency. The MPC uses a precise 

mathematical model of the microgrid system to enforce required constraints and has a high 

flexibility contrary to the traditional charging control methods (Banguero et al., 2018; 

Dongol et al., 2018). The upper and lower voltage thresholds in charging and discharging 

of the BESS can be incorporated as constraints in the MPC objective function.  

3.4.7 Application Framework of the MPC Controller to the Microgrid Model  

The proposed linear finite-horizon MPC controller utilizes the receding horizon control 

approach in which only the first step of the M-step control framework, 𝑈(𝑘), generated in 

equation (3.135) is implemented. Since not all the states may be available to realize the 

MPC controller strategy, the state estimation was carried out using the Kalman filter, 

whose parameters have been tuned and adapted from the MATLAB MPC controller 

Toolbox (Bemporad et al., 2019).  
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The selection of the MPC design parameters used in the simulations was made per the 

following guidelines:  

1. Model Horizon (𝐻) and sampling period (𝑇𝑠). 

These parameters have been selected so that 𝑁𝑇𝑠 ≥ open-loop settling time. 

Typical values of 𝐻 being 30 ≤ 𝐻 ≤ 120. In the proposed MPC, 𝐻 = 30 has been 

used, and 𝑇𝑠 = 0.2𝑠.  

2. Prediction Horizon (number of predictions) (𝑁). 

Increasing 𝑁 yields a less aggressive control action; thus, the choice of it is guided 

by 𝑁 = 𝐻 +𝑀. In the proposed MPC, 𝑁 = 40 has been used. 

3. Control Horizon (number of control moves) (M):  

Normally, 𝑀 < 𝑁 to reduce the complexity of the optimization problem. 

Moreover, the number of decision variables in the optimization problem, though 

not dependent on 𝑁, increases with 𝑀. Consequently, increasing 𝑀 results in a 

more aggressive controller and increases computational effort. Typically, 𝑀 is 

taken in the range 5 ≤ 𝑀 ≤ 20. In the simulations, 𝑀  was set to a maximum of 

value of 𝑀 = 10. 

4. Weighting matrices 𝑸 and 𝑹. 

The Weighting matrix for predicted errors is a positive definite matrix (𝑸 > 0), 

and the weighting matrix for control moves is a positive semi-definite matrix (𝑹 ≥

0). These elements were adapted in the simulation, mainly as the diagonal matrices 

containing the largest elements match the most important variables in the 

microgrid. Table 3.10 summarizes the parameters of the designed MPC controller.  
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Table 3.10: Designed MPC Controller Parameters 

Parameter Symbol Value Comments 

Plant input signal 

sizes 

Defined in 

corresponding 

equations. 

[1,1,1] No. of manipulated variables/measured 

disturbance/unmeasured disturbance =
1/1/1. Updated values adapted in 

simulation. 

Plant output signal 

sizes 

Defined in 

corresponding 

equations. 

[1,0] No. of measured outputs = 1, No. of 

unmeasured outputs = 0 

Output variables 

weight 
𝑸𝒊 1.8 Value is given as a starting point and 

then adapted in simulation. 

Manipulated 

variables rate weight. 
𝑹 1 Weighting Factor for Voltage 

Deviation, adapted in simulation   

Model horizon 𝐻 30 30 ≤ 𝐻 ≤ 120 

Adapted in simulation 

Prediction horizon 𝑁 40 The choice is guided by:  

𝑁 = 𝐻 +𝑀 
Control horizon 𝑀 10 Typically, M is taken in the range: 5 ≤

𝑀 ≤ 20 
Sampling time 𝑇𝑠 1𝑠 The value selected based on microgrid 

dynamics and desired controller 

performance   

State estimation 𝑥[𝑘|𝑘] Adapted in 

simulation 

Used the MPC built-in Kalman filter 

Other parameters  𝑐𝑐ℎ , 𝑐𝑑𝑖𝑠, 𝑐𝑠𝑜𝑐, 

 𝑃𝑏𝐶𝑖(𝑘), 

𝑃𝑏𝑑𝐶𝑖(𝑘), 𝑆𝑂𝐶𝑚𝑖𝑛,  

𝑆𝑂𝐶𝑚𝑎𝑥, 𝑣𝑟𝑒𝑓    

1, 1, 1, 50, 

−50, 0.2, 

0.8, 600𝑉 

Some values given are starting points. 

Custom constraints and plant limits 

adapted in simulation (Equation 

(3.135)). 

The MPC controller was designed and implemented using a series of MATLAB codes 

written following the created model and implemented alongside the tools based on the 

MATLAB and SIMULINK MPC Controller Toolbox. 

3.4.8 SIMULINK Design of the MPC Controller for BESS 

The MPC controller applied to the consolidated 10 𝑘𝑊 microgrid case study model is 

given in Figure 3.32. The action of the MPC controller has been compared with that of 
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the GA-ANFIS and PID controllers in terms of rise time, settling time, and maximum 

overshoot.  

3.5 Combined Simulink Models and Performance Comparison  

This section presents the Simulink Models for Transfer Function and Case Study that 

support specific objectives two, three, and four and on whose basis the results to validate 

the performance of the GA-ANFIS-MPC controller have been conducted. The 

consolidated microgrid case study SIMULINK model was obtained by integrating the 

individual models for the PV system, WT system, IBCs, Two parallel Inverters, BESS, 

and the Load Model. It significantly altered the response time by increasing the 

computation and dynamic response time. 

3.5.1 SIMULINK Microgrid Transfer Function (TF) Model 

Figure 3.33 shows the MATLAB/SIMULINK microgrid Transfer Function (TF) of the 

proposed PV-Wind hybrid microgrid used to test the performance of the designed MPC 

controller. The MPC controller performance has been compared with that of the PID 

controller and G 

A-ANFIS controller in the same simulation context regarding rise time, settling time, and 

maximum overshoot. Further, MPC controller action is also tested on the Microgrid State 

Space Model. 
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Figure 3.32: MPC Performance in the SIMULINK Model of the Microgrid Case 
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PID Response

GA-ANFIS  Response

PID, MPC & GA-ANFIS 
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MPC  Response

 

Figure 3.33: Simulink Transfer Function Model of Proposed PV-Wind Hybrid 

Microgrid with MPC, GA-ANFIS and PID Controllers 

3.5.2 SIMULINK Microgrid Case Study Model 

The consolidated microgrid case study SIMULINK model with the GA-ANFIS-MPC 

controller is shown in Figure 3.34 and a detailed version is depicted in Figure A2.1 in 

Appendix 2. In essence, the developed microgrid model is a nonlinear model in which the 

nonlinearities have been handled as follows. First, the zone restriction technique was 

applied to the PV and wind power curve to eliminate 85% of the curve and only focus on 

the 15% section. The restriction kept the operating points of PV and WT close to the 
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equilibrium points around the MPP and had a higher chance of exhibiting local stability if 

subjected to the Jacobian linearization of the state-space model equations. Second, the 

form of the TF was used after the model pole-zero cancellation, which simulates a nearly 

linear microgrid. Finally, the designed GA-ANFIS-MPC controller was used to withstand 

the impact of nonlinear dynamics on the model response.  

The GA-ANFIS controller has been applied as the primary controller to regulate the 

generated microgrid voltage whereas the MPC controller regulates the battery charging 

and discharging. The MPC controller can reinforce the BESS charging/discharging 

constraints alongside other microgrid constraints (Ghorashi Khalil Abadi et al., 2022), 

(Félix Garcia-Torres, Carlos Bordons, 2020). 
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Figure 3.34: Combined Simulink Model of the Proposed Microgrid with Case Study 

with PID, GA-ANFIS and MPC Controllers 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Results from the Modeling of the PV-Wind Microgrid System 

This section (i.e. section 4.1) corresponds to the results of specific objective number one. 

After building the model of the PV-Wind microgrid system in MATLAB & SIMULINK, 

the current and voltage as well as the power outputs were plotted at various points within 

the microgrid without deploying any control strategy. This was necessary to ensure that 

the microgrid model is operational before deploying the proposed control strategies. 

4.1.1 PMSG Output Phase Voltages 

Simulation results of the PMSG Wind Generation System connected to an uncontrolled 

three-phase diode rectifier and an Interleaved Boost Converter (IBC) were carried out to 

ascertain its performance. It was noted that the maximum power extraction happens when 

the Wind Turbine, which is connected directly to the PMSG, is subjected to a wind speed 

of 12 𝑚/𝑠 and pitch angle of 00. Figure 4.1 shows the non-normalized PMSG output 

phase voltages between −900 𝑉 and +900 𝑉 for the Red, Yellow and Blue phases as 

given, respectively. The phase voltage profiles are similar, considering it is a balanced 

three phase PMSG system. However, the Red phase, being the reference phase, has been 

plotted separately for convenience.   

The utilized simulation conditions were a constant pitch angle of 00 and constant 

mechanical torque of 35 𝑁𝑚. The variation in voltage and frequency are evident, which 

calls for further improvement such as via smoothing or stabilizing to obtain a constant 

outcome of 561 𝑉. It is also clear from the PMSG three phase voltage outputs of Figure 

4.1 that similarly, the PMSG three phase out currents will adopt a similar profile.  
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Figure 4.1: Turbine Output Power for Various Turbine Speeds 

4.1.2 Results from the IBC section of the Microgrid with MPPT 

Figure 4.2 shows the inputs to the designed IBC in terms of voltage 𝑉𝑖𝑛 = 561 𝑉 and 

current, 𝐼𝑖𝑛 = 26 𝐴. The DC input voltage remains nearly constant at 561𝑉 throughout 

the simulation time frame of 10 𝑠. This is because at this point, the functionality of the 

IBC needed to be tested using the DC input voltage that represents the near ideal scenario.     
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However, the input current experiences some ripples at the beginning which falls to within 

±15% of the nominal input current i.e. 26 ± 4 𝐴 within 0.5 𝑠. The inductor current plot 

follows a similar profile as for the input current, representing the impact of energy storage 

elements such as inductors in the performance IBC. 

Input voltage

Input current

Inductor Current

  

Figure 4.2: Designed Modified IBC Input 

The IBC output voltage of 742.6 𝑉 and current of 20.63 𝐴 obtained at a switching 

frequency of 20 𝑘𝐻𝑧 and the duty ratio is 𝐷 = 0.1928 are presented in Figure 4.3.  
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Figure 4.3: Designed Modified IBC Output 

Both the input voltage and current depict some ripples at the beginning which falls to 

within ±6.7% of the nominal input voltage and current i.e. 742.6 ± 50 𝑉 and  26 ± 1.4 𝐴 

respectively within 0.4 𝑠. The inductor current follows a similar profile as for the input 

current.  

The ripples are indicating that the IBC faces challenges during the transient period before 

attaining the desired voltage and current levels at steady-state conditions. There are 

notable improvements in the profiles with the P&O MPPT, particularly under linear 

conditions of operation. 
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4.1.3 Outputs of Two Parallel Inverters for Microgrid Application 

The output voltage profiles of the proposed Two Parallel Inverters on PV side and Wind 

Turbine without inverter control strategy are shown in Figure 4.4 and Figure 4.5, 

respectively.  
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Figure 4.4: Proposed Inverter output on PV Side without Inverter Control Strategy: 

(a) VSC Voltage (b) Load Voltage 

The upper plots (i.e. (a)) indicate a modified sinusoidal output ranging between −500 𝑉 

and 500𝑉 fed to the load while the lower plots (i.e. (b)) depict the deformations or spikes 
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introduced in the voltage by connecting a nonlinear three-phase load to the inverter output, 

which is at −600 𝑉 and 600 𝑉. The variations in the inverter outputs are within the limit 

of ±10%.  

Two inverters have been used to achieve the desired inverter paralleling: one inverter is 

connected to the PV side and the other to the WT side. The inverter connected to the PV 

side comprises the IGBT switches while the one attached to the WT side has been designed 

using MOSFETs. This partly explains the reason the two profiles differ. These results are 

consistent with those obtained in the literature regarding the near-perfect sinusoidal 

voltage outputs expected from inverters.  
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Figure 4.5: Proposed Inverter output on Wind Turbine side without Inverter 

Control Strategy: (a) VSC Voltage (b) Load Voltage 

Figure 4.6 present the unfiltered three-phase voltage outputs of the proposed inverter 

without inverter control strategy.  
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Figure 4.6: Proposed Inverter Unfiltered Output Voltages 

From Figure 4.6, for each of the phases, without the inverter control strategy, the 

variations in the inverter output voltages are clearly evident, though the rise time is still 

fast enough. These ripples in the inverter outputs may lead to power quality issues if 

unchecked. The absence of filters and inverter control strategy suggests the degraded 

performance and this can be addressed by incorporating appropriate controllers as 

deployed in this study. 

Figure 4.7 depicts the zoomed views of the unfiltered three-phase voltage outputs of the 

proposed inverter without inverter control strategy within simulation time frame of 9.55 𝑠 

to 10 𝑠.  
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Figure 4.7: Proposed Inverter Unfiltered Zoomed Output Line without Inverter 

Control Strategy 

It can be seen from Figure 4.7 that the voltages for both the PV and wind turbine sides are 

varying within ±10% of the nominal value i.e. 445 ± 45 𝑉. This is attributed to the non-

linear occurrences in the microgrid particularly those attributed to the intermittency in PV 

and WT generation as well as the power electronic converter components. Figure 4.8 

shows the filtered forms of the inverter output voltages on the PV side.  
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Figure 4.8: Proposed Inverter 1 Filtered Output Line Voltages (for Solar PV Side) 

The filtered forms of the inverter output voltages on the Wind Turbine side are shown in 

Figure 4.9. From Figure 4.8 and Figure 4.9, it can be observed that with the introduction 

of the filter, the inverter output voltage profiles are slightly better due to some reduction 

in ripple content. The variations in the inverter output voltages on both the PV and wind 

turbine sides have also improved slightly to fall within ±8.5% of the nominal value i.e. 

445 ± 40 𝑉. 
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Figure 4.9: Proposed Inverter 2 Filtered output Line voltages (for WT side) 

4.1.4 Response Characteristics of the Battery Energy Model 

The nominal current discharge characteristics of a 5000 𝐴ℎ capacity of the Lead-Acid 

BESS model and Lithium-Ion BESS model, respectively, are shown in the plots of Figure 

4.10 and Figure 4.11. It was observed that for the same storage capacity, the discharge 

rate is faster in Lead-Acid BESS compared to Lithium-Ion BESS. For this reason, the 

Lithium-Ion BESS is the preferred choice for use in the proposed microgrid.  

 



148 

 

Figure 4.10: Lead-Acid Response Characteristics 
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Figure 4.11: Lithium-Ion Response Characteristics 
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4.1.5 Combined Simulink Model Test Results 

4.1.5.1 Solar PV System Output Voltage and Output Current in the Proposed 

Microgrid 

Figure 4.12 shows the Solar PV System output voltage (𝑉𝑜𝑢𝑡) and output current (𝐼𝑜𝑢𝑡) in 

the proposed Microgrid. The  PV System output voltage (𝑉𝑜𝑢𝑡)  starts from zero and the 

generation begins immediately after sufficient solar irradiance has been received. As such, 

the PV voltage is noted to vary from a low of 30 𝑉 to a high of 561 𝑉, settling to within 

322.23 𝑉 at steady state after 0.2 𝑠. The PV system output current does not oscillate as 

much as the voltage does and for this, a steady state current value of 17.53 𝐴 is attained 

after 0.01 𝑠 for the simulation instant captured. 
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Figure 4.12:  Solar PV System Output Voltage (Vout) and Output Current (Iout) in 

the proposed Microgrid 
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4.1.5.2 PV System IBC Input and Output Voltage and Current in the proposed 

Microgrid 

Figure 4.13 indicate the PV System IBC input voltage (𝑉𝑖𝑛) and current (𝐼𝑖𝑛) in the 

proposed Microgrid with PID controller. From Figure 4.13, the PV system side IBC input 

voltage depicts a maximum value of 565 𝑉 and a minimum voltage 530 𝑉. There are 

some ripples in the voltage profile which falls to 540 ± 5 𝑉 within 0.05 𝑠.  

     

  

Figure 4.13: PV System IBC Input Voltage (𝐕𝐢𝐧) and Current (𝐈𝐢𝐧) in the Proposed 

Microgrid with PID Controller 
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The PV side IBC input current experiences some ripples at the beginning which falls to 

the range of 30 ± 4 𝐴 within 0.05 𝑠. The PV side IBC inductor current plot followed a 

similar profile as for the input current, range of 15 ± 8 𝐴 within 0.05 𝑠, representing the 

impact of the energy storage elements such as inductors in the operation of IBC.  

Figure 4.14 shows the PV System IBC output voltage (𝑉𝑜𝑢𝑡) and current (𝐼𝑜𝑢𝑡) in the 

proposed Microgrid with PID Controller.  

 

Figure 4.14: PV System IBC Output Voltage (𝐕𝐢𝐧) and Current (𝐈𝐢𝐧) in the Proposed 

Microgrid with PID Controller 
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In Figure 4.14,  the PV system side IBC output voltage depicts a maximum value of 695 𝑉 

and a minimum voltage of 665 𝑉, proving that the voltage levels have been significantly 

boosted. The nominal voltage stays at 680 ± 15 𝑉 representing a ripple content of  4.5%  

throughout the operation of the IBC in the PV microgrid system. The PV side IBC output 

current and inductor current experienced enhanced, initially oscillating outputs between 

±400 𝐴 to settle to within ±20 𝐴 after 0.15 𝑠. 

4.1.5.3 PV BESS Output Voltage, SoC, and Current in the Proposed Microgrid  

Figure 4.15 shows the PV BESS Output Voltage, SoC, and Current in the proposed 

Microgrid with PID Controller.  

 

Figure 4.15: PV BESS Output Voltage, SoC, and Current in the Proposed Microgrid 

with PID Controller 
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From Figure 4.15, it was observed that the PV system side BESS output voltage depicted 

a maximum value of 697 𝑉 and a minimum voltage 665 𝑉, proving the voltage levels of 

the IBC were nearly the same ones used to charge the BESS. The BESS charging and 

discharging was assumed to be identical and also the efficiency was assumed to be 95% . 

The SoC dropped from unity to about 0.95 in the simulated time period of 0.2 𝑠. The PV 

BESS Output Current depicted a similar trend and profile to the PV BESS Output Voltage. 

4.1.5.4 WT system Output Voltage and Current in the proposed Microgrid 

Figure 4.16 shows the WT Stator Output parameters with PID Controller in the proposed 

microgrid in which the transients of the 3-phase AC current and the electromagnetic 

torque p.u. values are visible.   

 

Figure 4.16: WT Stator Output Parameters with PID Controller 

The stator currents experience similar disturbance levels but which are much more 

irregular than those suffered by the electromagnetic torque.   
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The WT Rectifier Input, Output Voltage, and Current profiles are depicted in Figure 4.17. 

Looking at the input and output voltage and current profiles of the WT at the rectifier 

output, the struggles of the PID controller with the non-linearities in the system are clearly 

evident with ripples and overshoots reaching to levels of 8% to 10%. 

 

Figure 4.17: WT Rectifier Input and Output Voltage and Current with PID 

Controller 

Figure 4.18 shows the WT Regulated Filtered Output Voltages (pu) in the proposed 

Microgrid.  The effect of regulating the WT output voltages and the ability of the filter to 

clean or improve on the power quality output is clearly evident.  
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Figure 4.18: WT Regulated Filtered Output Voltage (pu) and Modulation Index with 

PID Controller 

4.1.5.5 WT, BESS, and Inverter Output in the Proposed Microgrid 

Figure 4.19 shows the WT BESS Outputs in the proposed Microgrid with the PID 

controller. Once again. the struggles of the PID controller with the non-linearities in the 

BESS system are clearly evident with ripples and overshoots reaching to levels of 8% to 

10% especially in the current profile. The BESS voltage drops slightly by about 1𝑉 within 

0.01 𝑠 from 280.2 𝑉 to 279.2 𝑉. 
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Figure 4.19: WT IBC Inputs in the Proposed Microgrid with PID Controller 

     Figure 4.20 shows the WT IBC Outputs in the proposed Microgrid with PID controller. 

From Figure 4.20,  the WT system side IBC output voltage depicts a maximum value of 

699 𝑉 and a minimum voltage 688 𝑉 with ripples and overshoot of about 1.5% 

throughout the operation of the WT IBC in the microgrid system. The WT side IBC output 

current and inductor current experienced enhanced, initially oscillating outputs between 

±250 𝐴 to and ±400 𝐴, respectively. The WT IBC output current settled settle to within 

±25 𝐴 after 0.15 𝑠. 
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Figure 4.20: WT IBC Outputs in the Proposed Microgrid with PID Controller 

Figure 4.21 shows the WT BESS Outputs in the proposed Microgrid with PID controller. 

From Figure 4.21, it was observed that the WT system side BESS output voltage depicted 

a maximum value of 699 𝑉 and a minimum voltage 668 𝑉, proving the voltage levels of 

the WT side IBC were nearly the same ones used to charge the WT BESS. The BESS 

charging and discharging was assumed to be identical and also the efficiency was assumed 

to be 95% . The SoC dropped from unity to about 0.95 in the simulated time period of 

0.2 𝑠. The PV BESS Output Current depicted a similar trend and profile to the PV BESS 

Output Voltage. 
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Figure 4.21: WT BESS Outputs in the Proposed Microgrid with PID Controller 

4.1.5.6 Inverter Output and Power Output to Residential Loads  

Figure 4.22 presents the PV side Inverter Outputs while Figure 4.23 shows WT side 

Inverter Outputs in the Microgrid under study with PID Controller.  

     From Figure 4.22 and Figure 4.23, the PV and WT inverter output voltage profiles are 

nearly identical ranging between a minimum of 630 𝑉 and a maximum of 690 𝑉. The 

ripple content and overshoot with the PID controller stood at 4.5% with the VSC inverter 

nominal output being at 660 ± 30 𝑉. The load voltage obtained from the inverter also had 

a similar profile on the  PV and WT side being at  645 ± 20 𝑉. However, these presented 

a slightly different profile from those regarding the VSC outputs but this depends on the 

nature of the load connected to the inverter output terminals. From Figure 4.22 and Figure 

4.23, the PV and WT inverter output voltage profiles are nearly identical and ranging 

between a minimum of 630 𝑉 and a maximum of 690 𝑉.  
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Figure 4.22: PV Side Inverter Outputs in the Proposed Microgrid with PID 

Controller 

   

Figure 4.23: WT Side Inverter Outputs in the Proposed Microgrid with PID 

Controller 
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Figure 4.24 shows Power Output to Loads in the Microgrid under study with PID 

controller. It was observed that the active power of 6 𝑘𝑊 depicted ripples of 10%. The 

reactive power was noted to be zero.  

 

Figure 4.24: Power Outputs to Loads in the Proposed Microgrid 

4.2 Performance of the GA-ANFIS-based Primary Microgrid Controller 

This section corresponds to the specific objective number two and four. The results 

presented here have been obtained from the application of the designed Genetic 

Algorithm-Adaptive Neuro-Fuzzy Inference System (GA-ANFIS) controller in the 

regulation of microgrid voltage amid power generation variations. The performance of the 

GA-ANFIS algorithm has been compared with the Search Space Restricted-Perturb and 

Observe (SSR-P&O) and the Proportional-plus-Integral-plus-Derivative (PID) controllers 

using a simulation model built in MATLAB/SIMULINK.  



162 

4.2.1 Response of SSR-P&O, PID, ANFIS, and GA-ANFIS Controllers with the 

Microgrid TF Model 

Figure 4.25 shows the response of SSR-P&O, PID, ANFIS, and GA-ANFIS controllers to 

the unit step change in voltage when applied to the Transfer Function (TF) model of the 

proposed PV-Wind hybrid microgrid.  

 

Figure 4.25: Response of Different Controllers to Step Change with the Microgrid 

TF Model  

The performance of these algorithms was tested with other voltage changes, and the 

voltage regulation capabilities obtained were summarized in Table 4.1.  
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Table 4.1: SSR-P&O, PID, ANFIS, and GA-ANFIS Controllers with Various 

Voltage Changes 

Step 

Input 
SSR-P&O  PID ANFIS GA-ANFIS 

  𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 

(𝑉) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) 

1 0.3 0.4 0.0 0.3 0.8 0.0 0.2 0.4 0.0 0.1 0.2 3.5 

2 0.3 0.4 0.0 0.4 0.7 0.0 0.3 0.4 0.0 0.1 0.2 3.5 

3 0.2 0.5 0.0 0.3 0.8 0.0 0.2 0.4 0.0 0.1 0.1 3.6 

4 0.2 0.4 0.0 0.4 0.7 0.0 0.2 0.4 0.0 0.1 0.2 3.5 

5 0.3 0.5 0.0 0.4 0.8 0.0 0.2 0.5 0.0 0.1 0.1 3.5 

Avg. 0.26 0.44 0.00 0.36 0.76 0.00 0.22 0.42 0.00 0.10 0.16 3.52 

The results obtained with various voltage step inputs indicated that the GA-ANFIS 

responds with the fastest settling time (𝑡𝑠) and shortest rise time (𝑡𝑟). According to the 

average values in Table 4.1, GA-ANFIS recorded the best average performance. The rise 

time is 0.10 s for GA-ANFIS, 0.22 𝑠 for ANFIS, 0.26 𝑠 for SSR-P&O, and 0.36 𝑠 for the 

PID controller. The maximum overshoot (𝑀𝑝) with GA-ANFIS is reduced up to 3.52% 

though there were no overshoots registered with the PID, SSR-P&O, and ANFIS 

controllers on the MPZC TF, which is a second-order plant. However, the PID, SSR-P&O, 

and ANFIS controllers depicted higher overshoots (𝑀𝑝 of  8.00%, 5.50%, and 5.00%, 

respectively) compared with the GA-ANFIS (𝑀𝑝 of  4.00%), when applied to the fourth-

order microgrid TF without pole-zero cancellation. The settling time is 0.16 𝑠 for GA-

ANFIS, 0.42 𝑠 for ANFIS, 0.44 𝑠 for the SSR-P&O, and 0.76 𝑠 for the PID. It is 

interpreted from these results that while using GA-ANFIS, the system tracks the new set 

voltage points in the fastest time (0.10 s) and with an acceptable overshoot of 3.52% 

(against IEEE-1547 and IEEE-519 standards voltage limits of ±5%) as compared to SSR-

P&O, ANFIS, and PID controllers.  

The GA-ANFIS controller is also the most optimal controller with the best prediction, 

learning capability, and ability to cope with non-linearities associated with the microgrid. 
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However, this has been acquired at the expense of a 3.52% overshoot introduced in the 

steady state value, which is still well within the expected voltage limits. Despite showing 

zero overshoots, the SSR-P&O and PID controllers do not have the learning and prediction 

capability of the ANFIS and GA-ANFIS and struggle with nonlinearities in the microgrid.  

4.2.2 Generator Outputs in the Proposed Microgrid with SSR-P&O and GA-ANFIS 

Figure 4.26 shows the WT Stator Output parameters (rotor speed, electromagnetic torque, 

and three-phase stator currents) in the proposed Microgrid with SSR-P&O. The struggles 

of the SSR-P&O algorithm in the presence of nonlinear dynamics of the WT are evident. 

The performance of the SSR-P&O requires that the microgrid is operated solely under 

linear conditions. However, the practical microgrid system in addition to the WT, has the 

PV, BESS, and nonlinear loads present thus increasing the presence of non-linearities 

which cannot satisfactorily be dealt with by the SSR-P&O algorithm. 
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Figure 4.26: WT Stator Output Parameters in the Proposed Microgrid with SSR-

P&O 

In Figure 4.27, these generator output parameters are much refined owing to the ability of 

the GA-ANFIS controller to predict system conditions and deal with the nonlinearities. 

The three phase stator currents are almost perfect sinusoidal currents with the ripples 

minimized to within ±3.5%. The rotor speed and the electromagnetic torque experience 

similar form of disturbance in which the GA-ANFIS stabilizes these two generator output 

quantities in a time frame of 0.08 𝑠 with an overshoot of about ±3.5%. 
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Figure 4.27: Generator Output Data with GA-ANFIS 

4.2.3 Results from the IBC with SSR-P&O MPPT and GA-ANFIS Controller 

The inputs to the proposed PV side IBC are voltage 𝑉𝑖𝑛 = 561 𝑉 and current,  𝐼𝑖𝑛 = 26 𝐴 

whose profiles with SSR-P&O are shown in Figure 4.28. The first plot in Figure 4.28 

indicates that the PV side IBC input voltage experiences considerable overshoot of ±5.5% 

representing a voltage deviation of ±31 𝑉 with the voltage maintaining some level of 

fluctuations of about ±5 𝑉, to be kept at  540 ± 5 𝑉 through ought. Further, from Figure 

4.28, it was observed that the PV system IBC Input current and Inductor current 

experienced similar disturbances with the final currents falling to 30 ± 5 𝐴 and 15 ± 5 𝐴, 

respectively.  The current plot with GA-ANFIS is shown in Figure 4.29, in which the GA-
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ANFIS has been able to stabilize the PV side IBC input current to within 18 ± 0.6 𝐴 or 

±3.5%. 

 

Figure 4.28: PV System IBC Input Voltage (𝐕𝐢𝐧) and Current (𝐈𝐢𝐧) in the Proposed 

Microgrid with SSR-P&O MPPT 

 

Figure 4.29: PV side IBC Input Current with GA-ANFIS 

The IBC output voltage with SSR-P&O of 680 𝑉 and current of 20.63 𝐴 obtained at a 

switching frequency of 20 𝑘𝐻𝑧 and the duty ratio of 𝐷 = 0.1928 are presented in Figure 

4.30. The SSR-P&O MPPT technology indicated a rise time of 0.25 𝑠, a settling time of 
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0.40 𝑠 and an overshoot of 7.50% and an efficiency of 96.5% compared to one obtained 

in literature of 96.1%  (Prabhakaran & Agarwal, 2020) and the conventional P&O which 

is 80 to 84%.  

 

Figure 4.30: PV Side IBC Output Voltage and Current with P&O-SSR in Case Study 

Model 

Figure 4.31 shows the PV Side IBC Output voltage and Current with GA-ANFIS in Case 

Study Model when the generated PV power varies. The GA-ANFIS regulated the IBC 

output voltage to within ±2.21% of the nominal 680𝑉, i.e., 680 ± 15 𝑉 which is well 

within the required ±5%. The rise time and settling time of the GA-ANFIS were 0.10 𝑠 

and 0.15 𝑠, respectively, giving a better voltage profile than SSR-P&O.  



169 

 

Figure 4.31: PV Side IBC Output Voltage and Current with GA-ANFIS in Case 

Study Model 
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Figure 4.32 and Figure 4.33 show the WT IBC Inputs and outputs with SSR-P&O in the 

proposed microgrid. The distortions in the voltage and current profiles depict the inability 

of the SSR-P&O algorithm to tackle the nonlinear dynamics of the microgrid system.  

 

Figure 4.32: WT IBC Inputs in the Proposed Microgrid with SSR-P&O in Case 

Study Model 
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Figure 4.33: WT IBC Outputs with SSR-P&O in Case Study Model 

When the SSR-P&O controller is replaced with the GA-ANFIS, the voltage, and current 

transient profiles are much refined, as shown in Figure 4.34 and Figure 4.35. This validates 

the ability of GA-ANFIS algorithm to tackle the nonlinear dynamics of the microgrid 

system. 
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Figure 4.34: WT IBC Inputs in the Proposed Microgrid with GA-ANFIS in Case 

Study Model 
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Figure 4.35: WT IBC Outputs with GA-ANFIS in Case Study Model 

 4.2.4 PV BESS Output Voltage, SoC, and Current in the Proposed Microgrid  

The study used interleaving/paralleling technique in which two IBC converters have been 

used, one on the PV and the other on the Wind Turbine side. For uniformity, the study 

used two BESS systems one for the PV and the other for the PV but the two have been 

interconnected. The same applies to the inverters. Figure 4.36 and Figure 4.37 show the 

PV side BESS and WT side BESS Output Voltage, SoC, and Current with SSR-P&O in 

the proposed microgrid. The voltage is regulated to within 680 ± 15 𝑉 for PV side BESS 

and 695 ± 5 𝑉 for WT BESS but with notable distortions at about 8%. 

 

Figure 4.36: PV BESS Outputs with SSR-P&O in Case Study Model 
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 Figure 4.37: WT BESS Outputs with SSR -P&O in Case Study Model  

Figure 4.38 and Figure 4.39 depict the PV side BESS and WT side BESS Output Voltage, 

SoC, and Current with the GA-ANFIS controller in the proposed Microgrid. The voltage 

is regulated to within 680 ± 15 𝑉 for PV side BESS and 695 ± 5 𝑉 for WT BESS with 

fewer distortions, faster rise times, and settling times. 
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Figure 4.38: PV Side BESS Outputs with GA-ANFIS      

 

Figure 4.39: WT Side BESS Outputs with GA-ANFIS      
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 4.2.5 Inverter Output and Power Output to Residential Loads in the Proposed 

Microgrid 

Figure 4.40 and Figure 4.41 present the filtered three-phase voltage outputs of the 

proposed inverter on the PV and Wind Turbine sides, respectively, with the SSR-P&O 

algorithm. The voltage profiles in Figure 4.40 and Figure 4.41 (a) and (b) depicted a 

similar form with the SSR-P&O MPPT for both the PV side and WT side inverters and 

were kept at about 450 ± 25 𝑉 with ripples of 5.5%. 

  

(a) 

 

(b) 
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(c) 

Figure 4.40: PV Side Inverter 1 Output Line Voltages with SSR-P&O 

 

(a) 

 

(b) 
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(c) 

Figure 4.41: Wind Turbine Side Inverter 2 Output Line Voltages with SSR-P&O: 

(a) Red Phase; (b) Yellow Phase; (c) Blue Phase 

The voltage recorded in part (c) in both cases turned out to be negative and larger than the 

rest at −900 ± 25  𝑉 with a ripple content of 3.0%. 

The GA-ANFIS controller plots are shown in Figure 4.42 and Figure 4.43, which depict 

better transient responses in terms of reduced settling time, rise time, and overshoots 

compared to the SSR-P&O algorithm. 
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Figure 4.42: PV Side Inverter 1 Performance with GA-ANFIS: (a) VSC Output Line 

Voltage; (b) Load voltage 



180 

 

Figure 4.43: WT side Inverter 2 Performance with GA-ANFIS: (a) VSC Output Line 

Voltage; (b) Load Voltage 

Figure 4.44 shows the power output to loads in the proposed microgrid with the GA-

ANFIS controller, which confirms the generation and supply of well-regulated voltage 

that meet the transient voltage response requirements. The BESS power is close to the 

total power at about 4.5 × 105 𝑊 with the wind power experiencing some disturbance 

before stabilizing at about 0.2 × 105 𝑊 while the Solar power is at about 0.1 × 105 𝑊. 
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Figure 4.44: Power Outputs to Loads with GA-ANFIS 

4.3 Performance of the Model Predictive Controller (MPC) 

This section corresponds to the specific objective number three and four presents the 

results obtained from the experiments run with the MPC algorithm for BESS charging and 

discharging and voltage regulation in the microgrid. 
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4.3.1 BESS Microgrid Plant Inputs and Outputs with MPC Controller 

Figure 4.45 shows the normalized BESS Microgrid Plant inputs with MPC Controller 

viewed in terms of the Manipulated Variable (MV), Measured Disturbance (MD) and 

Unmeasured Disturbance (UD). 

 

Figure 4.45: BESS Microgrid Plant Inputs with MPC Controller: (a) MV), (b) MD) 

and (c) UD 

From Figure 4.45, it is observed that the Unmeasured Disturbance (UD) has been kept at 

zero since at this point in the MPC controller design, it is not necessary to specify any 

unmeasured disturbance, usually represented by noise. The introduction of the Measured 

Disturbance (MD) at time 𝑡 = 10𝑠 since the MPC controller started operating causes the 

MPC controller to respond by reducing the Manipulated Variable (MV), to a minimum 
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(zero) in a time period of  5𝑠. This is necessary so that the MPC controller can reject the 

disturbance and allow the microgrid plant output voltage to remain or track the reference 

point (voltage). The non-normalized values of MV and MD applied in the microgrid Case 

Study model have been updated using values adapted in simulation. 

Figure 4.46 depicts the MPC controller voltage tracking performance when tested with 

the unit step input voltage considered to represent the BESS Microgrid plant output at the 

initial controller design stage. 

Target 

 

Figure 4.46: BESS Microgrid Plant Output with MPC Controller 

Figure 4.46 shows that when the Measured Disturbance (representing a change in the 

voltage or generated power levels in the microgrid) occurs at time 𝑡 = 10𝑠, the MPC 

controller quickly tracks the BESS output charging/discharging voltage. This is done with 

the following transient response outcome: a rise time of 𝑡𝑟 = 2.5𝑠, settling time of 𝑡𝑠 =

3.5𝑠 and percentage overshoot, 𝑀𝑝 = 0%.  
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4.3.2 MPC Controller Performance with Variations from the PV Side  

The performance of the designed MPC controller was also tested on the PV-Wind 

microgrid model amid voltage variations caused by the intermittency in the PV output, 

and the results are shown in Figure 4.47. 

 

Figure 4.47: The Designed MPC Controller Combined Performance with Variations 

from the PV Side (a) Inputs and (b) Outputs 

Figure 4.47 shows that when a drop in the unit step input voltage occurs around the 75th 

simulation step, representing a drop in the microgrid voltage from the PV side, the 

transient response of the MPC controller is as desired. As before, the MPC controller 

quickly tracks the desired reference voltage, which is set at the unit step for testing the 

controller's transient performance. The MPC controller in this case registered a transient 

response outcome with a rise time of 𝑡𝑟 = 3𝑠, settling time of 𝑡𝑠 = 4𝑠 and percentage 
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overshoot, 𝑀𝑝 = 0%.  The change in PV input represents a change in the microgrid model 

at the 75th simulation step. Still, owing to its prediction capability, the MPC controller 

starts its action at the 50th simulation step in anticipation of a change in the model. One 

simulation step was assumed to translate into a time period of one second. 

4.3.3 MPC Controller Performance with Variations from the WT Side 

Figure 4.48 shows the MPC Controller Performance with variations from the WT Side. 

As noted in Figure 4.48, the MPC controller step input drops drastically to near zero at 

about 12 simulation steps, representing a sudden decrease in the WT voltage and power 

due to variations in wind. The MPC controller, at this point, responds quickly to this 

disturbance, achieving the desired step output of 1𝑉 with a transient response profile 

having a rise time of  𝑡𝑟 = 3.5𝑠, settling time of 𝑡𝑠 = 4.5𝑠 and percentage 

overshoot, 𝑀𝑝 = 0%. In addition, when a sudden drop in the unit step input voltage (to 

zero) occurred around the 50th simulation step, followed by a quick gain in the value (to 

about 80% of the final value), the MPC controller still recovered as required.  However, 

this time, an overshoot of 𝑀𝑝 = 25% has been registered before the controller attained 

the final value again within 𝑡𝑠 = 4𝑠.  When the perturbations are repeated at around the 

100th simulation step but now starting with a sudden rise in voltage followed by a sudden 

drop, the MPC controller recorded an undershoot of about  𝑀𝑝 = −20%. These 

perturbations are reminiscent of the sporadic changes in the WT voltage due to variations 

in wind speed. The MPC controller performs very well in rejecting such disturbances, 

always returning the controlled variable, the desired microgrid voltage, to the set operating 

point.  This proves the voltage tracking performance of the designed MPC controller. 



186 

 

Figure 4.48: The Designed MPC Controller Combined Performance with Variations 

from WT Side (a) Inputs and (b) Outputs 

4.3.4 MPC Controller Performance in the Microgrid Transfer Function 

Figure 4.49 shows the response of the MPC Controller in comparison with the PID and 

GA-ANFIS in the Microgrid TF Model (MTFM). The MPC controller performance with 

the Microgrid Dynamic State Space Model (MDSSM) is also shown. The performance of 

the MPC, PID, and GA-ANFIS controllers on the Microgrid TF Model (MTFM) and 
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Microgrid Dynamic State Space Model (MDSSM) was tested with other voltage changes, 

and the voltage regulation capabilities obtained were as summarized in Table 4.2. 

Figure 4.49: Response of MPC Controller Compared with PID and GA-ANFIS in 

the Microgrid TF Model 

From Table 4.2, the MPC controller based on the Microgrid Transfer Function Model 

(MTFM) recorded a rise time of  6.40 𝑠, settling time of 7.00 𝑠, and overshoot of 

0.00% compared to the 0.36 𝑠, 0.76 𝑠, and 0.00%, respectively, realized with the PID 

controller. At the same time, the GA-ANFIS controller registered a rise time of 0.10 𝑠, 

settling time of 0.16 𝑠, and overshoot of 3.52% compared to the 10.20 𝑠, 30.00 𝑠, 

and 36.00%, respectively, realized with the MPC controller based on the Microgrid 

Dynamic State Space Model (MDSSM). The increased computation time of the MPC 

controller is evident in terms of a higher rise time and settling times than both the PID 

controller and the GA-ANFIS controller.  
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Table 4.2: Summary of Simulink Case Study Model Results with Voltage Variations 

Step 

Input 
PID  GA-ANFIS MPC (MDSSM) MPC (MTFM) 

  𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 

(𝑉) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) 

1 0.3 0.8 0.0 0.1 0.2 3.5 10.0 30.0 35.0 6.0 7.0 0.0 

2 0.4 0.7 0.0 0.1 0.2 3.5 9.5 30.5 36.0 6.5 6.8 0.0 

3 0.3 0.8 0.0 0.1 0.1 3.6 11.0 28.5 37.0 7.0 7.2 0.0 

4 0.4 0.7 0.0 0.1 0.2 3.5 10.0 30.0 36.5 6.0 7.1 0.0 

5 0.4 0.8 0.0 0.1 0.1 3.5 10.5 31.0 35.5 6.5 7.0 0.0 

Avg. 0.36 0.76 0.00 0.10 0.16 3.52 10.20 30.00 36.00 6.40 7.00 0.00 

The MPC controller based on the MDSSM recorded the worst performance, proving that 

an MPC controller's tuning has to be done separately for both the MDSSM and the MTFM. 

Based on this, the MPC controller tuning parameters obtained with the MTFM have been 

utilized as a basis for the MPC controller applied to the simulated SIMULINK model case 

study. 

The MPC controller using the MTFM responds better than the GA-ANFIS controller 

regarding zero overshoot in voltage regulation. However, the GA-ANFIS controller 

responds better than the MPC controller regarding reduced rise and settling times. The 

GA-ANFIS controller has been optimized using the renewable energy power generation 

data-driven approach, giving it prediction capabilities based on artificial intelligence. On 

the other hand, the MPC controller utilizes the model-based prediction dependent on the 

chosen prediction horizon, control horizon, model horizon, and the dynamic behavior of 

the microgrid system.  

4.3.5 PV Side and WT Side IBC Outputs with the MPC Controller in the Case Study 

Figure 4.50 shows the PV Side IBC Output voltage and Current with the MPC controller 

in the Case Study Model when the generated PV power varies.  
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Figure 4.50: PV Side IBC Output Voltage and Current with MPC Controller in Case 

Study Model: (a) Output Voltage, (b) Output current and (c) Capacitor Output 

current 

From Figure 4.50, The MPC controller regulated the IBC output voltage to within 

±2.35% of the nominal 680𝑉, i.e., 680 ± 16 𝑉 (compared with ±2.21%, i.e., 680 ±

15 𝑉 obtained with GA-ANFIS and ±8.00% with PID controller).  The performance of 

the MPC controller in regulating PV side IBC voltage is well within the required ±5%. 

The rise time and settling time of the MPC controller were 6.00 𝑠 and 7.00 𝑠, respectively, 

giving a better voltage profile than the PID controller. Despite zero overshoot on the 

linearized MTFM, the PID controller depicted deteriorated performance with an overshoot 

of 8.00% when applied to the simulated microgrid case study, where it couldn’t cope with 
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the non-linearities. However, the MPC controller depicted an increased computation time 

compared with the GA-ANFIS and PID controllers. 

Figure 4.51 depicts the WT side IBC Output Voltage and Current with the MPC controller 

in the proposed Microgrid.  

 

Figure 4.51: WT Side IBC Output Voltage and Current with MPC Controller in 

Case Study Model: (a) Output voltage, (b) Output Current and (c) Capacitor Output 

current 

The voltage is regulated to within ±2.35% of the nominal 680𝑉, i.e., 680 ± 17 𝑉 

(compared with ±2.21% i.e., 680 ± 15 𝑉 obtained with GA-ANFIS and ±8.00% with 

PID controller).  
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4.3.6 PV Side and WT Side BESS Response with the MPC Controller in the Case 

Study 

Figure 4.52 and Figure 4.53 depict the PV side BESS and WT side BESS Output Voltage, 

SoC, and Current with the MPC controller in the proposed Microgrid.  

 

Figure 4.52: PV Side BESS Response with MPC Controller (a) Output Voltage (b) 

SoC and (c) Output Current 
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Figure 4.53: WT Side BESS Response with MPC Controller (a) Output Voltage (b) 

SoC and (c) Output Current 

The voltage is regulated to within 680 ± 16 𝑉 for PV side BESS and 680 ± 17 𝑉 for WT 

BESS w, with fewer distortion but increased rise times and settling times than the PID or 

GA-ANFIS controller. This is because of the increased computation burden of the MPC 

controller. The MPC controller, therefore, is suitable for regulating BESS charging and 

discharging voltage to within ±2.35%, which is well within the desired standard of 

±5.00%. 
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4.3.7 Inverter and Load Response with the MPC Controller in the Case Study 

Figure 4.54 presents the inverter Output and Load voltage on the PV side with the MPC 

controller in the Microgrid under study.  

 

Figure 4.54: Inverter Output Voltage and Load Voltage on the PV Side with the 

MPC Controller in the Microgrid under Study: (a) VSC PV Inverter Output voltage 

(b) Load PV Voltage 

The VSC PV voltage with the MPC controller are much more refined than those obtained 

with the SSR-P&O as well as the PID controller. The voltage rises almost in zero time to 

650 ± 25 𝑉 representing a ripple content of about 3.8%. The load voltage with the MPC 

controller recorded an overshoot of about 15% and settled to 600 ± 20 𝑉 within 0.01 𝑠. 
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Figure 4.55 presents the Inverter Output voltage and Load voltage on the WT side with 

the MPC controller in the Microgrid under study. These plots depicted similar patterns to 

those obtained with the VSC on the PV side. 

 

Figure 4.55: Inverter Output Voltage and Load Voltage on the WT Side with the 

MPC Controller in the Microgrid under Study: (a) VSC WT Inverter Output 

Voltage (b) Load WT Voltage 

The voltage profiles are much more refined than those obtained with the PID or SSR-P&O 

controllers due to the ability of the MPC controller to handle the BESS charging and 

discharging dynamics.  
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Figure 4.56 shows the active power supplied to the loads by the BESS in the proposed 

microgrid with the MPC controller, which confirms the delivery of well-regulated voltage 

that meets the transient voltage response requirements. 

 

Figure 4.56: Active Power Supplied to the Loads by the BESS in the Proposed 

Microgrid with the MPC Controller 

4.4. Discussions 

4.4.1 Computation Time of the GA-ANFIS and MPC Controllers  

The GA-ANFIS and MPC controllers depicted increased computation time when applied 

to the microgrid voltage regulation problem.  The MPC controller designed presented 

computation time and computation burden that is about ten times that the PI(D) controller 

presented in the microgrid. Also, compared with the GA-ANFIS controller, the MPC 
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controller computation time is about five times higher. The complexity of the microgrid 

model, the non-linear dynamics associated with the PV and Wind generation sources, and 

the BESS contributed significantly to the increased computation time of both the GA-

ANFIS and MPC controllers. For the GA-ANFIS controller, the size of the data set used 

in training, the optimization of ANFIS by the GA, and the training by the hybrid algorithm 

(combined back propagation and gradient descent) further contributed to increased 

computation time and burden. The increased computation time of the GA-ANFIS 

controller was addressed by performing dimension reduction on the data set used, 

designing some aspects of the GA-ANFIS controller offline before deploying on the 

model, and carefully selecting epochs and desired error limits. 

In the case of the MPC controller, the following factors contributed to increased 

computation time and computation burden: 

1. The microgrid control problem considered in this study is quite complex, involving 

the regulation of microgrid voltage and battery charging and discharging voltage.  

2. The optimization algorithm chosen based on the quadratic programming and the 

complex objective function proved computationally intensive. 

3. The increased size of the PV-Wind microgrid system also contributed to increased 

computation time due to increased model complexity. 

4. The prediction horizon and control horizon lengths selected also added to the MPC 

controller's increased computation time and burden. 

5. The sampling time of the microgrid system and the MPC controller also 

contributed to the increased computation. 

6. The hardware and software computation platform also influence the computation 

time of the MPC controller. 

The increased computational time of the MPC controller has been addressed through the 

following techniques: 
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1. Careful selection and trade-off in the final values of prediction horizon and control 

horizon lengths. 

2. Proper selection of Solver options available in MATLAB & SIMULINK (used the 

quadratic solver). 

3. Reduction in model complexity via pole-zero cancellation in the TF modeling and 

by carefully selecting the operating points in the SIMULINK case study. 

4. Careful sampling time selection for the system and the MPC controller. 

5. Simulations were carried out using a computer with core i7 7th generation 

processors that allowed for parallel computing and processing. 

4.4.2 Criteria for Selection of Simulation Time  

The simulation time used in the simulations conducted ranged between 0.0 𝑠 and 10 𝑠. 

The exact simulation time slots used for the microgrid case study model and transfer 

functions simulations were selected based on a combination of factors. These include: 

microgrid design parameters, optimization of the microgrid system components, solver 

requirements, sampling time selection for the microgrid system, real-time simulation 

requirements and the modifications to the existing simulation environment. The choice of 

simulation time was also guided by the type of simulation, the trends noted in the literature 

and the industry standards. 

On the type of simulation in MATLAB/SIMULINK, a choice can be made from any of 

the following: Normal, Accelerator, Rapid accelerator, Software in the loop (SIL), 

Processor in the loop (PIL) and External. All the simulations conducted were under the 

type of simulation designated as Normal which agreed with the selected simulation time 

to yield quick and valid results. For the solver selection, the Variable-step mode was 

selected instead of the Fixed-step with the maximum solver step size set to 0.04 𝑠. This 

provided for greater flexibility and improved results in the simulations. The solver used 

was the ode23tb (Stiff/TR-BDF2) instead of discrete which does not allow for continuous 

states or the automatic solver selection (auto) which does not give the designer the 

opportunity to choose their own preferred solver. 
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4.4.3 Discussion of the Case Study Model Results with Voltage Variations 

The results presented in sections 4.2 and 4.3 addressed the fourth specific objective. In 

these sections, the designed GA-ANFIS-MPC-based multilevel MCS has been split into 

two parts and applied to the off-grid Photovoltaic-Wind Hybrid generation microgrid 

system case study. The first part is the GA-ANFIS primary controller used mainly as a 

microgrid voltage regulator concerning controlling microgrid voltage amid variations 

introduced by the PV and WT generation sources.  

The second controller is a secondary MPC controller whose main function is to regulate 

the microgrid's voltage to ensure safe BESS charging and discharging. The performance 

of the GA-ANFIS-MPC controller has been evaluated compared to the SSSR-P&O and 

Proportional plus Integral (PI) and or Proportional plus Integral plus Derivative (PID) 

control method. Table 4.3 shows a numerical summary of Simulink case study model 

results obtained with the SSR-P&O, GA-ANFIS, and MPC controllers amid voltage 

variations in the microgrid.  

From Table 4.3, the GA-ANFIS controller recorded the best performance, followed by the 

MPC controller. The GA-ANFIS controller has a rise time of 0.10 𝑠, settling time of 

0.14 𝑠, and overshoot of 3.54% compared to the 0.26 𝑠,  0.46 𝑠, and 7.6%, respectively, 

realized with the SSR-P&O controller. 
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Table 4.3: Summary of Simulink Case Study Model Results with Voltage Variations 

Voltage 

Variation 
SSR-P&O PID  GA-ANFIS MPC  

  𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝑀𝑝 

(𝑉) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) (𝑠) (𝑠) (%) 

1 0.2 0.4 7.5 0.3 0.8 0.0 0.1 0.2 3.5 6.0 7.0 0.0 

5 0.3 0.5 7.0 0.4 0.7 0.0 0.1 0.2 3.5 6.5 6.8 0.0 

10 0.3 0.5 8.0 0.3 0.8 0.0 0.1 0.1 3.6 7.0 7.2 0.0 

15 0.2 0.4 7.5 0.4 0.7 0.0 0.1 0.1 3.5 6.0 7.1 0.0 

20 0.3 0.5 8.0 0.4 0.8 0.0 0.1 0.1 3.6 6.5 7.0 0.0 

Avg. 0.26 0.46 7.60 0.36 0.76 0.00 0.10 0.14 3.54 6.40 7.00 0.00 

The MPC controller recorded a rise time of  6.40 𝑠, settling time of 7.00 𝑠, and overshoot 

of 0.00% compared to the 0.36 𝑠, 0.76 𝑠, and 0.00%, respectively, realized with the PID 

controller. However, the increased computation time of the MPC controller is notable in 

terms of a higher rise time and settling times than both the PID controller and the GA-

ANFIS controller. The MPC controller responds better than the GA-ANFIS controller 

regarding reduced overshoot in voltage regulation. However, the GA-ANFIS controller 

responds better than the MPC controller regarding reduced rise and settling times. 

The results obtained in this study with GA-ANFIS were also compared to those published 

in literature by Sibtain et al. (Sibtain et al., 2021), who proposed a Genetic Algorithm 

optimized fractional order PID (GA-FOPID) controller for PV-wind grid-connected 

system. The PV-wind modeling used a multi-control approach to obtain a 100 𝑘𝑊 grid-

tied power system contrary to this study, which is specific to a 10 𝑘𝑊 off-grid PV-wind 

microgrid. In one of the operating points reported, the GA-FOPID recorded power 

tracking performance with a settling time of 0.034 𝑠 and overshoot of 0.0% and voltage 

tracking performance with a rise time of  0.025 𝑠, settling time of 0.05 𝑠 and overshoot 

of 8.0%. The results proved the positive contributions of the GA algorithm. 
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By comparing the results obtained between the Transfer Function model and the Simulink 

case study model using the developed control algorithms, it was observed that even with 

changes in the plant model, there was no significant impact on the control system 

performance of the GA-ANFIS and the MPC controller. However, the SSR-P&O 

controller depicted degraded transient performance due to its struggles in handling 

nonlinearities. The GA-ANFIS’s superior performance is attributed to the training of the 

ANFIS and its optimization with GA, which injected the right level of intelligence to the 

controller, thereby improving its time domain transient response characteristics and 

tolerance to changes in microgrid plant nonlinear dynamics.  

The MPC controller utilizes the model-based prediction over the prediction horizon. In 

addition, it utilizes the Kalman state estimator to act as an observer to estimate any non-

measurable states of the microgrid system during the dynamic behavior of the microgrid 

system. Therefore, the ability of GA-ANFIS and MPC to work for the voltage regulation 

and BESS charging/discharging control in the microgrid system despite non-linearities 

and other dynamic changes in its operating conditions has been verified. However, the 

MPC controller requires an accurate mathematical model of the microgrid, contrary to the 

GA-ANFIS controller, which can substitute model inefficacies with the accuracy and 

dependability of the training and testing data. 

4.4.4 Impact of Implementation of the Designed GA-ANFIS-MPC Controller on a 

Practical Microgrid 

The results obtained with the Simulink case study model using the developed control 

algorithms have been taken to emulate a practical microgrid. The practical case study 

model successfully proved the positive contributions of the GA algorithm to the ANFIS 

to create the GA-ANFIS hybrid controller. The GA-ANFIS controller introduces some 

levels of overshoot and increased computation time in a practical microgrid compared 

with the conventional controllers like the SSR-P&O and PID controllers.  However, the 

GA-ANFIS controller compensates the challenges of a practical microgrid such as power 

quality issues in terms of voltage variations and other disturbances/inefficacies with the 
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accuracy, dependability and the intelligence. This is owing to its ability to learn from the 

PV-Wind generation data and other data sets generated from the simulations conducted.  

The results also proved the strength of the MPC controller in dealing with the microgrid 

BESS charging/discharging dynamics. The main impacts of deploying the designed MPC 

controller in a practical microgrid are the increased computation time and burden, the need 

for linear conditions to prevail in the microgrid, and its lack of learning ability. Both GA-

ANFIS and MPC controllers also require more powerful computers and hardware for 

execution, leading to increased complexity and cost of the microgrid system.   
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

This Chapter presents the main conclusions drawn from the study undertaken alongside 

the recommendations entailing technical and industrial extensions of the work. The first 

section 5.1 concludes that the first objective of developing a PV-wind microgrid was 

successfully achieved as was the case with the second objective of designing the primary 

GA-ANFIS. It also confirms that the third objective of designing the secondary MPC 

controller and the fourth objective of validating the GA-ANFIS-MPC controller were 

successfully achieved. The last section 5.2 outlines the recommendations stemming from 

the study undertaken. 

5.1 Conclusions 

5.1.1. Conclusion from the Performance of the Baseline Controllers 

The PID controller and SSR-P&O controller were used to validate the performance of the 

GA-ANFIS and MPC controllers on a TF microgrid model and the SIMULINK case study 

model by tracking the desired voltage outputs. This research section has found that the 

GA-ANFIS approach and the MPC controller provided the best performance in terms of 

rise time, settling time and overshoot compared to the conventional PID and SSR-P&O 

controller. The SSR-P&O and the PID controllers depicted serious struggles in the 

presence of non-linearities which led to increased settling times and overshoots compared 

with the GA-ANFIS and the MPC controllers.  

5.1.2 Conclusions from the GA-ANFIS primary Controller Performance 

From the comparison made between the performance of the GA-ANFIS approach to that 

of the SSR-P&O and PID, it has been concluded that the GA-ANFIS is better than the 

SSR-P&O and PID. The conclusion is corroborated by the fact that the GA-ANFIS 
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controller recorded a lower rise time, settling time and overshoot compared with the SSR-

P&O and PID controller.   

For instance, the GA-ANFIS registered a settling time of 0.15 𝑠, and overshoot of 

3.5% compared to the 0.45 𝑠 and 7.5%  for the SSR-P&O controller and, 0.76 𝑠 

and 8.0% for the PID controller respectively. The GA-ANFIS controller also significantly 

reduced the microgrid’s voltage and current distortions. The results verified the 

functionality of the hybrid PV-Wind interleaved model and the GA-ANFIS controller as 

meeting all the specifications of the voltage regulation in the microgrid system.  

5.1.3 Conclusion from the Results Obtained with the MPC Controller 

The MPC controller turned out to be a successful secondary controller to the designed 

microgrid. The ability of the MPC controller to provide improved BESS charging and 

discharging has been proven according to the results and the performance obtained. For 

example, the MPC controller when applied to microgird case study for BESS 

charging/discharging, has been able to achieve a rise time of  6.00 𝑠 and overshoot of 

2.35% compared to the 0.36𝑠 and 8.00%, respectively, obtained with the PID controller.    

At the same time, the increased computation time of the MPC controller is prevalent in 

terms of a higher rise time and settling times than both the SSR-P&O and PID controller. 

This notwithstanding, the MPC controller has been suggested as a complementary 

secondary controller in the microgrid. It helps to regulate the microgrid voltage during 

utilization of the BESS by dealing with the dynamics of BESS charging/discharging.  

5.1.4 Overall Conclusions from the Deployment of the Designed GA-ANFIS-MPC 

Controller 

The first specific objective of developing a microgrid model produced a working model 

that allowed for testing the designed GA-ANFIS-MPC controller. The second specific 

objective of designing the GA-ANFIS primary controller was successfully achieved as 
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has been proven from the performance of the GA-ANFIS controller. The GA-ANFIS 

controller while regulating the generation voltage, recorded the best performance 

compared with the SSR-P&O and the PID controllers, the baseline controllers.  The SSR-

P&O and PID controllers depicted degraded transient performance due to their struggles 

in handling nonlinearities. The GA-ANFIS’s superior performance is attributed to the 

training of the ANFIS and its optimization with GA, which injected the right level of 

intelligence into the controller.  

The MPC controller utilizes the model-based prediction to anticipate changes in the 

microgrid dynamic conditions and regulate the voltage accordingly. The MPC controller 

on the other hand emerged as the best controller compared with the SSR-P&O and the 

PID controllers to tackle the BESS charging and discharging, which is a highly non-linear 

process with challenging dynamics. However, the MPC controller showed an increased 

computation time and a higher rise time and settling times than the PID controller and the 

GA-ANFIS controller. The MPC controller is seen to have a better response than the GA-

ANFIS controller regarding reduced overshoot in voltage regulation. However, the GA-

ANFIS controller responds better than the MPC controller regarding reduced rise and 

settling times.  The results obtained with the Transfer Function model and the Simulink 

case study model using the developed control algorithms proved the positive contributions 

of the GA algorithm to the ANFIS to create the GA-ANFIS hybrid controller. In addition, 

the results also proved the strength of the MPC controller in dealing with the microgrid 

BESS charging/discharging dynamics. The main shortcomings of the MPC controller are 

the increased computation time and burden, the need for an accurate mathematical model 

of the microgrid, and the lack of learning ability. 

On the contrary, the GA-ANFIS controller substituted model inefficacies with the 

accuracy and dependability of the training and testing data used in the study. The GA-

ANFIS controller also injected the intelligence into the Multi-level Microgrid Control 

System (MMCS) owing to its ability to learn from the PV-Wind generation data and other 

data sets generated from the simulations conducted.  
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Lastly, the GA-ANFIS controller does not need an accurate mathematical model and 

works comfortably in a non-linearity presence. Thus, the overall objective of this study to 

develop an MMCS for a Photovoltaic-Wind Hybrid generation system based on the GA-

ANFIS-MPC controller has been achieved. Therefore, this study has proven the ability of 

the GA-ANFIS and MPC controller, called the GA-ANFIS-MPC MCS controller, to work 

for the voltage regulation and BESS charging/discharging control in the microgrid system.  

5.2 Recommendations  

This study has developed a 10𝑘𝑊 Photovoltaic-Wind microgrid system in 

MATLAB/SIMULINK environment and incorporated the designed GA-ANFIS-MPC 

MCS to solve voltage regulation problems in a microgrid.  In general, power quality in a 

microgrid is calculated in terms of the disturbances, i.e., transients, voltage sags and 

swells, over-voltages and under-voltages, outage, harmonic distortion, voltage notching, 

flicker, and electrical noise. This study used the microgrid voltage to measure power 

quality and was regulated, tracked, and kept within the specified limits using the designed 

GA-ANFIS-MPC controller.  The study’s limitations are that the GA-ANFIS-MPC 

controller was applied to an off-grid microgrid and that no micro-hydroelectric power 

sources were incorporated into the microgrid model. Thus, the impact of the connection 

of the microgrid to the grid or the addition of micro-hydroelectric power sources on the 

controller performance has not been investigated. 

Moreover, the Transfer Function microgrid model is limited to the small-signal-based 

pole-zero cancellation to simulate a nearly linear microgrid. Although frequency 

influences the microgrid's performance, it is beyond the scope of the study undertaken. It 

has been assumed to have been regulated by the inverter at 50Hz on the AC side. 

Frequency regulation and the extension of the controller to other power grids such as mini-

grids, is proposed as future work since the controller specifications will have to be 

adjusted or scaled accordingly. The deployment of the developed GA-ANFIS-MPC 

controller on an actual microgrid in real-time is also recommended as future work.  
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APPENDICES 

Appendix I: Tuning PID Controller using the Ziegler-Nichols Method 

The Ziegler-Nichols (ZN) method is a conventional PID tuning method widely accepted 

as the standard for the design of various controllers. Ziegler-Nichols presented two 

methods: The experimental step response method and the ultimate cycle method. This 

thesis used the ultimate cycle method in the PID controller tuning.  

The procedure is as follows: First, the derivative time (𝑇𝐷) is set to zero, and the integral 

time 𝑇𝐼 set to infinity. This is used to obtain the initial gains of the PI(D) controller. The 

critical gain (𝐾𝑢) and periodic oscillations (𝑃𝑢) are determined using Routh-Hurwitz 

criteria. From the Routh-Hurwitz rows, 𝐾𝑢 and 𝑃𝑢 are determined by equating the rows 

containing "𝑠" and "𝑠2" to zero, respectively. Next, the PID gains of  𝐾𝑃,  𝐾𝐼, and  𝐾𝐷 are 

obtained using relations presented in Table A1.1, and the formulas   𝐾𝑃=0.6× 𝐾𝑢,  𝐾𝐼 =

  𝐾𝑃

𝑇𝐼
 and    𝐾𝐷 = 𝐾𝑃𝑇𝐷 , with the critical period,  𝑇𝑐 =

2𝜋

𝜔
.  A proportional controller will 

have the effect of reducing the rise time and will reduce but never eliminate the steady-

state error. An integral control will eliminate the steady-state error for a constant or step 

input but may make the transient response slower. A derivative control will increase the 

system stability, reducing the overshoot and improving the transient response. 

Table A1.1: ZN PID Tuning Parameters 

Control 

Type 

𝑲𝑷 𝑻𝑰 𝑻𝑫 

P 0.5𝐾𝑢 infinity 0 

PI 0.45𝐾𝑢 (0.833𝑇𝑐) 0 

PID 0.6𝐾𝑢 0 0.125𝑇𝑐 
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Appendix II: The Consolidated Microgrid Model 

The Consolidated Microgrid Model (Figure A2.1) was obtained by integrating the 

individual models for the Solar PV system, Wind turbine system, IBCs, Two-parallel 

Inverters, the BESS, and the Load Model. 
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Figure A2.1: Combined Simulink Model of the Developed Microgrid with Case Study 
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Appendix III: Selected MATLAB Codes  

Figure A3.1 shows the MATLAB functions and scripts code snippet that was used for 

transforming the continuous-time state space of the microgrid into the discrete-time state-

space model based on a Zero-Order Hold (ZOH) with appropriate sample times as given 

in.  

h = tf([1000, 56080], [1 163 5970 56080]); % define tf object without 

delay 

Ts = 0.2;% specify a sample time of 0.2 seconds 

hd1 = c2d(h, Ts); % Obtain the discrete-time transfer function  

h = tf([1000, 56080], [1 163 5970 56080], 'IODelay',0.25); % define tf 

object with delay of 𝐻−0.25𝐻 

hd2 = c2d(h, Ts); % Obtain the discrete time transfer function without 

delay 

Figure A3.1: Code for Continuous-Time State Space to Discrete-Time State Space 

Conversion 

The discrete-time state-space model has been obtained directly from the continuous-time 

transfer function based on ZOH with a sample time, 𝑇𝑠 of 0.2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and sampling 

instant 𝑘 using the MATLAB script as given in Figure A3.2. 

  



225 

microgridplantTF = tf([1000, 56080], [1 163 5970 56080]) % define and 

display tf object 

microgridplantCSS = ss(microgridplantTF);% transfer function to 

continuous state space 

Ts = 0.2; % specify a sample time of 0.2 seconds 

microgridplantDSS = c2d(microgridplantCSS,Ts)     % convert to discrete-

time state space, using ZOH 

Figure A3.2: Code for Continuous-time TF to Discrete-time State Space Conversion 
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Appendix IV: Data Used in the Study 

Table A4.1, A4.2 and A4.3, respectively, show part of the raw Typical Metrological Year 

(TMY) solar-wind data for the years 2017, 2018 and 2019 that was used to prepare the 

final GA-ANFIS data applied in the study.   

Table A4.1: Part of the Raw TMY Solar-Wind Data for Year 2017 

Source Location IDCity State Country Latitude Longitude

NSRDB 1982496 - - - -1.11 37.02

Year Month Day Hour Minute TemperatureWind Speed

2017 1 1 0 30 17.5 0.7

2017 1 1 1 30 17.3 0.7

2017 1 1 2 30 17.2 0.7

2017 1 1 3 30 16.2 1.9

2017 1 1 4 30 15.9 1.9

2017 1 1 5 30 15.7 1.9

2017 1 1 6 30 16.7 2.7

2017 1 1 7 30 19.1 3.9

2017 1 1 8 30 21.7 4.7

2017 1 1 9 30 23.8 5

2017 1 1 10 30 25.6 5.1

2017 1 1 11 30 26.9 5.1

2017 1 1 12 30 27.6 5.1

2017 1 1 13 30 27.8 5.1

2017 1 1 14 30 27.5 5

2017 1 1 15 30 26.7 4.9

2017 1 1 16 30 25.3 4.7

2017 1 1 17 30 23.4 4

2017 1 1 18 30 21.5 3.3

2017 1 1 19 30 20.4 3

2017 1 1 20 30 19.6 2.7

2017 1 1 21 30 19 2.4

2017 1 1 22 30 18.4 2.1

2017 1 1 23 30 17.9 1.7

2017 1 2 0 30 17.4 1.5

2017 1 2 1 30 17 1.5

2017 1 2 2 30 16.9 1.5

2017 1 2 3 30 16.3 1.5

2017 1 2 4 30 15.9 1.5

2017 1 2 5 30 15.7 1.6

2017 1 2 6 30 16.9 2.5

2017 1 2 7 30 19.5 4

2017 1 2 8 30 22 4.8

2017 1 2 9 30 24.1 5

2017 1 2 10 30 25.9 4.9

2017 1 2 11 30 27.4 4.9

2017 1 2 12 30 28.4 4.9

2017 1 2 13 30 28.6 4.9

2017 1 2 14 30 28.3 5

2017 1 2 15 30 27.5 4.9

2017 1 2 16 30 26.1 4.8

2017 1 2 17 30 24.1 4.1

2017 1 2 18 30 22 3.2

2017 1 2 19 30 20.6 3

2017 1 2 20 30 19.5 2.8

2017 1 2 21 30 18.4 2.3

2017 1 2 22 30 17.4 1.9

2017 1 2 23 30 16.6 1.6

2017 1 3 0 30 16 1.4

2017 1 3 1 30 15.5 1.4

2017 1 3 2 30 15.3 1.3

2017 1 3 3 30 14.7 1.4

2017 1 3 4 30 14.3 1.4

2017 1 3 5 30 14.1 1.5

2017 1 3 6 30 15.9 2.3

2017 1 3 7 30 19.4 3.9

2017 1 3 8 30 22.3 4.9  

  



227 

Table A4.2: Part of the Raw TMY Solar-Wind Data for Year 2018 

Source Location IDCity State Country Latitude Longitude

NSRDB 1982496 - - - -1.11 37.02

Year Month Day Hour Minute TemperatureWind Speed

2018 1 1 0 30 17.3 2.6

2018 1 1 1 30 17 2.5

2018 1 1 2 30 16.9 2.5

2018 1 1 3 30 16.5 0.8

2018 1 1 4 30 16.1 0.9

2018 1 1 5 30 15.8 1

2018 1 1 6 30 17.3 1.1

2018 1 1 7 30 20.6 1.3

2018 1 1 8 30 23.6 1.5

2018 1 1 9 30 26.3 1.6

2018 1 1 10 30 28.6 1.6

2018 1 1 11 30 30.3 1.8

2018 1 1 12 30 31.4 2

2018 1 1 13 30 31.8 2.3

2018 1 1 14 30 31.5 2.6

2018 1 1 15 30 30.5 2.7

2018 1 1 16 30 28.7 2.7

2018 1 1 17 30 26.4 2.3

2018 1 1 18 30 24.2 2.1

2018 1 1 19 30 22.8 2.1

2018 1 1 20 30 21.7 1.6

2018 1 1 21 30 20.7 1.1

2018 1 1 22 30 19.6 1

2018 1 1 23 30 18.8 0.8

2018 1 2 0 30 18.3 0.8

2018 1 2 1 30 17.9 0.8

2018 1 2 2 30 17.7 0.8

2018 1 2 3 30 17 0.8

2018 1 2 4 30 16.6 0.8

2018 1 2 5 30 16.2 0.8

2018 1 2 6 30 17.4 0.9

2018 1 2 7 30 20.3 0.8

2018 1 2 8 30 23.2 0.7

2018 1 2 9 30 25.7 0.5

2018 1 2 10 30 27.6 0.4

2018 1 2 11 30 28.9 0.6

2018 1 2 12 30 29.7 0.7

2018 1 2 13 30 29.9 0.8

2018 1 2 14 30 29.2 0.8

2018 1 2 15 30 27.9 0.9

2018 1 2 16 30 26.3 0.8

2018 1 2 17 30 24.6 0.6

2018 1 2 18 30 23.2 0.5

2018 1 2 19 30 22.3 0.5

2018 1 2 20 30 21.6 0.6

2018 1 2 21 30 21 0.7

2018 1 2 22 30 20.4 0.8

2018 1 2 23 30 19.8 0.7

2018 1 3 0 30 19.3 0.6

2018 1 3 1 30 18.9 0.5

2018 1 3 2 30 18.6 0.4

2018 1 3 3 30 18.1 0.5

2018 1 3 4 30 17.9 0.5

2018 1 3 5 30 17.8 0.4

2018 1 3 6 30 18.2 0.5

2018 1 3 7 30 19.7 0.9

2018 1 3 8 30 21.7 1.4

2018 1 3 9 30 23.8 1.7

2018 1 3 10 30 25.7 1.8

2018 1 3 11 30 27.1 2

2018 1 3 12 30 27.7 2.2

2018 1 3 13 30 27.6 2.4

2018 1 3 14 30 27.2 2.5

2018 1 3 15 30 26.3 2.5

2018 1 3 16 30 25 2.3

2018 1 3 17 30 23.4 1.7

2018 1 3 18 30 21.9 1.2

2018 1 3 19 30 21 1.1

2018 1 3 20 30 20.2 1.2

2018 1 3 21 30 19.6 1.2

2018 1 3 22 30 19.1 1.2

2018 1 3 23 30 18.7 1.2  
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Table A4.3: Part of the Raw TMY Solar-Wind Data for Year 2019 

Source Location IDCity State Latitude Longitude

NSRDB 1982496 - - -1.11 37.02

Year Month Day Hour TemperatureWind Speed

2019 1 1 0 20.6125 3.016666667

0.858854 0.125694444

1 2 20.87917 2.8125

2019 1 3 0 16.3 1.4

2019 1 3 1 15.8 1.4

2019 1 3 2 15.6 1.4

2019 1 3 3 15.1 1.5

2019 1 3 4 14.7 1.5

2019 1 3 5 14.5 1.5

2019 1 3 6 16.3 2.2

2019 1 3 7 19.8 3.7

2019 1 3 8 22.5 4.7

2019 1 3 9 24.4 5

2019 1 3 10 25.9 4.9

2019 1 3 11 27.1 4.8

2019 1 3 12 27.8 4.9

2019 1 3 13 27.9 4.9

2019 1 3 14 27.4 4.9

2019 1 3 15 26.3 4.9

2019 1 3 16 24.8 4.7

2019 1 3 17 23 4.2

2019 1 3 18 21.4 3.6

2019 1 3 19 20.4 3.2

2019 1 3 20 19.8 2.8

2019 1 3 21 19.5 2.5

2019 1 3 22 19.3 2.3

2019 1 3 23 19.1 2.1  

Table A4.4 shows part of the raw consolidated monthly TMY solar-wind data for the years 

2017, 2018 and 2019 applied in the GA-ANFIS data set creation.   
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Table A4.4: Part of the Raw Typical Metrological Year (TMY) Solar-Wind Data 

] 

The full dataset used in this study is  freely and publicly available at 

https://nsrdb.nrel.gov/data-viewer as well as in the System Advisor Model (SAM) version 

Variable Time Mean Min Max Sum St Dev Avg Daily MinAvg Daily Max

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-

v1-0-0-tmy_60_tmy.csv:Beam irradiance - 

DNI (W/m2) Jan 297.423 0 1023 221283 405.381 0 932.613

Feb 294.841 0 1031 198133 395.893 0 964.226

Mar 270.216 0 1014 201041 374.424 0 943.936

Apr 198.49 0 990 142913 327.4 0 850.871

May 139.972 0 969 104139 278.157 0 725.161

Jun 86.5764 0 937 62335 227.373 0 543.742

Jul 77.4207 0 958 57601 206.493 0 568.3

Aug 100.388 0 966 74689 245.07 0 604.355

Sep 177.644 0 1018 127904 332.396 0 764

Oct 161.21 0 1002 119940 311.25 0 796.871

Nov 164.065 0 1010 118127 301.366 0 782.774

Dec 255.055 0 1028 189761 377.355 0 928.193

Total 184.688 0 1031 1.62E+06 329.853 0 778.745

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-

v1-0-0-tmy_60_tmy.csv:Diffuse irradiance - 

DHI (W/m2) Jan 68.1855 0 543 50730 104.976 0 287.065

Feb 80.619 0 573 54176 123.006 0 331.903

Mar 84.332 0 553 62743 124.942 0 389.71

Apr 97.2292 0 553 70005 144.909 0 431.935

May 94.5806 0 509 70368 143.341 0 428.355

Jun 102.504 0 510 73803 147.997 0 449.29

Jul 99.5914 0 537 74096 146.124 0 436.935

Aug 104.977 0 545 78103 156.838 0 482.419

Sep 97.3569 0 556 70097 149.616 0 454.193

Oct 99.2016 0 562 73806 147.333 0 454.645

Nov 107.435 0 533 77353 160.029 0 454.871

Dec 81.7742 0 549 60840 129.03 0 406.484

Total 93.1644 0 573 816120 141.162 0 418.918

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-

v1-0-0-tmy_60_tmy.csv:Global irradiance - 

GHI (W/m2) Jan 278.089 0 1079 206898 371.477 0 979.193

Feb 298.85 0 1094 200827 389.335 0 1054.81

Mar 292.2 0 1111 217397 384.27 0 1044.42

Apr 249.696 0 1065 179781 343.688 0 948.516

May 200.095 0 1014 148871 297.116 0 831.548

Jun 166.865 0 951 120143 251.156 0 709

Jul 155.563 0 958 115739 240.213 0 698.387

Aug 182.796 0 1036 136000 280.119 0 806.548

Sep 239.011 0 1097 172088 344.909 0 940.742

Oct 228.915 0 1092 170313 335.363 0 931.548

Nov 226.258 0 1040 162906 317.737 0 900.871

Dec 259.816 0 1047 193303 350.099 0 959.161

Total 231.081 0 1111 2.02E+06 331.586 0 898.658

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-

v1-0-0-tmy_60_tmy.csv:Plane of array 

irradiance - POA (W/m2) Jan nan 2.00E+09 -2.00E+09 nan nan 0 0

Feb nan 2.00E+09 -2.00E+09 nan nan 0 0

Mar nan 2.00E+09 -2.00E+09 nan nan 0 0

Apr nan 2.00E+09 -2.00E+09 nan nan 0 0

May nan 2.00E+09 -2.00E+09 nan nan 0 0

Jun nan 2.00E+09 -2.00E+09 nan nan 0 0

Jul nan 2.00E+09 -2.00E+09 nan nan 0 0

Aug nan 2.00E+09 -2.00E+09 nan nan 0 0

Sep nan 2.00E+09 -2.00E+09 nan nan 0 0

Oct nan 2.00E+09 -2.00E+09 nan nan 0 0

Nov nan 2.00E+09 -2.00E+09 nan nan 0 0

Dec nan 2.00E+09 -2.00E+09 nan nan 0 0

Total nan 2.00E+09 -2.00E+09 nan nan 2.00E+09 -2.00E+09

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Wind speed (m/s)Jan 2.9749 0.4 6.2 2213.3 1.3802 1.3129 4.6226

Feb 3.6257 0.7 6.3 2436.5 1.3818 1.6355 5.3968

Mar 2.9849 0.2 7.2 2220.8 1.3063 1.171 4.429

Apr 2.4306 0.3 4.7 1750 0.9587 1.1645 3.5129

May 2.0012 0.2 4.3 1488.9 0.9388 0.7258 3.0871

Jun 2.0615 0.2 5.2 1484.3 0.9423 0.7581 3.1194

Jul 2.1327 0.3 4.9 1586.7 1.0523 0.6839 3.4355

Aug 2.3946 0.2 4.7 1781.6 0.9815 0.9774 3.4806

Sep 2.2789 0.2 5.1 1640.8 1.0771 0.6903 3.6097

Oct 3.2875 0.2 5.8 2445.9 1.1122 1.6 4.5742

Nov 3.3139 0.8 5.5 2386 1.0304 1.7452 4.5871

Dec 3.2017 0.8 6.2 2382.1 1.1514 1.6548 4.629

Total 2.7188 0.2 7.2 23816.9 1.2425 1.1745 4.0318

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Wind direction (deg)Jan 58.9503 4 357 43859 26.9948 29.3226 94.1613

Feb 68.1726 14 93 45812 13.8348 44.2258 80.871

Mar 80.914 19 316 60200 26.2854 59.6129 106.226

Apr 103.519 3 350 74534 41.5647 74.5484 145

May 123.648 33 321 91994 29.6103 96.7742 164.032

Jun 132.75 52 284 95580 27.3143 103.774 162.452

Jul 161.804 85 254 120382 36.4318 120.129 197.452

Aug 137.254 30 349 102117 41.432 100.871 189.419

Sep 128.635 26 344 92617 46.7104 86.2903 196.065

Oct 102.407 46 303 76191 21.2212 85.1613 127.71

Nov 80.7153 35 143 58115 20.1705 66.7419 93

Dec 67.9973 27 86 50590 10.933 53 78.6452

Total 104.109 3 357 911991 43.9546 77.1014 137.019

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Dry bulb temp (C)Jan 20.8724 13.6 29.9 15529.1 4.603 15.1871 28.0806

Feb 22.3991 13.8 32.5 15052.2 4.864 16.0194 30.0419

Mar 21.5778 13.8 30.8 16053.9 4.3475 16.429 28.371

Apr 21.9946 15.6 30.7 15836.1 4.2403 17.1452 28.7

May 20.3008 14.2 30.6 15103.8 4.0244 15.7613 26.6806

Jun 19.9822 12.8 29.2 14387.2 4.3067 15.1161 26.6839

Jul 18.9331 11 27.9 14086.2 4.2872 13.7935 25.7226

Aug 19.9339 12.4 29.8 14830.8 4.6677 14.2806 27.1129

Sep 20.9374 13.3 32.7 15074.9 5.073 14.8839 28.3516

Oct 21.4876 13.7 31.5 15986.8 4.8696 15.8097 29.1806

Nov 20.7072 14 28.8 14909.2 3.9296 16.1613 27.1968

Dec 20.6122 13.3 28.4 15335.5 4.038 15.8581 27.1258

Total 20.7975 11 32.7 182186 4.543 15.549 27.7688

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Wet bulb temp (C)Jan 15.8129 11.1781 19.0094 11764.8 1.5256 13.7924 17.5111

Feb 16.1672 10.675 18.7828 10864.4 1.3874 14.0745 17.6982

Mar 17.0529 12.8062 19.4375 12687.3 1.1903 15.6544 18.3314

Apr 17.5421 14.9422 19.5562 12630.3 0.8569 16.3877 18.4797

May 16.6357 13.3844 19.6359 12376.9 1.2502 15.0338 18.1556

Jun 15.777 11.5281 18.1875 11359.4 1.3608 14.2408 17.2325

Jul 14.7673 9.2031 17.6625 10986.9 1.4925 12.9157 16.5367

Aug 15.0023 11.15 17.9922 11161.7 1.395 13.2219 16.7006

Sep 15.255 11.725 18.7109 10983.6 1.4373 13.5205 16.827

Oct 15.9781 12.6844 18.4344 11887.7 1.1892 14.5481 17.3883

Nov 17.0654 13.4531 18.9562 12287.1 1.0296 15.5678 18.3248

Dec 16.5978 12.5969 18.6437 12348.8 1.1259 15.1492 18.0606

Total 16.1346 9.2031 19.6359 141339 1.5323 14.5244 17.6105

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Dew point temp (C)Jan 13.0938 7.3 17.4 9741.8 2.0465 11.2194 15.0903

Feb 12.8244 6.5 16.6 8618 2.0441 10.4677 14.7452

Mar 14.7965 7.4 18.6 11008.6 1.8495 12.6774 16.5774

Apr 15.3683 8.9 18.5 11065.2 1.7896 13.0032 17.3129

May 14.834 11.1 17.8 11036.5 1.189 13.5484 16.1903

Jun 13.5567 8.4 16.7 9760.8 1.6247 12 15.2065

Jul 12.4535 6.2 15.5 9265.4 1.5941 11.0581 14.1129

Aug 12.2379 6.4 16.7 9105 1.7473 10.3613 14.2355

Sep 11.9942 1.1 17.1 8635.8 2.5966 9.4097 14.4129

Oct 12.9642 4.7 17.4 9645.4 2.3121 10.271 15.5355

Nov 15.2971 10.4 18 11013.9 1.3322 13.7645 16.7968

Dec 14.5918 10.5 17.4 10856.3 1.338 13.1226 15.9032

Total 13.6704 1.1 18.6 119753 2.1806 11.7578 15.5307

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Relative humidity (%)Jan 65.0451 25.7 95.78 48393.5 20.8031 36.6106 89.3687

Feb 58.7894 19.82 95.68 39506.5 20.4264 31.0732 86.2361

Mar 69.2629 23.67 98.44 51531.6 21.279 39.4806 94.8319

Apr 70.1848 27.65 96.39 50533.1 21.8545 39.141 94.7577

May 73.7724 32.14 96.63 54886.7 18.7917 45.8613 94.51

Jun 70.061 28.94 96.59 50443.9 20.193 41.1626 93.2348

Jul 69.3722 28.71 96.07 51612.9 19.4795 41.1706 92.7223

Aug 65.2853 25.72 94.23 48572.2 21.193 36.2568 91.3758

Sep 61.7783 15.03 95.38 44480.3 22.7597 32.8477 90.0871

Oct 63.3885 20.32 95.1 47161.1 23.3572 32.3103 92.4281

Nov 74.3883 32.78 97.51 53559.6 19.8374 44.3819 95.1152

Dec 71.6228 34.86 98.97 53287.4 19.67 43.0258 94.0855

Total 67.8047 15.03 98.97 593969 21.3455 38.6502 92.4623

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Pressure (millibar)Jan 852.395 849 855 634182 1.3727 850.193 854.161

Feb 852.847 849 856 573113 1.4043 850.613 854.742

Mar 852.516 848 855 634272 1.3697 850.387 854.419

Apr 853.079 848 857 614217 1.5849 850.871 854.968

May 853.926 850 857 635321 1.4797 852 855.742

Jun 854.592 850 859 615306 1.7159 852.742 856.355

Jul 853.841 851 858 635258 1.3256 851.936 855.516

Aug 854.499 850 858 635747 1.4573 852.516 856.387

Sep 853.853 851 857 614774 1.4055 851.677 855.903

Oct 853.609 849 858 635085 1.5884 851.161 855.677

Nov 852.793 850 856 614011 1.3905 850.774 854.548

Dec 852.792 848 856 634477 1.541 850.645 854.484

Total 853.398 848 859 7.48E+06 1.6424 851.296 855.249

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Snow depth (cm)Jan nan 2.00E+09 -2.00E+09 nan nan 0 0

Feb nan 2.00E+09 -2.00E+09 nan nan 0 0

Mar nan 2.00E+09 -2.00E+09 nan nan 0 0

Apr nan 2.00E+09 -2.00E+09 nan nan 0 0

May nan 2.00E+09 -2.00E+09 nan nan 0 0

Jun nan 2.00E+09 -2.00E+09 nan nan 0 0

Jul nan 2.00E+09 -2.00E+09 nan nan 0 0

Aug nan 2.00E+09 -2.00E+09 nan nan 0 0

Sep nan 2.00E+09 -2.00E+09 nan nan 0 0

Oct nan 2.00E+09 -2.00E+09 nan nan 0 0

Nov nan 2.00E+09 -2.00E+09 nan nan 0 0

Dec nan 2.00E+09 -2.00E+09 nan nan 0 0

Total nan 2.00E+09 -2.00E+09 nan nan 2.00E+09 -2.00E+09

-1.123_37.0051_-1.123_37.0051_nsrdb-msg-v1-0-0-tmy_60_tmy.csv:Albedo (fraction)Jan 0.1639 0.16 0.17 121.95 0.0049 0.1635 0.1645

Feb 0.1664 0.14 0.18 111.84 0.0089 0.1645 0.1674

Mar 0.1548 0.14 0.17 115.2 0.0062 0.1532 0.1565

Apr 0.1633 0.15 0.17 117.6 0.0054 0.1616 0.1652

May 0.1494 0.14 0.16 111.12 0.008 0.1481 0.1506

Jun 0.1597 0.15 0.16 114.96 0.0018 0.1594 0.16

Jul 0.1645 0.16 0.18 122.4 0.0061 0.1635 0.1655

Aug 0.1558 0.15 0.16 115.95 0.0049 0.1558 0.1561

Sep 0.1583 0.15 0.17 113.94 0.0078 0.1565 0.159

Oct 0.1343 0.11 0.17 99.9 0.0123 0.1313 0.1377

Nov 0.1373 0.12 0.16 98.85 0.0154 0.1352 0.1394

Dec 0.168 0.16 0.17 125.01 0.004 0.1677 0.1681

Total 0.1562 0.11 0.18 1368.72 0.0132 0.155 0.1575

https://nsrdb.nrel.gov/data-viewer
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SAM 2018.11.11 provided freely by NREL (Blair et al., 2018). Figure A4.1 and Figure 

A4.2 show the monthly and annual solar data plots/profiles, year 2019 for the site Juja, 

Kiambu Kenya, whose data was used in influencing the GA-ANFIS training. 

 

Figure A4.1: The Monthly/Annual Solar Data Plots/Profiles, Year 2019 for the Study  

 

Figure A4.2: Consolidated Monthly/Annual Solar Data Profiles, Year 2019 for the 

Study  



231 

Table A4.5 shows a snapshot of the final data set that was used in training, testing and 

checking the GA-ANFIS training. 

Table A4.5: A Snapshot of The Final Data Set for Training, Testing and Checking 

the GA-ANFIS Training 

S/No. PV-Wind Power 

Generation Error

Change in 

Generation Error
GA-ANFIS Output PV-Wind Power 

Generation Error

Change in 

Generation Error
GA-ANFIS Output

1 0.765840265 -8.952168833 1.063124915 0.111857821 -0.24210155 0.806681277

2 0.851444421 7.798540328 0.624705481 0.468462209 -0.284805082 1.029699145

3 0.119367607 -5.002801386 1.339107756 0.902159321 -4.30043564 1.120573642

4 0.858573305 0.756128091 0.879162222 0.319962583 10.60142693 0.652600106

5 0.594417691 -8.860308668 0.578699721 0.550151686 -3.4649603 0.60627047

6 0.091687981 2.702521447 1.549352577 0.210383223 -10.30312698 1.630170305

7 0.261788326 -6.28126096 1.445305639 0.706191036 7.426679811 0.062269129

8 0.514068628 4.08309611 0.907757966 0.239789409 -2.921920821 1.460527214

9 0.900056425 5.014184333 1.027083892 0.475599629 -6.845180923 1.506923266

10 0.906995223 6.57601721 0.968623762 0.657132119 -2.546328142 1.313703391

11 0.148156297 -1.31064764 0.342774783 0.837449057 -10.69395508 0.16287526

12 0.912357215 -11.02873348 0.497056445 0.90173394 -9.752707746 0.432087453

13 0.899736931 -7.182110329 0.777023525 0.514382598 11.71434066 0.553338786

14 0.45625311 10.95344008 0.380305464 0.130306976 12.08756532 1.12155112

15 0.752263641 -9.211982497 1.393109508 0.140336365 1.99302777 0.225312677

16 0.133373158 8.634149903 0.321361078 0.242057759 -11.66584211 1.190025373

17 0.396455606 1.016074534 0.372770939 0.790274221 -7.028332296 0.176157072

18 0.860791394 13.14756999 0.281668278 0.239025248 -3.891297863 1.078699625

19 0.74467489 -11.17834849 0.375646091 0.765427737 8.511642065 0.815386995

20 0.901922881 -1.519025851 0.718902829 0.228913471 -12.8418089 1.285435343

21 0.616396257 -10.42370159 0.513318773

22 0.033568978 12.24029914 1.523576409

23 0.798181548 -13.12719306 0.709842196 0.873507806 -12.10986926 1.179811179

24 0.877953653 7.285127315 0.304946928 0.32898474 -8.771764219 1.491138925

25 0.638011046 8.408535347 1.493053598 0.184799535 3.951560086 1.470022132

26 0.712275723 9.770409692 1.616584824 0.236018826 6.14064322 0.551369037

27 0.69854452 -11.01245009 0.724135456 0.579081996 3.915268023 1.152930623

28 0.368693398 -2.655759799 0.183346719 0.444891518 -1.30052178 0.326386214

29 0.616149217 -6.363434324 0.425806748 0.330559937 1.245735646 0.050392561

30 0.160915487 7.951814726 0.674387746 0.78097891 -5.397498651 1.22772253

31 0.663683323 -1.817533572 0.981578522 0.550148246 6.484359387 0.825037019

32 0.029922876 10.88216125 0.432649384 0.516740192 -8.242692102 0.791871533

33 0.260307606 -8.43105375 0.994691097 0.862162044 4.949548984 1.492791693

34 0.043401107 -6.259222712 1.173506038 0.268688678 -8.386954373 1.00627997

35 0.091303874 -9.39321702 0.365882111 0.711768215 -3.485158193 1.019149543

36 0.774050359 -9.644183194 0.193739124 0.708505349 3.328891859 1.418079804

37 0.653138906 9.786243502 0.489515191 0.357619096 7.426027032 1.32905755

38 0.298073511 2.112171565 0.525984198 0.533752342 -11.10016713 0.951590501

39 0.893208726 1.321295349 0.699875154 0.071303032 11.37872823 0.301822075

40 0.032379316 -9.408697847 0.83796617 0.050713112 7.306385983 0.395887817

41 0.412419698 9.35532462 0.141101065 0.4989497 -0.350021741 1.46274469

42 0.35866495 3.234460984 0.433095687 0.732417196 -1.699747403 0.047312352

43 0.719585781 -3.949761906 1.321674128 0.877970043 -1.41023064 0.808337291

44 0.747487907 0.351112806 0.048213458 0.276025077 -0.827329309 0.963088539

45 0.175660248 -2.602087106 1.53260933 0.679702677 -4.503455697 0.546805719

46 0.460378532 -11.23688267 1.205045924 0.655098004 4.027161099 0.521135831

47 0.418851029 -6.892221931 0.806204807 0.162611735 4.447871897 0.231594387

48 0.60753423 -9.982048227 0.954566351 0.118997682 -0.091359075 0.488897744

49 0.666802941 -8.376443611 0.391517907

50 0.709405481 -6.89125807 0.757100566 0.122111836 -5.131738992 0.27707979

51 0.259463572 -2.192422669 1.58909609 0.534694241 0.225479368 1.614823072

52 0.638920516 -11.9341576 0.902229436 0.441227203 0.285446451 1.175945878

53 0.615792124 10.67197691 0.859874121 0.011187945 8.417134271 0.82577818

54 0.152855031 11.78686053 0.382130738 0.316895286 7.813032547 0.777295818

Training Data Set Checking Data Set-I

Testing  Data Set-I

Testing  Data Set-II
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of a photovoltaic-wind hybrid microgrid system using GA-ANFIS, Heliyon, 2023, 

Volume 9, Issue 4, April 2023, e14678, ISSN 2405-8440, 
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