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ABSTRACT 

Drought assessment is necessary for identifying adaptation and resilience measures 

for the livelihoods of the communities. There is therefore an urgent need for 

comprehensive research on drought impacts and adaptation strategies in the Upper 

Ewaso Ng'iro North Basin (UENB) in Kenya. The study assessed drought occurrence 

in the UENB aiming to provide insights into potential measures for safeguarding 

livelihoods in the region. This basin showcases varying regional characteristics, 

influenced by elements such as climate, environmental conditions, and human 

actions, all of which contribute to its multifaceted landscape and climatic fluctuations 

due to changes in elevation. This study assessed drought trends using the 

Standardized Precipitation Index (SPI) and the Standardized Precipitation 

Evapotranspiration Index (SPEI). The data used in the study were monthly rainfall 

and monthly temperature data for ten stations in the basin for the period 1981 to 2020, 

58 farmer surveys and key informant interviews. The results of SPI and SPEI 

demonstrated a 40% and 50% increase respectively in the severity of drought events 

in the UENB since 1999. Additionally, the study reveals that the SPI and SPEI 

indices differ in identifying temporal and spatial drought characteristics, with longer 

timescales showing improved accuracy. When modelling the indices, it was found 

that ANN performs well in the long term, and the accuracy decreases with a decrease 

in the time frame. Also, it performs better with SPEI than with SPI indicating a 

regression of 0.845 for SPI and 0.957 for SPEI. Farmer Surveys revealed that 

droughts affect the communities differently based on the geographical location. 

Farmers have encountered significant difficulties, with a noteworthy 45% 

experiencing total crop failure and 36% suffering substantial losses in livestock. 

Issues related to conflicts over water and grazing land have emerged as major 

concerns. Furthermore, a significant health issue has been the increased prevalence 

of malnutrition and the rise of pests and diseases affecting both crops and livestock. 

Different coping strategies have been employed: 50% of pastoralists have resorted to 

seasonal migration, while crop farmers have adapted by changing their crops (24%), 

and 30% have sought alternative employment opportunities. Despite the several 

adaptation strategies, they have proven inadequate. The study recommends 

integrating multiple drought indices for a comprehensive assessment. of drought in 

ASALS. The study also emphasizes on refurbishing existing water sources and 

implementing soil and water conservation strategies within the communities to 

alleviate the significant impact of limited access to water resources during drought. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Drought refers to an extended period of unusually dry conditions, characterized by 

precipitation levels falling below a specific threshold over a wide area and which 

persists for over a month (Integrated Drought Management Program (IDMP), 2022). 

Alternatively, it can be defined as significantly drier than typical conditions or as 

circumstances that restrict moisture availability to a potentially detrimental degree 

(World Meteorological Organization (WMO) and Global Water Partnership (GWP),  

2016) or as scenarios marked by an extended absence or substantial shortfall in 

rainfall (Zargar et al., 2011). Drought is further characterized by reduced rainfall, 

elevated temperatures, strong winds, low relative humidity, and various aspects of 

rainfall patterns such as its onset, duration, intensity, and distribution (Mishra & 

Singh, 2010; Van Loon, 2015). As a global crisis, drought is the most devastating 

natural catastrophe with adverse impacts on water resources systems, ecosystems, 

and human populations (Intergovernmental Panel on Climate Change (IPCC), 2014). 

According, IPCC Hoegh-Guldberg et al. (2018), globally, drought has frequently 

occurred in recent years. Drought-prone areas are becoming more vulnerable since 

the frequency and severity are increasing. Additionally, after 1970, droughts have 

become more intense and occur longer in drought prone areas like Africa. Drought 

occurrences are mainly due to increased water demand and climatic changes 

(Shamshirband et al., 2020). 

There are increased drought events in Africa due to climate change (Hoffmann, 2022; 

Mwangi et al., 2014; Okoro et al., 2014). For example, in 2010-2011, the Horn of 

Africa experienced one of the most extreme drought events that affected more than 

thirteen million people and increased food insecurity to the level of famine in the 

region (Dutra et al., 2013; Mwangi et al., 2014). African countries are the most 

vulnerable to drought impacts because at least 70% depend on rainfall as a water 

source for food production and livestock. Okoro et al. (2014) projected that there will 
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be a decrease in water availability and increased desertification due to reduced 

rainfall in dry seasons in Africa.  

Situated in East Africa, Kenya grapples with a rising frequency of drought 

occurrences, exacerbated by the fact that 80% of its land is categorized as Arid and 

Semi-Arid Land (ASAL), as noted by the Government of Kenya (GoK), 2012).  

Drought and climate variability have significantly affected the river basins in Kenya 

(R. Wambua et al., 2014). Additionally, human activities such as deforestation to 

expand cropland areas, grazing areas, residential and commercial land have 

contributed to climate variability in these river basins, further straining water 

resources(Gichuki, 2006; Wamucii et al., 2023). Various sectors of Kenya's economy 

are expected to be impacted by drought and climate change. Notably, the impact of 

drought will extend to the country's key agricultural sector, which serves as the 

primary source of foreign exchange earnings, primarily driven by the export of tea 

and horticultural products (Lanari, Schuler, Kohler, & Liniger, 2018). As a result, 

economic development in the country will continue to face impediments.  

Moreover, the Upper Ewaso Ng'iro River Basin (UENB), renowned for its thriving 

commercial horticultural farming conditions (Lanari et al., 2018), has played a 

pivotal role in enhancing the livelihoods of communities previously engaged in agro 

pastoralism, as noted by Ngigi et al. (2007). Horticultural farming has created 

employment opportunities, enhanced food security, and contributed to the area's 

infrastructure development. As a result, there has been an increase in population in 

the region (Kenya National Bureau of Statistics (KNBS) 2019a) that has resulted in 

a higher demand for limited natural resources, such as freshwater and land, driven by 

agricultural intensification (Lesrima et al., 2021). Consequently, the area has 

experienced environmental degradation, causing alterations in the hydrological cycle 

of the catchment, including changes in rainfall patterns, evaporation rates, and runoff 

in smaller catchments  (Mutiga et al., 2011). Additionally, the water quality has been 

affected by the pollution from agricultural runoff reducing the access to domestic 

water (Lanari et al., 2018).  
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Following the emergence of horticulture as a lucrative industry in the 1980s, 

agricultural activities have seen a notable increase in the upper areas of the Ewaso 

Ng'iro basin, leading to substantial population growth and heightened pressures on 

water and land resources (Mukhwana, 2016). Based on studies by Gannon et al. 

(2020), Lanari et al. (2018), and Lesrima et al. (2021), the increasing demand for 

water and pasture has resulted in perennial conflicts between different communities 

within the basin, contending over river water. Moreover, the country's economy will 

be significantly affected by drought due to the basin's contributions to the gross 

domestic product (GDP) through agricultural production, tourism, and forestry 

(Gichuki, 2006; Mutiga, Mavengano, Zhongbo, Woldai, & Becht, 2010). Therefore, 

there is an urgent need to establish sustainable approaches to help communities 

effectively adapt to and manage unforeseen climate changes, enabling them to 

embrace beneficial transformations. (Crossman, 2018; Soanes et al., 2021). 

To effectively manage and mitigate droughts, it is crucial to have early warning 

systems that rely on drought development information. Drought assessment, which 

uses drought indices and models, is crucial in monitoring droughts. Among the 

various drought indices available, the Standard Precipitation Index (SPI) and 

Standard Precipitation and Evapotranspiration Index (SPEI) are widely utilized 

(Mishra & Singh, 2010). SPI is favoured due to its minimal input requirements, while 

SPEI is preferred for its inclusion of potential evapotranspiration. This study used 

SPI and SPEI to characterize droughts in the basin. Physical and statistical models 

have been developed to predict future drought occurrences (Mishra & Desai, 2005). 

Statistical models, including time-series analysis, regression, and machine-learning 

techniques, are often preferred over physical models (Khan et al., 2020). Artificial 

Neural Networks (ANN), a machine learning method, is commonly favoured due to 

its simplicity in input requirements (Mulualem & Liou, 2020; Patil et al., 2020). The 

study will evaluate how ANN performs in modelling SPI and SPEI.  

1.2 Statement of the Problem 

Environmental deterioration in the Upper Ewaso Ng'iro North Basin (UENB) can be 

traced back to extensive alterations in land use, where natural forests and bushlands 
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have been replaced by plantation forests, cultivated fields, grazing lands, and 

residential developments (Gichuki, 2006). Moreover, the basin's agricultural and 

horticultural sectors, which significantly improve livelihoods, generate employment 

opportunities, develop infrastructure, and ensure food security, require substantial 

irrigation. Unfortunately, the intensified agricultural and horticultural practices have 

resulted in excessive water extraction during dry seasons, reducing river flows and 

causing environmental degradation. Climate change, the unreliability of rainfall, and 

the basin's position on the leeward side of Mt. Kenya have worsened dry periods and 

contributed to a decrease in agricultural output. 

There is a lack of comprehensive research information on the following: the impact 

of drought to the basin's communities’, development, and current drought conditions. 

In order to address this critical knowledge gap, it is crucial undertake comprehensive 

research initiatives that encompass assessments of the drought events, the socio-

economic and environmental impacts of drought, as well as the adaptive strategies 

employed by these communities to mitigate its effects and ensure sustainable 

development. Therefore, this study assessed the drought events, examined the 

impacts of droughts on the communities' livelihoods, and analysed the drought 

adaptation strategies employed by the communities in the basin. 

1.3 Objectives 

1.3.1 Main Objective 

The main objective of this study was to determine the drought occurrences, identify 

their impacts on the livelihood of the communities and the community adaptation 

strategies in the Upper Ewaso Ng’iro North River Basin (UENB). 

1.3.2 Specific Objectives 

The specific objectives of this study were to: 

1. Determine the trends of drought occurrences in the Upper Ewaso Ng’iro 

North River Basin (UENB) by using selected drought indices (DI) over the 

past 40 years. 
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2. Evaluate the trend of short-term, medium-term, and long-term drought 

conditions in the UENB using Artificial Neural Networks. 

3. Identify the impact of drought events on the livelihoods of rural communities 

in the UENB. 

4. Identify the drought adaptation and resilience strategies currently 

implemented by local communities in the UENB. 

1.4 1.4 Research Questions 

2. What are the historical drought trends in the past 40 years- from 1980-2020 

based on the selected drought indices in the Upper Ewaso Ng’iro North River 

Basin (UENB)?  

3. What is the trend of short-, medium- and long-term drought conditions as 

evaluated by Artificial Neural Networks? 

4. What is the impact of drought events on the livelihoods of rural communities 

in the basin? 

5. What are drought Adaptation and Resilience strategies currently implemented 

by local communities in the UENB? 

 1.5 Justification of the Study 

The Upper Ewaso Ng’iro North River Basin faces challenges of uneven resource 

distribution, particularly water, due to varying climatic zones and increased climatic 

changes. These factors result in uneven rainfall patterns and frequent drought 

incidents in the basin, leading to prolonged hardships for marginalized communities 

(Kimwatu et al., 2021b; Lesrima et al., 2021). It is imperative to develop efficient 

strategies for enhancing drought resilience and enabling transformative adaptation 

among these affected communities. However, formulation of such strategies 

necessitates a thorough grasp of timely, precise, and dependable information on 

drought characteristics in the region (Jun et al., 2011).  

By analysing drought characteristics in the UENB of between 1940 and 2020, this 

study will identify, classify, and quantify drought years in the Upper Ewaso Ng’iro 

North River Basin. Additionally, it will identify the impacts of drought events and 

the most preferred drought adaptation strategies employed by the local communities 
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of Kisima, Lekurruki, and Leparua. The information generated from this study will 

be utilized by government agencies, water resource managers, and Non-

Governmental Organizations (NGOs) to develop effective drought preparedness, 

mitigation, adaptation, and resilience strategies. Furthermore, there have been 

successful cases in Kenya where Artificial Neural Networks (ANN) have been 

utilized for drought forecasting (Kigumi, 2014; R. Wambua et al., 2014).  

The findings of this study offer vital information to improve the management of 

drought risks, water resources, and river basins. Through a better grasp of drought 

patterns and their impacts, this research outcomes will aid in formulating policies and 

strategies that foster sustainable use of water resources and bolster the resilience of 

communities in the Upper Ewaso Ng’iro River Basin. Additionally, it provides 

insights into the pros and cons of using the SPI and SPEI drought indices for 

monitoring drought occurrences, benefiting both future research and real-world 

applications. 

1.6 Scope and Limitations of the Study 

This study focused on monitoring drought in the Upper Ewaso Ng’iro North basin 

using monthly rainfall and temperature data from 10 meteorological stations over a 

40-year period, from 1980 to 2020. Specific regions within the basin were selected 

to examine the impacts of drought and the adaptation strategies: west Kisima in the 

semi-humid mountain region, North Lekurruki in the medium to low catchment 

region, and southeast Leparua Community in the arid areas. The impacts of drought 

were categorized into two main areas: household livelihoods, including income-

generating activities, and the social well-being of the communities.  

Due to limited data resources, the study was restricted to methods that do not require 

extensive data and resources. As a result, drought monitoring was based solely on 

rainfall and temperature events without considering climate change trends. The 

Thornthwaite method, which relies only on monthly mean temperatures, was used to 

calculate the Potential Evapotranspiration (PET). The limitations affected the 

comprehensiveness of the study by not incorporating long-term climate change 
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trends, which might influence the depth of determining drought trends and the impact 

analysis.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Drought Characteristics  

Drought is a prolonged period of abnormally dry weather characterized by 

insufficient precipitation falling below a specific threshold over a significant area, 

typically lasting more than a month. This phenomenon may also encompass elevated 

temperatures, wind, and reduced relative humidity as contributing factors (Barua, 

2010; Cook et al., 2014; Livneh & Hoerling, 2016; WMO, 2023). It can be further 

defined as either conceptual or operational. Operationally, it is defined scientifically 

by identifying the onset, severity and end of the drought period while conceptually 

as a non-analytic description such as “an arid year” (Mutiga et al., 2011). 

Operationally defined drought can be used to analyse the frequency of drought 

occurrence, how severe and the duration for a specific location (Mutiga et al., 2011). 

Droughts are categorized into four distinct types: meteorological, hydrological, 

agricultural, and socio-economic, with classification based on their characteristics 

and impacts, making it difficult to assess and manage droughts (WMO & GWP, 

2016). Meteorological drought arises from prolonged periods of dryness, limited 

precipitation, and extended high temperatures in a particular region (WMO & GWP, 

2016). Insufficient rainfall reduces infiltration, decreases runoff, and diminishes 

groundwater recharge. High temperatures associated with meteorological drought 

contribute to changes in wind patterns, below-average relative humidity, and 

increased evapotranspiration. 

Hydrological drought is characterized by reduced water availability in hydrological 

processes, resulting in decreased stream flow, lowered water levels in bodies of 

water, and diminished groundwater depth (Van Loon, 2015; WMO, 2023). 

Agricultural drought occurs when soil moisture levels decrease, leading to crop 

failure irrespective of surface water resources (García-león, Contreras, & Hunink, 

2019). Socio-economic drought encompasses both water supply and demand 

challenges and arises when the demand for economic resources surpasses the 
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available water supply within a particular basin (Kimwatu, Mundia, & Makokha, 

2021a). This drought often increases food prices, unemployment, and heightened 

migration. 

In addition to assessing drought, other crucial characteristics define droughts. The 

primary characteristics of drought include severity, duration, and intensity (IDMP, 

2022; WMO & GWP, 2016). Drought duration refers to the continuous period during 

which drought conditions persist. Drought intensity measures the magnitude or 

strength of the drought. In contrast, drought severity represents the cumulative 

occurrence of drought over a specific period and is calculated by multiplying 

intensity and duration. 

Several studies have been done in Kenya to identify drought characteristics over 

different time scales (Kigumi, 2014; Kimwatu et al., 2021a; R. Wambua et al., 2014; 

Wanjuhi, 2016). Wanjuhi (2016) study focused on assessing the temporal and spatial 

occurrence of drought in the Northeastern counties of Kenya. The research utilized 

precipitation data to understand the drought conditions in the region. The findings 

revealed that the drought conditions varied between mild drought and moderately dry 

conditions, indicating a range of severity. Furthermore, Wanjuhi's study classified 

drought events into different durations. Based on the available information, the 

drought conditions were grouped into three categories: 2 to 3 years, 4.5 to 7 years, 

and 8 to 12 years. This classification suggests that the region experienced drought 

events of varying lengths, which may have implications for water resource 

management and adaptation strategies. 

2.2 Meteorological Drought  

Meteorological drought always occurs at the beginning of all the other types of 

drought (Dalezios, 2014) and has different characteristics for different climatic 

regions. A threshold deficiency of precipitation for a period is first determined to 

identify meteorological drought using the meteorological indices. Due to the 

different meteorological characteristics, different regions will have their specified 

threshold levels. WMO & GWP (2016) grouped the indices into several classes based 
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on their characteristics. The classes are atmospheric drought indices, precipitation 

anomaly indices, aridity indices, soil moisture indices and satellite indices. 

2.3 Drought Assessment 

Assessing and forecasting droughts are critical in preparing for, mitigating, and 

managing their impacts. This necessitates a comprehensive understanding of 

historical drought occurrences and their consequences (Mishra & Singh, 2010). 

Drought forecasting involves predicting various attributes of drought, including 

severity, onset, duration, and frequency (Hao, Singh, & Xia, 2018; Sharma & Panu, 

2012a). Nevertheless, the intricate characteristics of droughts have presented 

obstacles for climatologists and decision-makers in accurately predicting such 

occurrences (Hao et al., 2018).  

The assessment of drought entails the use of drought indices, which define and 

measure drought conditions (WMO & GWP, 2016). These indices encompass a 

range of climate variables and offer insights into drought attributes such as duration, 

severity, intensity, and geographic scope (Dalezios, 2014; Mishra & Singh, 2010). 

Depending on the specific index, they can also offer insights into historical drought 

patterns and trends (WMO & GWP, 2016). Multiple indices have been developed to 

cater to specific needs due to diverse applications and types of droughts. A summary 

of these drought indices can be found in Table 2.1. 

These drought indices rely on diverse data inputs, including rainfall, temperature, 

soil moisture content, snow water content, stream flow, reservoir volume, potential 

evapotranspiration, and satellite data (Mishra & Singh, 2010). In Kenya, there exists 

a deficit in comprehensive data concerning the suitability and practicality of these 

indices for the purposes of drought prediction and evaluation (Wambua et al., 2014). 
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Table 2.1: Commonly used Drought Indices 

Type Index name  References 

Meteorological 

drought 

Standard Precipitation Index (SPI) (Mishra & Singh, 2010) 

Standard Precipitation and 

Evapotranspiration Index (SPEI) 

(Vicente-Serrano et al., 

2010) 

Decile index (DI)  (WMO & GWP, 2016) 

Palmer Drought Severity Index 

(PDSI) 

(Mishra & Singh, 2010) 

Hydrological 

drought 

Surface water supply index (SWSI) (WMO & GWP, 2016) 

Standardized Runoff Index (SRI) (Shukla & Wood, 2008) 

Stream Flow Drought Index (Nalbantis & Tsakiris, 

2009) 

Agricultural 

drought 

Normalized Difference Vegetation 

Index (NDVI),  

(WMO & GWP, 2016) 

Vegetation Condition Index (VCI),  (Yang et al., 2011) 

Soil Moisture Deficit Index (Narasimhan & Srinivasan, 

2005) 

Normalize Difference Water Index 

(NDWI)  

(WMO & GWP, 2016) 

 Social 

Economic 

drought  

Multivariate Standardized 

Reliability and Resilience Index 

(MSRRI) 

(Mehran et al., 2015) 

Standardized Supply and Demand 

Water Index (SSDWI). 

(Zhou et al., 2022) 

2.3.1 Palmer Drought Severity Index (PDSI) 

Palmer's Drought Severity Index (PDSI) was formulated to estimate moisture supply 

and demand within a soil layer by Palmer (1965). It was developed to identify 

drought onset and end (Shamshirband et al., 2020). According to Wambua et al. 

(2014), it uses precipitation, temperature and soil moisture data as the input and does 

not consider other hydrometeorological variables and the human impacts that affect 
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drought. From the Palmer Drought Severity Index, the Palmer Hydrological Drought 

Index (PHDI), which is more efficient and based on moisture flow, was developed 

(Mishra & Singh, 2010). 

Wambua et al. (2014) points out that even though PDSI has been widely used in the 

USA, its application in other part of the world is limited. Barua (2010) and  Mishra 

and Singh (2010) suggest that this could be attributed to its drawbacks, such as its 

poor indicator of short drought periods. Despite the mentioned disadvantages, the 

advantages of using PDSI are that it shows the current spatial and temporal drought 

conditions based on the historical drought conditions and measures the abnormality 

of weather conditions for a basin or region (Mishra and Singh 2010; Sivakumar et al. 

2010). 

 2.3.2 Deciles Indices 

Decile Indices are used for monitoring meteorological drought using a long-term 

average monthly precipitation (Barua, 2010; Gibbs & Maher., 1967). A cumulative 

frequency and distribution of the total rainfall is constructed using the data range 

from the highest to the lowest, and the median is used to identify the tendency of the 

records. The observations are categorized into deciles, with the fifth decile being the 

median.  The current or previous rainfall values can be interpreted using the deciles. 

This approach will require a long historical rainfall record (R. Wambua et al., 2014).  

The advantages of this approach are that they are simple to calculate and do not 

require multiple data (the precipitation data only). There are fewer assumptions 

compared to the other indices. Also, due to their flexibility in determining the 

threshold, they can be used for monitoring all types of drought (Dalezios, 2014). 

2.3.3 Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index (SPI) was originally developed by Mckee et al. 

(1993) in Colorado, USA, to quantify rainfall deficits and monitor drought conditions 

at several time scales. SPI is widely utilized worldwide and has been recognized by 

the World Meteorological Organization as the most suitable index for global drought 
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monitoring and forecasting (Hayes et al., 2011). To calculate SPI, long-term 

complete monthly historical precipitation data spanning at least 20-30 years is 

required (Dalezios, 2014). Mckee et al. (1993) employed monthly time series of 3, 6, 

12, 24, and 49 months to compute the SPI. 

The calculation of SPI involves fitting the historical aggregated monthly rainfall data 

into a probability distribution function and converting it into a normal distribution 

function. Various distribution functions like Gamma, Pearson Type III, Lognormal, 

Extreme Value, and Exponential distribution functions can be used for this purpose 

(Dalezios, 2014; Khan et al., 2020; Patil et al., 2020). The Gamma probability 

distribution function is commonly preferred because it accommodates positive and 

non-zero values effectively (Khan et al., 2020). The gamma distribution function, 

(г(α)), is fitted into a dataset of rainfall with a shape factor α and a scale factor β. If 

the amount of precipitation is x, the probability density will be in the form of 

Equation 2.1: 

𝑓(𝑥, 𝑎, 𝛽) =
1

𝛽𝛼𝑇(𝛼)
𝑥𝛼−1𝑒

−(
𝑥
𝛽

)

       (2.1) 

  for x, α, β>0 

To obtain the values of the shape factor and scale factor Equations 2,2, 2.3, 2.4:  

𝛼 =
1

4𝐴
(1 + √1 +

4𝐴

3
        (2.2) 

𝐴 = 𝑙𝑛𝑋̅ −
∑ 𝑙𝑛𝑥𝑛

𝑖=1

𝑛
        (2.3) 

𝛽 =
𝑋̅

𝛼
           (2.4) 

Where:  𝑋̅ is the Mean rainfall (mm) 

  N is the number of months. 
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Following Mishra & Desai (2006) and Patil et al. (2020) study, the cumulative 

probability of the zero and non-zero values with undefined gamma function will be 

calculated using Equation 2.5: 

𝐻(𝑥)  =  𝑞 +  (1 − 𝑞) 𝑓(𝑥;  𝛼, 𝛽)       (2.5) 

Where: q is the probability of zero rainfall Equation 2.6. 

 𝑞 =
𝑚

𝑛
           (2.6) 

Where: m is the number of zeros present in a rainfall time series, 

H(x) will then be converted to SPI using Equation 2.7: 

𝑆𝑃𝐼 = ±(𝐾 −
𝑐0+𝑐1𝐾+𝑐2𝐾2

1+𝑑2+𝑑2𝐾2+𝑑3𝐾3        (2.7)  

Where K is as Equation 2.8  

  𝐾 = √𝑙𝑛 (
1

(𝐻(𝑥))2       (2.8) 

According to the SPI, an event is classified as a drought when the SPI value remains 

consistently negative, and when it turns positive, it is considered the end of the 

drought event (Khan et al., 2020; McKee et al., 1993; Mishra et al., 2007; Mishra & 

Singh, 2010). Table 2.2 outlines the drought classification based on SPI (Mishra & 

Singh, 2010). 

Table 2.2: Classification of Drought Based on SPI and SPEI   

SPI Values Class 

<2.0 Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

- 0.9 to 0.99 Near Normal 

-1 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

>-0.2 Extremely dry 
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Mishra and Singh (2010) state that one of the key advantages of SPI is its versatility 

in being computed for different time scales, enabling it to effectively track short-term 

water resources like soil moisture. Patil et al. (2020) also state that the SPI is preferred 

because of its flexibility to be applied widely since it has a minimum input 

requirement compared to other indices. Based on studies by Anshuka et al. (2019), 

Khan et al. (2020); Mishra and Singh (2010); Mutiga et al. (2011); Wambua et al. 

(2014); WMO and GWP (2016), SPI has other advantages: it is not dependent on the 

geographical location because of its standardization, and it can show both long- and 

short-term drought for over time scales due to its statistical consistency. 

However, based on Mishra and Singh's (2010) review of drought concepts,  SPI was 

found to have a couple of disadvantages. These mainly occur during calculation of 

the SPI and are caused by the length of the precipitation record required and the 

nature of probability distribution. The review claims that the length of precipitation 

significantly impacts the SPI values. It further explains that sometimes, when 

computing SPI values using different lengths of record with similar gamma 

distributions over different times, similar and consistent results are observed. 

However, the SPI values will not be similar when using different gamma 

distributions. Therefore, while calculating using different lengths of record, one 

should note the differences in the SPI values. 

The other limitation is using different probability distributions (Labudová et al., 

2016; Mishra & Singh, 2010). Since SPI values are based on fitting a distribution to 

precipitation, the different probability distributions will affect the values observed. 

The problem arises when calculating SPI for long time scales fitting a distribution 

might be biased due to the limitation in data length and when finer resolutions of 

spatial analysis need to be investigated, and a long-term dataset is not available. The 

other issue is when calculating SPI values for areas with dry climates where seasonal 

precipitation and zero values are typical. Also, when a short time scale is used, the 

values may not be generally distributed because of highly skewed distribution. This 

may lead to significant errors while simulating precipitation distribution in dry 

climate areas; therefore, the researcher must be keen to calculate SPI values. 
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Therefore, it is evident that a long-term data series is suitable while calculating the 

SPI values.  

The review of drought indices application by Ntale & Gan (2003) showed that of all 

the indices, SPI is more suitable for drought assessments and forecasting in East 

Africa. Ntale and Gan further explained that SPI is more adaptable to specific 

climates, has fewer data needs, is easy to interpret, and can be calculated for any time 

scale. SPI has been used to study different aspects of drought, i.e., forecasting, 

frequency analysis, spatial-temporal analysis, and climate impact studies. Karanja 

(2018) applied SPI to monitor the temporal drought trends in the Laikipia West sub-

county from 1984 to 2014. Karanja reached the conclusion that drought occurrences 

in the region were on the rise, ultimately categorizing the drought events as severe in 

2009. Additionally, Odhiambo et al. (2018) utilized SPI to evaluate the frequency 

and severity of drought in Isiolo, situated in the UENB.  Odhiambo’s study showed 

severe droughts (-2<SPI & SPEI≤-1.5) in 2004 and extreme (SPI & SPEI≤-2.0) 

droughts 2008/2009. The study also found that for drought incidents, the probability 

of recurrence of moderate droughts is once in 18 months and severe dryness at once 

in 5 years. 

2.3.4 Effects of Probability Distribution and Parameter Estimation Errors 

The computation of the Standardized Precipitation Index (SPI) hinges on theoretical 

probability distributions to fit cumulative precipitation data, as recommended by 

McKee et al. (1993), who advocate for a two-parameter gamma distribution. However, 

subsequent research underscores the necessity for flexibility in selecting distributions 

due to regional disparities and research objectives (Angelidis et al., 2012; Blain & 

Meschiatti, 2015; Sienz et al., 2012). 

The choice of probability distribution (PD) significantly influences SPI values and 

drought characteristics, especially during extreme conditions, as demonstrated by 

Zhang & Li (2020). While normal and moderate classifications exhibit minimal 

disparities among PDs, significant variations arise as SPI values approach extremes. 

Diverse PDs yield marked differences in drought peak, event number, duration, and 

frequency. Additionally, studies by Angelidis et al. (2012); Vergni et al. (2017) 
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underscore the consistency of SPI across different distributions during normal periods 

but reveal increasing discrepancies during very dry or wet periods. 

Parameter estimation errors further compound SPI uncertainty, particularly during 

extreme SPI values, as highlighted by Zhang & Li (2020). The confidence intervals 

expand with increasing or decreasing SPI extremes, contributing to larger intervals in 

drought event number and maximum drought duration compared to the variability 

caused by different PDs. As emphasized by Wu et al. (2005), parameter estimates with 

low confidence yield SPI values with low confidence. To ensure robust parameter 

estimates, a lengthy record of precipitation data is vital, as maximum likelihood 

estimation (MLE) exhibits instability with small samples and performs better with 

larger sample sizes (Beguería et al., 2014). Recommendations for an optimal record 

length vary, with McKee et al. (1993) suggesting a continuous period of at least 30 

years for SPI calculation, while (Carbone et al., 2018) advocate longer record lengths 

of 40 to 80 years for parameter estimation stability. Carbone’s study further notes that 

even over 60 years of records, extreme events significantly influence SPI estimates. 

Thus, the minimum record length depends on precipitation pattern changes and the 

desired level of parameter estimation confidence. 

2.3.5 Standardized Precipitation Evapotranspiration Index (SPEI) 

The Standardized Precipitation Evapotranspiration Index (SPEI) was introduced by 

Vicente-Serrano et al. (2010) to detect periods of drought. SPEI incorporates the 

same principles as the Standard Precipitation Index (SPI) but additionally takes into 

account temperature (WMO & GWP, 2016). It requires complete monthly 

precipitation records and temperature data as input parameters. The computation of 

SPEI, as outlined by Vicente-Serrano et al. (2010), follows a similar process to SPI 

but involves calculating the monthly (or weekly) difference between precipitation 

and Potential Evapotranspiration (PET). According to Mishra & Singh (2010) and 

Vicente-Serrano et al. (2010), this calculation, performed at various time scales, 

yields the SPEI, representing a straightforward climatic water balance. SPEI is 

capable of quantifying drought severity based on intensity and duration while 

identifying the onset and cessation of drought events. 
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Vicente-Serrano et al. (2010) highlight the necessity of calculating PET as a 

precursor to computing SPEI. However, the study also acknowledges the challenges 

associated with PET calculation due to its reliance on multiple meteorological 

parameters. These parameters include surface temperature, air humidity, incoming 

radiation at the soil surface, water vapor pressure, and heat fluxes between the ground 

and the atmosphere. The study further underscores that the method chosen for PET 

computation depends on the availability of these meteorological parameters. These 

methods include physically based methods like the Penman-Monteith and empirical-

related models. The study mentioned that the method of calculating PET does not 

affect the results; therefore, it is not of much concern. However, the study suggested 

that the ideal method uses the simple Thornthwaite method, which does not require 

multiple data inputs but uses monthly mean temperature.  

Based on the study by Vicente-Serrano et al. (2010), PET in millimetres (mm) is 

calculated as Equation 2.9:  

𝑃𝐸𝑇 = 16𝐾(
10𝑇

𝐼
)𝑚           (2.9) 

Where: T= monthly mean temperature (oC) 

 I-= heat index (calculated as some of the 12-month index values i) 

The month index value i is calculated as Equation 2.10:  

𝑖 = (
𝑇

5
)1.514           (2.10) 

m = coefficient (depending on I), Equation 2.11: 

𝑚 = 6.75𝑋10−7𝐼3 − 7.71𝑋 10−5𝐼2 + 1.79𝑋 10−2 + 0.492    (2.11) 

K= a correction coefficient (computed as a function of the latitude and month), 2.12: 

𝐾 = (
𝑁

12
)(

𝑁𝐷𝑀

30
)        (2.12) 

NDM = the number of days of the month 
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N = the maximum number of sun hours, calculated as Equation 2.13:  

𝑁 = (
24

𝑇𝐼
)𝜔          (2.13) 

 𝜔 = hourly angle of the sun rising, calculated as Equation 2.14:  

𝜔 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑡𝑎𝑛 𝜑 𝑡𝑎𝑛 𝛿)         (2.14) 

𝜑 = latitude in radians 

𝛿 = solar declination in radians, calculated as Equation 2.15:  

𝛿 = 0.4093 𝑠𝑖𝑛 (
2𝜋𝐽

365
) − 1.405        (2.15) 

J= the average Julian day of the month 

After getting the value of PET, the difference between the precipitation P and PET 

for a month is then calculated using the Equation 2.16:  

𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖,        (2.16)  

This will measure the water surplus or deficit for the specific month. These values of 

Di obtained are a combination of different time scales, similar to the SPI method. Dk 

i, j in a given month j and year i depends on the chosen time scale k. For example, 

the accumulated difference for one month in a particular year i with a 12-month time 

scale is calculated as the Equation 2.17:  

𝑋𝑖𝑗
𝑘 = ∑ 𝐷𝑖−𝐼𝑗

12
𝑙=13−𝑘+𝑗 + ∑ 𝐷𝑖𝑙

𝑗
𝑖−1         (2.17) 

   If j<K 

 Where 𝐷𝑖𝑙 is the P -PET in the first month of the year i, in mm.  

Vicente-Serrano et al. (2010) compared the SPI and SPEI calculation and found that 

SPI can be computed using a two-parameter distribution; SPEI requires a three-

parameter distribution. In the three-parameter distributions, the variable x can take 
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values in the range (γ>x< ꝏ) where range γ is the distribution's origin parameter. 

This means that x can take negative values common in D series. To model the Di 

values at different time scales, Vincente’s study used the L-moment ratio diagrams 

since, with this method, the theoretical distribution of D at different timescales can 

be compared with the calculated frequency distributions of D. To create the L-

moments ratio diagrams, L moments ratios L skewness t3 and L kurtosis t4 will be 

calculated as Equations 2.18 and 2.19:  

𝜏3 =
𝜆3

𝜆2
            (2.18) 

𝜏4 =
𝜆4

𝜆2
           (2.19) 

Where: 𝜆2, 𝜆3, 𝜆4 are L moments of the D series obtained from probability-weighted 

moments (PWMs) are: 𝜆1 = 𝑤𝑜 

𝜆2 = 𝑤𝑜 − 2𝑤 

𝜆3 = 𝑤𝑜 − 6𝑤1 + 6𝑤2 

𝜆4 = 𝑤𝑜 − 12𝑤1 + 3𝑤2 − 20𝑤3 

Where the probability-weighted moments of order s are calculated as Equation 2.20: 

𝑤𝑠 =
1

𝑁
∑ (1 − 𝐹𝑖)5𝐷𝑖𝑁

𝑖=1          (2.20) 

Where: 𝐹𝑖 is a frequency estimator calculated using the Equation 2.21:  

𝐹𝑖 =
𝑖−0.35

𝑁
          (2.21) 

where i is the range of observations arranged in increasing order 

N is the number of data points.  

The probability density function of a three-parameter log-logistic distributed variable 

is as the Equation 2.22:  
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𝑓(𝑥) =
𝛽

𝛼
(

𝑥−𝛾

𝛼
)𝛽−11[1 + (

𝑥−𝛾

𝛼
)𝛽]−2     (2.22) 

where a= scale, β= shape and γ= origin parameters, for D values in the range 𝛾> D< 

ꝏ and they can be obtained as Equations 2.23, 2.24 and 2.25:  

𝛽 =
2𝑤−𝑤𝑜

6𝑤1−𝑤𝑜−6𝑤2
        (2.23) 

𝛼 =
(𝑤𝑜−2𝑤1)𝛽

𝛤(1+
1

𝛽
)𝛤(1−

1

𝛽
)
        (2.24) 

𝛾 = 𝑤𝑜 − 𝛼𝛤(1 +
1

𝛽
)𝛤(1 −

1

𝛽
)      (2.25) 

Where 𝛤(𝛽)  is the gamma function of 𝛽.  

Therefore, the probability distribution function of the D series is given by Equation 

2.26: 

𝐹(𝑥) = [1 + (
𝛼

𝑥−𝛾
)𝛽]−1       (2.26) 

From the F(x) the SPEI can be calculated as Equation 2.27:  

 

𝑆𝑃𝐸𝐼 = 𝑊 −  
𝐶𝑂+𝐶1𝑊+𝐶2𝑊

1+𝑑1𝑊+𝑑1𝑊2+𝑑3𝑊3       (2.27) 

  Where W is given by Equation 2.28:  

𝑊 = √−2𝑙𝑛 (𝑝)         (2.28) 

      For p ≥ 0.5 

According to Vicente-Serrano et al. (2010) and WMO & GWP (2016), the main 

advantage of SPEI is the incorporation of temperature and precipitation data for 

measuring the effects of temperature on drought events. The study further stated that 

another strength is that the output can be used for all climate regimes, and the 
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standardized results are easily comparable. Since SPEI uses temperature, they 

suggest that it can be a suitable index for identifying the impacts of climate change 

in model output under various predicted climate events Moreover, SPEI offers the 

flexibility to calculate measurements for periods as short as one month and up to 48 

months, facilitating the comparison of drought severity across different time frames 

and geographical regions, even under diverse climatic conditions. The utilization of 

an extensive time series enhances the robustness of the results. Furthermore, the 

study noted that SPEI's versatility allows for the identification and monitoring of 

conditions related to various types of droughts and their implications for global 

warming. In their study, Vicente-Serrano et al. (2010) concluded that SPEI fulfils the 

requirements of a drought index because of its multi-scalar characteristics that enable 

it to be used by different scientific disciplines to detect, monitor and analyse drought 

events.  

SPEI weaknesses, as identified by WMO & GWP (2016), are that due to the need for 

a complete temperature and precipitation dataset, some areas with incomplete 

datasets may be limited in their use.  In addition, they noted that since SPEI is a 

monthly Index, it might not quickly identify the occurrence of rapid drought events. 

During their study, Vicente-Serrano et al. (2010) concluded that while calculating 

SPEI, it is difficult to determine a suitable distribution to model the D series since 

the four distributions are almost similar in their methods.  

2.5 Drought Modelling  

Together with the drought indices, drought modelling helps identify drought 

characteristics (Mishra & Singh, 2011). The outputs of drought modelling are 

severity, probability of occurrence, drought onset and end and spatial-temporal 

extent. Several drought modelling methods are used for drought forecasting: 

statistical methods, dynamic and hybrid methods (Hao et al., 2018; Mishra & Singh, 

2011). However, the statistical models have been mostly preferred for drought 

forecasting since they are simple to implement and produce useful predictions (Hao 

et al., 2018; A. K. Mishra & Desai, 2006; Mishra & Singh, 2011). These techniques 

have been used to forecast the DI values to represent future drought.  
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Statistical techniques utilize historical data's empirical connections, taking into 

account diverse influencing factors as predictors. These statistical models offer 

multiple approaches to examine the associations between the drought indices to be 

forecasted and a range of historical predictors. These approaches encompass time 

series models, artificial intelligence models, Markov Chain models, and log-linear 

models.   

2.5.1 Drought Modelling Techniques 

2.5.2 Time Series Model 

The technique of time series modelling utilizes stochastic methods to represent 

drought occurrences. The main models are the Autoregressive Integrated Moving 

Average (ARIMA) and Seasonal Autoregressive Integrated Moving Average 

(SARIMA). These models have been used to forecast drought events based on SPI. 

The ARIMA technique combines an Autoregressive (AR) represented by the order p 

and a Moving Average (MA) model of order q.  The equation for the ARIMA model 

(p, q) for a given time series xt is defined as Equation 2.29 and ε𝑡 as Equation 2.30: 

xt= 𝜑𝑖𝑥𝑡−1 + ⋯ + 𝜑𝑝𝑥𝑡−1  + 𝜀𝑡𝑗– 𝜃𝑗𝜀𝑡𝑖1  −  … −  𝜃𝑗𝜀𝑡−𝑞     (2.29) 

𝜀𝑡=∑ 𝜑𝑖𝑥𝑡−𝑖 +  𝜀𝑡 − ∑ 𝜃𝑗𝜀𝑡−𝑗
𝑞
𝑗−𝑖

𝑝
𝑖−1         (2.30) 

𝑥𝑡 is usually =0,1,2… 

ε𝑡  is the independent error variable   

φ𝑖 and φ𝑝 are the coefficients of the AR model 

θ𝑗and θ𝑞  are coefficients for the MA model. 

The ARIMA model works very well with the SPI and PDSI drought indices since 

they use a longer series of data (Mishra & Desai, 2006). The primary drawback of 

this approach is its failure to account for nonlinear characteristics, as it operates under 

the assumption of a linear relationship between the predictions and the predictors 
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(Khan et al., 2020). Also, the model relies on persistent indicators; therefore, all the 

other factors affecting the drought events are ignored (Patil et al., 2020).  

2.5.3 Markov Chain Model 

Markov Chains uses stochastic processes to characterize and forecast meteorological 

drought (Wambua, 2014). Drought forecasting is based on the transitional probability 

defined by the condition of a drought category Cn + 1 for a period n + 1 given the 

drought category Cn for the period n (Barua, 2010; Hao et al., 2018). The drought 

category Cn is expressed as Equation 2.31 

𝑀𝑖𝑗 = 𝑃(𝐶𝑛−1   = 𝐽|𝐶𝑛 = 𝑖)         (2.31) 

Where: 𝑀𝑖𝑗 is the number of transitions from category j to I at time n+1(𝐶𝑛−1   = 𝐽 

to n𝐶𝑛 = 𝑖) 

The transitional probabilities, which is the element of a transition matrix M in the 

equation is achieved through the conditional frequency, Equation 2.32: 

 𝑀𝑖𝑗 =
𝑀𝑖𝑗

𝑀𝑖
       (2.32) 

Where: 𝑀𝑖 ,is the total number of transitions from category i to other categories.  

The transitional matrix M can forecast the drought transitions and future series based 

on the historical drought indicators. 

The Markov Chain model has been used for drought forecasting based on the PDSI, 

SPI and Standard Hydrological Index (SHI) (Moreira et al., 2008; Paulo & Pereira, 

2007; Sharma & Panu, 2012). For example, a study by Paulo & Pereira (2007) 

predicted drought occurrence using the Markov Chain and SPI for 1-3 months. A 

significant limitation of this modelling is that it offers users predicted wet, dry, or 

normal drought conditions and their probabilities of occurrence, but it doesn't predict 

reservoir inflow discharge (Rezaeianzadeh et al., 2016). Furthermore, although the 

model is straightforward for making predictions, it does not provide explaining events 

(Sharma & Panu, 2012).  
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2.5.4 Log-Linear Model  

The log-linear model is applied to Poisson-distributed data, as it expands the linear 

model to accommodate the Poisson distribution function (Barua, 2010; R. Wambua 

et al., 2014). It serves as an extension of the two-dimensional contingency table, 

where the relationship between discrete and categorical variables is determined by 

taking the natural logarithm of frequency entries in the table. This contingency table, 

a matrix displaying the frequency of distribution variables known as response 

variables, is fundamental to log-linear modelling. Log liner models have been used 

by Moreira et al. (2008) to forecast drought in a catchment in Portugal using 12-

month SPI data.  In a study by Moreira et al. (2008), utilized log-linear models to 

predict drought in a Portuguese catchment using 12-month SPI data. However, 

Moreira’s study concluded that the log-linear approach is unsuitable for long-term 

drought modelling but is appropriate for short-term drought monitoring, typically 

spanning 1-2 months.  

2.5.5 Artificial Neural Networks 

An Artificial Neural Network (ANN) is a machine learning model developed to 

process information in a structure similar to the human brain. It has been defined by 

Gao et al. (2016) as a mathematical model of biological neurons that mimics their 

historical patterns and identifies patterns and relationships between processes. 

ANN’s functionality has progressed using improved calibration techniques (Barua, 

2010). It has been used to solve several problems, including drought forecasting, 

predicting water consumption, and water management.  

Comprising a network of interconnected basic processing units termed neurons, 

artificial neural networks are designed to mimic the structure of human brain neurons, 

organized into layers (Dastorani & Afkhami, 2011; Patil et al., 2020). Each neuron 

is linked to others in adjacent layers, rather than within the same layer. In biological 

terms, neurons receive signal input and generate a response output. In the human 

brain, these inputs and outputs manifest as electrical impulses traveling through 

channels. Input pulses traverse dendrites, which contain synapses facilitating signal 

transmission, while output pulses exit through an axon channel. 
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Like the human brain, the ANN model is designed to have a cell body, several input 

channels where the input signals are passed to the neuron and one output channel. 

Each channel has a connection weight that enables it to select significant input signals 

by their weight values. The cell body is related to the neuron by a special input signal 

called the bias weight, which activates the synapse that allows or stops the input 

signals from passing through to the cell. When the input is a non-zero value, it can 

pass through and stop if it’s zero (Mishra & Singh, 2011).  

In the model, a mathematical function that allows mapping between the input and 

output signal called the activation function, is used to generate the output by adding 

all the input signals, as shown in Equation 2.33:  

𝑦 = 𝑓(𝐼) = 𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏)𝑝
𝑖           (2.33) 

where 𝑥𝑖 is the input signal i 

𝑤𝑖 is the weight attached to the input signal i 

p is the number of input signals 

b is the bias weight at the cell of the body 

y is the output signal 

f is the activation function 

According to Barua (2010), several activation functions, such as the non-linear 

sigmoidal, hyperbolic tangent and linear activation functions, can be used for the 

neurons. Moreover, several studies (Maier et al., 2010; Mishra & Desai, 2006) have 

shown that these activation functions were successful. 

The prediction model Y is as Equation 2.34: 

𝑌 = 𝑓(𝑋, 𝑊) + ᵋ        (2.34) 
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Y = Vector of model outputs 

X = Vector of model inputs 

W = Vector of model parameters (connection weights) 

f(•) = Functional relationship between model outputs, inputs and parameters 

ᵋ = Vector of model errors 

 

ANNs are classified based on three aspects: Topography, learning procedure and 

flow of information (Mulualem & Liou, 2020; Shanmuganathan, 2016). Based on 

topography, ANN is classified as single or multiple layers. A single layer consists of 

one input layer linked directly to the output layer, while the multiple layers consist 

of several hidden layers between the input and output layers. In addition, the 

multiple-layer ANN can model more than one linear and non-linear function.  

ANNs are classified into three groups based on the flow of information: feed-

forward, recurrent and hybrid networks (Anshuka et al., 2019).  The feed-forward is 

a one-way network where the signal moves from the input to the output layer. In the 

recurrent network, the signal and information can move in all directions, forward and 

backwards.  Here, the output layer may reverse the output into an input or a hidden 

layer. The hybrid model uses different modelling methods to model the scenario.  

ANN works through a learning process classified into three: supervised, 

unsupervised and reinforcement learning (Anshuka et al., 2019; Khan et al., 2020). 

In supervised ANN, there is training data consisting of either input or targeted output 

variables that ANN uses to learn the input-output relationship. The network will 

process the inputs and then compare them with the target outputs provided. In case 

of errors, they are propagated back through the system, adjusting the weights that 

control the network, ensuring the network is refined every time it is adjusted. A 

learning algorithm that uses the input data to create output data for the training data. 

Examples of the learning algorithms are Levernberg-Mrquardt (LM), 
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backpropagation (BP), Conjugate gradient (CG), Perceptron, Multi-layer perceptron 

(MLP) and genetic algorithms. In unsupervised ANN, self-train, the network will 

only have input variables and will learn and recognize the patterns of the input data 

on its own. It does this through a competitive learning rule, creating a neural network 

with an input and competitive layer. Data is introduced in the input layer, and the 

competitive layer's neurons compete on the response to the input data features. The 

competition happens in a way that the input vector is compared with the weight 

vectors connected to the competitive layer. The weight vectors that match the input 

are considered the winning neuron. Reinforced ANN uses the trial-and-error 

technique where an agent can perceive a given state and perform certain actions, after 

which a numerical output is provided. Numerous algorithms are used to select actions 

to explore the environment and gradually build an approach that gives maximum 

output. 

2.5.6 Drought Assessment and Forecasting Using ANN 

ANN has been applied globally for prediction modelling. Dastorani & Afkhami 

(2011) applied ANN to predict drought in Yazd meteorological station in Turkey. 

The study used different architectures of artificial neural networks as well as various 

combinations of meteorological parameters including 3-year precipitation moving 

average, maximum temperatures, mean temperatures, relative humidity, mean wind 

speed, direction of prevalent wind and evaporation from 1966 to 2000, as inputs of 

the models. Hao et al. (2018) study employed ANN to forecast drought based on 

monthly SPI values in Sivas Province, a semi-arid region in China. Hao’s study 

examined various drought characteristics, such as duration, amplitude, and intensity, 

in different time spans. Additionally, Oguzturk et al. (2016) concentrated on 

evaluating water resources in the Qaidam Basin, northwest China, where gauge data 

was scarce or absent. They utilized areal precipitation derived from remote sensing 

data, sparse gauge data, and a combination of both via machine learning, specifically 

employing an ANN model.  

ANN has been successfully used to assess and forecast drought in many river basins 

in Kenya. For example, Agwata et al. (2014) modelled the Tana River basin 



29 

 

hydrological drought. The study fitted five frequency distributions to drought 

severity and duration based on discharge data on gauge stations in the basin. The 

study showed that the Generalized Normal (GN) distribution is the best, while the 

Pearson type III distribution is the poorest for both severity and duration. Another 

example is a study by Kigumi (2014) in Naromoru Sub catchment. The study used 

earth-observed data, i.e. TRMM and ANN, to predict the hydrological drought 

occurrence in the area. The study used the Levernberg-Marquadt (LM), 

Backpropagation (BP) and CG training algorithms. It showed that the feed-forward 

neural network (FFNN) with LM training algorithm is the best model for SPI and 

SDI.  

Mulualem et al. (2020) conducted a study focusing on the Upper Blue Nile basin 

(UBN) of Ethiopia, utilizing Artificial Neural Networks (ANNs) to forecast the 

Standardized Precipitation Evapotranspiration Index (SPEI). The study involved the 

development of seven ANN predictive models incorporating various hydro-

meteorological, climate, sea surface temperature, and topographic attributes to 

predict SPEI for seven stations in the area. The findings indicated that integrating 

large-scale climate indices led to accurate predictions of SPEI values. The study 

concluded that ANNs offer an alternative framework for forecasting the SPEI 

drought index, showcasing promising statistical achievements. Patil et al. (2020) 

conducted a comparison between Autoregressive Integrated Moving Average 

(ARIMA) models and Artificial Neural Network (ANN) models to predict drought 

across various timescales (1, 3, 6, 9, and 12 months) with a lead time of up to 6 

months. Patil’s study found that both ARIMA and ANN models exhibited strong 

forecasting capabilities for drought at different scales, particularly up to a 2-month 

lead time. Additionally, the ANN model outperformed the ARIMA models across all 

stations. However, ARIMA showed better performance in forecasting at higher 

timescales. 
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Based on studies by Kigumi (2014), Mishra & Singh (2011), Mulualem & Liou 

(2020), Patil et al. (2020) and Wambua et al. (2014), the ANN model has several 

advantages over other methods: 

a) They can process information based on their dynamic response to external 

input.  

b) Unlike other techniques, they can model all the relationships, including non-

linear functions.  

c) It is a suitable model to provide effective analytical techniques in modelling 

and forecasting drought.  

d) They can model both dynamic and stochastic time series variables.   

e) Since they work as a black box, they are suitable for modelling complex 

processes that use large and long-term data sets, such as drought prediction. 

The advantages mentioned have led to the popularity of ANN in many applications, 

including drought forecasting by many researchers  (Barros & Bowden, 2008; Maity 

& Kumar, 2008; Mishra et al., 2007; Morid et al., 2007; Mulualem & Liou, 2020; 

Patil et al., 2020, Wambua et al., 2014). The major disadvantage of ANN is its 

inability to generalize, as it cannot accurately detect the values outside its training 

datasets. However, this can be corrected by using the correct number of neurons in 

the hidden layer and a large data set encompassing all the likely data points.  

2.6 Impacts of Drought  

The assessment of drought events involves evaluating factors such as their frequency, 

severity, affected area, and their impacts on the economy, environment, and society, 

as outlined by Mutekwa (2016). These occurrences have detrimental effects on 

various aspects, including food security, livestock, crops, water resources, education, 

energy, forestry, wildlife, health, nutrition, peace, and security, as the National 

Drought Management Authority (NDMA) (2017) reported. The ripple effects start 

with reduced agricultural output, resulting in unemployment, asset loss, decreased 

income, worsened living conditions, food insecurity, and diminished coping abilities, 

thereby heightening the vulnerability of impoverished communities to other hazards 

and increasing the risk of political instability, as highlighted by United Nations 
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International Strategy for Disaster Reduction (UNISDR) (2014). Collectively, these 

impacts often lead to financial and economic challenges for agriculture and 

agriculture-based businesses (Mutekwa, 2016). 

The global increase in water demand due to population growth and economic 

progress has led to water scarcity challenges, significantly affecting various sectors 

(Lotfirad et al., 2022). Climate change patterns have caused a rise in the frequency 

and severity of droughts worldwide, impacting regions disparately (Hoegh-Guldberg 

et al., 2018). According to Adhikari (2018), nations like India, possessing substantial 

drought-prone land, have encountered more frequent and prolonged droughts since 

the mid-1990s. These droughts carry extensive consequences, impacting not just crop 

production and income but also access to domestic water, rural employment, and 

financial stability (Huho et al., 2009; Kalele et al., 2021; Karanja, 2018). This 

underscores the broader socioeconomic repercussions of drought. Similarly, India 

and Africa confront rising instances of drought, adversely influencing agriculture, 

water resources, human well-being, and industries. The repercussions of these 

droughts extend beyond direct effects on crops and income, encompassing challenges 

related to domestic water availability, rural employment, and economic pressure. 

According to Mutekwa (2016), drought and desertification severely threaten 

sustainable development in Africa by negatively affecting population health and 

security, food security, economic progress, infrastructure, the environment, and 

natural resources. The study shows examples of how Africa's population has been 

significantly impacted by drought, resulting in famine and the loss of more than 

500,000 lives in devastating drought events within the Sahel and Horn of Africa. 

According to a World Bank (2021) report, approximately  70% of Kenya's natural 

disasters are attributed to drought and climate change. Furthermore, the agricultural 

sector, which accounts for 80% of total employment in the nation, encompassing 

both urban and rural areas, is highly susceptible to droughts and other disasters. 

Consequently, drought events have harmful consequences on the livelihoods of those 

dependent on this sector. 
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 2.6.1 Socio-Economic impacts  

The economic consequences of drought encompass detrimental impacts on business 

operations and income generation for individuals. According to Mutekwa (2016) 

droughts reduce production figures, causing farmers to downsize their labour force, 

which results in elevated unemployment rates. Beyond joblessness, economic losses 

manifest as diminished income and decreased agricultural output. The escalating 

global demand for water due to population growth and economic progress has 

triggered water scarcity issues, particularly affecting various sectors, as highlighted 

by Adhikari (2018). Climatic shifts have heightened the frequency and severity of 

droughts worldwide, affecting regions disparately, according to the IPCC (2021).  

Notably, countries like India, with a significant portion of drought-prone land, have 

encountered more frequent and extended drought episodes since the mid-1990s, as 

evidenced by the research of Dodamani & Pathak (2018). These droughts have far-

reaching consequences, impacting crop production and income, access to domestic 

water, rural employment, and financial stability. This highlights the broader 

socioeconomic implications of drought, as demonstrated by Alawsi et al., 2022; 

Moghimi et al. (2020). India and Africa are similarly grappling with escalating 

drought occurrences, adversely affecting sectors such as agriculture, water resources, 

human health, and industries (Adhikari, 2018; Karanja, 2018). These drought-related 

impacts extend beyond immediate effects on crops and income to encompass issues 

like domestic water supply, rural employment, financial strain, and impacts on 

agricultural industries, land prices, financial institutions, closures, capital shortages, 

and reduced agricultural production. 

Hugo and Mugalavai (2010) examined the impact of drought in Laikipia County, 

located within the Upper Ewaso Ng’iro river basin. The study found that drought 

leads to inadequate planting, wilting, and stunted growth of crops, with some failing 

to thrive altogether. During periods of drought-induced food scarcity, farmers resort 

to consuming stored supplies, including seeds, resulting in delayed and improper 

planting practices. This exacerbates severe famine, hunger, and dependence on relief 

aid. Moreover, food scarcity prompts wildlife encroachment and crop destruction, 
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escalating tensions between local communities and wildlife, as observed by Karanja 

(2018). 

In arid & semi-arid lands (ASALs), livestock production constitutes a major socio-

economic activity, contributing to approximately 90% of employment and income 

opportunities, according to Huho & Mugalavai (2010). Drought-induced scarcity of 

both forage and water leads to livestock losses and diminishes quality and quantity. 

This, in turn, has adverse effects on daily activities like farming and herding, 

compelling communities to seek alternative sources of income such as sand mining, 

selling firewood and charcoal, and engaging in illegal logging. These activities 

exacerbate environmental deterioration and the spread of deserts due to deforestation. 

Additionally, Karanja (2018) highlighted that families in arid regions frequently turn 

to selling their livestock to generate income during drought periods. 

In Isiolo and Samburu Counties in Kenya, livestock migrate in search of water and 

pasture during droughts, negatively affecting their condition and market price. This 

leaves pastoralists without access to markets, leading to a loss of income options for 

domestic needs, including school fee payment, as highlighted by the European Union 

(EU) & NDMA (2018) and NDMA (2015). The social impacts of drought directly 

influence rural livelihoods, resulting in reduced rural populations, restricted access 

to education and healthcare, and internal conflicts driven primarily by food insecurity 

and reduced water supply, according to Mutekwa (2016).  

Communities living in the ASALs, particularly in the affected regions, have been 

profoundly impacted by drought, as illustrated by the research of Wambua et al. 

(2014) and Odhiambo et al. (2018). The 2008-2009 drought event adversely affected 

the livelihoods of pastoralists and agro pastoralists, affecting their access to food and 

water. This impact was similarly observed in Isiolo and Samburu counties, as 

documented by Odhiambo et al. (2018), where the reliance on livestock agriculture 

led to a severe toll on cattle and sheep populations, with over 50% of cattle and 60% 

of sheep succumbing to the conditions. Some communities were forced to migrate 

from their homes in search of sustenance and pasture for their livestock, as noted by 

FEWSNET (2020). The distance livestock needed to travel for water and grazing also 
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significantly increased, nearly doubling the distance in Marsabit County, according 

to Huho et al. (2009) World Food Program (2022). Additionally, the 2021/2022 

drought in the Horn of Africa caused a significant drop in maize cultivation by around 

50% in less productive farming regions, as reported by the World Food Program 

(WFP) (2022). 

Drought in the Upper Ewaso Ng’iro Basin disrupts trade, leading to a 10% to 23% 

year-on-year decline in livestock prices, attributed to oversupply and worsening 

livestock conditions due to scarce resources in rangelands, as observed by Kirui et 

al. (2022) and Musi et al. (2023). Decreased livestock and cereal transactions occur 

alongside rising staple food prices, reducing purchasing power for households, as 

reported by FEWSNET (2020). Thisforces impoverished households to sell livestock 

unsustainably for food or face food shortages. Consequently, thousands of people 

rely on relief aid, prompting mass migration from drought-affected homes to 

neighbouring towns and countries, leading to both intra- and inter-community 

conflicts, as highlighted by Hoffmann (2022); Lanari et al. (2018) and Lesrima et al. 

(2021).  

In Isiolo County, severe droughts have caused children from vulnerable households 

to drop out of school due to lack of food and school fees, disrupting education and 

affecting access, equity, and retention, according to Assessment Capacities Project 

(ACAPS) (2022) and NDMA (2015). Furthermore, the well-being of individuals is 

affected, and social interactions within communities are disrupted. Mutekwa (2016) 

explains that people often experience stress and anxiety due to uncertainties about 

when the drought will end and how to mitigate its impacts. The likelihood of health 

consequences arising from drought varies significantly, primarily depending on 

drought severity, population susceptibility, pre-existing health and sanitation 

infrastructure, and the available resources to manage the unfolding effects. 

The Centers for Disease Control and Prevention (CDC) (2012) indicates that specific 

health impacts related to drought become evident immediately and are easily 

observable and measurable. However, drought's gradual onset or prolonged duration 

can also lead to more complex, secondary health outcomes that are difficult to predict 



35 

 

or manage. Stanke et al. (2013) identify several main categories of health effects 

resulting from drought, including nutrition-related effects like general malnutrition 

and micronutrient deficiencies. They also identify water-related diseases such as E. 

coli and cholera outbreaks and ailments linked to airborne particles and dust, like 

exposure to silo gas and coccidioidomycosis. Additionally, they note vector-borne 

diseases like malaria, dengue, and West Nile Virus, along with the impact on mental 

well-being, leading to feelings of distress and emotional consequences. 

In Kenya's ASALs, the health consequences of drought are of notable significance. 

Research by organizations such as the NDMA (2021), United Nations Children’s 

Fund (UNICEF) (2022) and United Nations Office for the Coordination of 

Humanitarian Affairs (OCHA) (2023) reveals that as drought severity intensifies, 

fewer individuals seek healthcare services from established health centres due to 

security concerns and the necessity to migrate in search of water and grazing grounds. 

This situation underscores the need for mobile health outreach initiatives to address 

malnutrition and disease outbreaks. 

 2.6.2 Environmental Impacts 

Drought significantly impacts the environment by degrading soil quality, desiccating 

water bodies, and accelerating the process of desertification. Mutekwa (2016) and 

Vicente-Serrano et al. (2020) state that droughts reduce soil quality, diminishing 

organic activity, escalating wind erosion, and disrupting soil life. This phenomenon 

also results in habitat destruction, ecosystem disruption, and disturbances in the food 

chain. Consequently, animals are compelled to migrate to new areas for water, 

sustenance, and suitable habitats, as the World Food Program (2022) notes. Kenya's 

tourism industry, a major foreign exchange earner, is adversely affected by reduced 

biodiversity in areas like the Upper Ewaso Ng’iro Basin, which houses wildlife 

attractions (Mukhwana, 2016). There are also instances of heightened fire 

occurrences, soil erosion, and infrastructure destruction in specific regions due to 

drought events, as highlighted by Karanja (2018). The recurrent droughts have led to 

the intrusion of plant species incompatible with the native perennial grasses in certain 

areas (Huho et al., 2009). 
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Drought events have taken a toll on river basins in Kenya, resulting in acute water 

scarcity (Wambua et al., 2014). Over time, there has been a reduction in the water 

volume of the Ewaso Ng’iro River, causing segments like Buffalo Springs to 

desiccate (Bern & Notter, 2003; Gichuki, 2006). In the highland areas of the Upper 

Ewaso Ng’iro River Basin, there has been an increase in horticultural farming activity 

(Lanari et al., 2018). Due to decreased rainfall, farmers have initiated irrigation 

practices using river water. However, this practice has resulted in excessive water 

extraction from the river during dry periods, leading to conflicts between upstream 

and downstream users (Bern & Notter, 2003; Gichuki, 2006; Lanari et al., 2018; 

Mukhwana, 2016). 

Human activities have contributed to reduced river streamflow through water 

withdrawals, but the amplified occurrence of floods and droughts due to climate 

change is predicted to compound the risks (Omwoyo et al., 2017). For instance, 

prolonged droughts in the Ewaso Ng’iro basin, like the one in 2008-2009, led to the 

depletion of water supply sources such as rivers and shallow wells, intensifying the 

impact of water scarcity and resulting in significant economic, social, and 

environmental losses. This insight is supported by studies conducted by Kimwatu et 

al. (2021b) and Odhiambo et al. (2018). Additionally, Odhiambo's study highlights 

that both surface and groundwater sources, including river intakes and shallow wells, 

have limited water resources that are only sufficient to sustain one dry season.  

2.7 Adaptation to Drought  

According to Yung et al. (2015) drought adaptation can be characterized as the 

capacity of a system to respond to climate change, encompassing climate variability 

and extreme events like drought. This response involves mitigating potential harm, 

capitalizing on favourable circumstances, or effectively managing the repercussions. 

This endeavour can be driven by either public or private interests, with governmental 

bodies across various levels overseeing public interests and private interests 

encompassing individuals, households, businesses, and corporations (Smit & 

Pilifosova, 2003).  
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Adaptive capacity, as outlined by Meybeck et al. (2012), is a dynamic concept 

denoting a system's ability to adjust, thus lessening vulnerability. It consists of two 

dimensions: the ability to manage shocks and the capability to evolve. This capacity 

is moulded by a complex interplay of environmental, social, cultural, political, and 

economic factors, which shape vulnerability through exposure and sensitivity. 

Adhikari, (2018) underscores the significance of adaptation in safeguarding 

livelihoods and food security in numerous developing nations. The study also 

contends that adaptation strategies, predominantly short-term endeavours, can be 

expanded into longer-term approaches, allowing systems to diminish risks and social 

vulnerability. 

2.7.1 Strategies for Adapting to Drought 

Various households employ distinct strategies to adapt to drought, influenced by their 

perceptions of drought's nature. According to (Kalele et al., 2021; Karanja, 2018), 

rural communities possess diverse viewpoints on drought, guiding their individual 

and local adaptation strategies. This implies that comprehending people's perceptions 

and concerns about extreme weather events is pivotal for designing and executing 

effective climate adaptation policies. Drought events are intricate for individuals, 

making understanding these perceptions crucial for effective drought adaptation. 

In many African regions, farmers adapt to drought by changing their farming 

practices to withstand hot and warm climates (Gautier et al., 2016; Kalele et al., 

2021). They would plant crops that require less water or are drought resistant, 

irrigation, change crop patterns and varieties, select different seeds, change planting 

calendars, plant near the river, and adopt soil and water conservation practices 

(Gautier et al., 2016; Mutekwa, 2016). Karanja (2018) asserts that commercial 

farmers have a higher advantage during drought than subsistence and small-scale 

farmers because they mostly have strong financial backups and good infrastructure. 

Some small-scale farmers will sell their products at the local shops at a much cheaper 

price. The study also cites that some livestock farmers and pastoralists sell their 

animals, buy fodder, feed the animals with crops that would have been sold and a 

combination of these mechanisms. Some pastoralists would sell the animals to reduce 
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their herd size to buy fodder and generally compensate for the reduced income and 

save resources.   

According to Mutekwa (2016) and Noble et al. (2015), people migrate from 

communal areas to urban areas to look for better livelihoods in dry areas. This 

reduces their risks of drought effects since they might get jobs in the new locations 

and send money back home. Other pastoralists also migrate with their herds in search 

of pasture and would remain there for as long as the drought lasts. As established by 

Mutekwa, (2016) and Olabanji et al. (2021), in some parts of South Africa, some 

pastoralists divide their herds into smaller units depending on the quality of the herds 

and the herders. Young herders would go to relatives and friends to request grazing 

fields. The studies also state that other pastoralists will reduce the number of people 

who depend on livestock for food. Women and children might be sent away to live 

with relatives and allies in towns and farming villages. This enables the herders to 

migrate further, save the milk for calves and generate money for food. Some nomads 

will take wage employment temporarily as they wait for rains to restore pastures so 

they can go back to pastoralism. During the 2005-2006 drought and famine in Kenya, 

herders formed corporate groups and put their livestock under the care of some 

selected herders (Huho & Mugalavai, 2010). This enabled them to move in search of 

food and other income-generating activities. 

Mutekwa (2016) established that some households in rural communities in 

Zimbabwe had to reduce the quantity and number of meals during drought; most 

people would have two meals in a day to allow their food to last longer and to avoid 

expenditures on food. Also, in the Sahel region, as studied by Gautier et al. (2016), 

in addition to reducing consumption, most families used to buy and stock food in 

preparation. Furthermore, some studies (Kalele et al., 2021; Karanja, 2018; Olabanji 

et al., 2021) add that some farmers opt to practice crafting as a way of earning extra 

income; they would sell these products to tourists on the road and in towns. Some 

farmers also started harvesting indigenous and wild species like marula in Zimbabwe, 

wild yams and tree leaves in Burkina Faso. 
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Administration and institutions also play an important role in adaptation mechanisms 

in dry lands during drought (Udmale et al., 2014). For example, the studies mention 

that the government provides the communities with relief measures like food, water 

supply through tankers, agricultural loans, crop insurances and wave agricultural 

electrical bills in India. Based on Karanja (2018) study, Institutions like churches in 

the Laikipia West sub-county have created strategies that help the communities adapt 

to the impacts of climate change. They provide trainings that promote civic 

education, conflict resolution and democracy in areas affected by conflicts due to 

drought. They also provide food, shelter, and clothing to the victims of conflict and 

drought.  

Through the National Climate Change Response Strategies (NCCRS, 2010), the 

government of Kenya has developed some adaptation strategies for vulnerable 

communities. The strategies have promoted irrigated agriculture by developing 

irrigation schemes along river basins, setting up measures to institutionalize early 

warning systems on drought, flood and disease outbreaks, and investing in programs 

to harvest and store fodder during dry seasons. Additionally, the Ministry of 

Agriculture, (2016) has promoted economic diversification among pastoral 

communities and awareness campaigns among the pastoralist communities on the 

importance of balancing stocking rates with available land resources to ensure 

sustainable pastoralism. 

Rural communities in the parts of Upper Ewaso Ng’iro North River Basin have 

already perceived drought impacts in their areas and have applied a range of possible 

agricultural and non-agricultural adaptation measures based on their indigenous 

knowledge and experience (Gichuki, 2006; Huho et al., 2010; Lanari et al., 2018). 

They have used the available resources in the community and at the ecosystem level 

to design the adaptation strategies.  

Adaptation efforts in the UENB involve the utilization of diverse knowledge sources, 

both traditional and contemporary, by both group ranches and individual members. 

Innovations like grazing committees and rangeland management coordinators build 

upon traditional rangeland management systems (Birch, 2018). An evolution from 
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the earlier group ranches model to the adoption of conservancy models indicates 

progress, with most communities exploring and embracing a holistic management 

approach. These adaptation strategies are integrated into the system through various 

mechanisms, although their levels of adoption and implementation may vary. 

According to The Kenya Ministry of Agriculture, (2016), county governments are 

enhancing livestock breeds as an adaptation strategy to climate-induced risks. 

Introducing breeds that require less feed and are disease-resistant addresses forage 

scarcity linked to climatic changes (Birch, 2018; Ontiri & Robinson, 2016). The 

introduction of dairy goats has also gained traction due to their efficient feed 

utilization. Complimentary vaccines are distributed among farmers to enhance 

livestock resilience against climate-related challenges. The Ministry of Agriculture 

shows that to combat forage shortages, some county governments are promoting 

commercial fodder cultivation and feed conservation. They are providing equipment 

like balers, rakes, and mowers at affordable rates to support hay production. 

Additionally, hay is being transformed into silage for longer storage and a more 

reliable fodder supply. 

Crop farmers in the UENB primarily depend on agriculture for their livelihoods 

(Koech et al., 2020; Lanari et al., 2018; Ngigi et al., 2007). In response to climate 

change challenges, they are transitioning towards cultivating short-maturity crop 

varieties like sorghum, cowpeas, and green grams to maximize yields with reduced 

rainfall (Muthee, 2014; The Kenya Ministry of Agriculture, 2016). There's also 

diversification in dietary and crop choices, including previously underrepresented 

crops like cassava, sweet potatoes, and yams (Ministry of Agriculture, 2016). 

Additionally, farmers are embracing high-value traditional crops like sorghum, 

millet, cowpeas, pigeon peas, and green grams to reduce their reliance on maize as a 

staple, given these crops' shorter growth cycles and resilience to water stress.  Despite 

this, the uncertain rainfall patterns associated with rain-fed agriculture have 

prompted a greater reliance on irrigation for sustainable production (Muthee, 2014) 

and innovative methods such as drip irrigation, water harvesting, and large water 

tanks. There's also a growing interest in greenhouses and hydroponic farming, 

offering controlled environments requiring minimal water. Farmers also adopt 
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various practices to conserve soil and water resources, including minimum tillage, 

mulching, cover cropping, terracing, and herbicide-based weed control (The Kenya 

Ministry of Agriculture, 2016). Integrated soil and water conservation measures are 

emphasized, enhancing soil fertility and reducing runoff. Tree planting and woodlot 

establishment are common practices, and collaboration with the Kenya Forest 

Service has created Community Forest Associations (CFA). Farmers participate in 

tree planting on farms and nearby forests, contributing to diversified income sources 

and bolstering overall resilience against adverse weather impacts. 

Collective efforts among farmers have resulted in cooperatives tailored to various 

value chains. These cooperatives offer services at reduced rates due to economies of 

scale, extending credit facilities and improving market access for members' produce. 

These structures function as safety nets and enhance overall adaptive capacity. 

Farmers can secure essential resources like seeds and fertilizers through collective 

action, especially during environmental hazards. While insurance options exist to 

mitigate climate-related risks, their adoption remains limited, with only 1% of 

households enrolled in agricultural insurance (GoK, 2014). Migration, both internal 

and international, shapes individual and societal adaptation. Well-managed migration 

can enhance resilience through diversified livelihoods, remittances, and expanded 

networks (Gannon et al., 2020). 

  2.7.2 Challenges and Opportunities for Adapting to Drought 

The communities in the UENB are confronted with a spectrum of adaptation-related 

challenges. These challenges include inadequate pasture availability, water 

shortages, rangeland degradation, security concerns, competition for land use, 

conversion of land for agricultural purposes, and conflicts arising from neighbouring 

groups engaging in cattle theft (Ontiri & Robinson, 2016). The study found three 

main interconnected challenges: the scarcity of water for livestock, rangeland 

degradation leading to pasture shortages, and conflicts emerging from disputes over 

access to remote grazing lands. Such disputes often escalate into violence and 

threaten security, particularly in regions spanning county borders and inhabited by 

diverse ethnic groups (Lanari et al., 2018). 
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The degradation of rangelands is often attributed to practices of overstocking and 

overgrazing (Birch, 2018). Within the pastoral context, the ownership of substantial 

livestock herds serves as a coping mechanism during crises and a symbol of social 

status. Wealthier livestock proprietors tend to manage extensive herds, which, when 

coupled with insufficient mobility management, can lead to unsustainable grazing 

patterns and subsequent land degradation (Ontiri & Robinson, 2016). Such degraded 

land becomes susceptible to erosion during rainfall, causing gully erosion. 

Additionally, inadequate intervals between grazing events hinder the natural re-

seeding of rangelands. Furthermore, the influx of migrants from neighbouring 

counties seeking land for agricultural pursuits compounds the issue of diminishing 

grazing land. Land subdivisions and the erection of fences further exacerbate this 

influx. 

Numerous instances have shown that efforts to adapt to changing conditions are 

predominantly focused on local, regional, or national scales rather than on a global 

level, as discussed by Paavola and Adger in 2005. This emphasis on localized efforts 

leads to varying levels of vulnerability and capacity among communities, resulting 

in diverse impacts and adaptation requirements. As a result, adaptation initiatives 

often lack cohesion, spanning individual households, businesses, and organizations. 

Nonetheless, collaborative endeavours across different tiers also exist, as highlighted 

by Paavola and Adger (Gannon et al., 2020). 

Multiple obstacles impede effective adaptation efforts, falling into distinct yet 

interconnected categories (Adhikari, 2018). Ecological and physical limitations 

encompass natural barriers that adaptation encounters, such as altitude, temperature, 

or thresholds for water availability. Human and information-based constraints arise 

due to gaps in knowledge, technological restrictions, and financial limitations, 

including policymakers' insufficient awareness of climate impacts. Social barriers 

encompass a range of factors, including cognitive and normative influences and 

institutional obstacles (Gannon et al., 2020). 

Policymakers often misconceive the scope of adaptation, viewing it as separate from 

practical implementation (Meybeck et al., 2012). Integrating climate adaptation into 
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development and adopting a technology-driven perspective becomes essential to 

reduce vulnerability and ensure resilient progress. Cultural barriers can also impede 

adaptation efforts, as strong attachments to specific locations create resistance to 

relocation. The changing socioeconomic landscape due to climate impacts has led to 

shifts in gender roles, particularly in rural contexts. With an increase in male 

outmigration, women shoulder the responsibilities of managing farmland, adapting 

to climate change, integrating into social networks, and handling household chores. 

Despite adding complexity, these challenges have improved women's societal 

decision-making roles (Huyer et al., 2021). 

In climate adaptation, planning and executing strategies involve complex decision-

making across individual, business, and governmental domains at various scales, 

ranging from local to international (Adhikari, 2018). Nevertheless, these strategies 

must account for various sectors such as irrigation, forestry, and livestock, 

necessitating interdisciplinary collaborations involving local organizations, farmers, 

and stakeholders. Successful adaptation planning requires coordination among 

institutions, but insufficient collaboration remains a concern. Integrating local 

knowledge into policies is crucial for effective planning. Collaborative partnerships 

between institutions are crucial for harmonizing adaptation efforts. Existing 

institutional structures and market mechanisms must be considered during adaptation 

planning—the success of adaptation hinges on addressing the underlying causes of 

vulnerabilities. Measures include providing financial assistance for agricultural 

adaptation, promoting off-farm employment, integrating adaptation into 

development plans, and enhancing access to information and training. 

2.8 Research Gap 

In summary, this chapter has thoroughly examined existing literature related to 

drought characteristics, assessment methods, droughts' impact on rural community 

livelihoods, and the strategies these communities employ to adapt. The review has 

confirmed that utilising the Standardized Precipitation Index (SPI) and the 

Standardized Precipitation-Evapotranspiration Index (SPEI) offers a viable approach 

to assessing African drought scenarios. Furthermore, it has been observed that 
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Artificial Neural Network (ANN) models present suitable alternatives to traditional 

regression models. Notably, no previous study has explored the application of SPI, 

SPEI, and the performance of ANN models in predicting these indices specifically 

for the Upper Ewaso Ng’iro North River Basin. Nevertheless, research by Mutiga et 

al. (2011) and Wambua et al. (2014) suggests that ANN models can effectively 

monitor and predict droughts in Kenya. The analysed literature also underscores the 

absence of comprehensive research examining meteorological drought monitoring 

across all Upper Ewaso Ng’iro North River Basin regions, particularly considering 

the diverse climatic zones within the basin. 

While the reviewed studies have concentrated on the consequences of and 

adaptations to drought events in various locations, a comprehensive assessment of 

the entire Upper Ewaso Ng’iro North River Basin has not been done. Consequently, 

this study primarily centred on characterizing drought occurrences in this region 

while considering the varying climatic zones within the basin. Furthermore, the study 

identified the impacts of these droughts on rural community livelihoods and their 

adaptation strategies comparing both upstream and downstream effects.  
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2.9 Conceptual Framework 

Figure 2.1 presents a conceptual framework of the study. It illustrates the interaction 

between drought events, drought modelling, effects of droughts, and drought 

adaptation strategies.  

 

Figure 2.1: Conceptual Framework  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study Area 

The Upper Ewaso Ng'iro North River, covering an area of 15,251 km2 is located 

between 0◦15’ south and 1◦00’ north, and 36◦30’ east and 37◦45’ east. This region is 

situated on the leeward side of Mount Kenya and the Aberdare’s (Nyandarua) 

Ranges. The basin's diverse topography results in varying climatic zones due to 

altitudes ranging from 824 meters above sea level in the lowlands to 5,172 meters at 

the mountain's peak (Figure 3.1). 

 

Figure 3.1: Location of the Upper Ewaso Ng’iro River Basin and the 

Meteorological Stations 

This area exhibits a wide range of tropical highland-lowland characteristics, 

transitioning from the Alpine zone at the source of the Ewaso Ng’iro River in the 

Nyandarua Ranges and on Mount Kenya's slopes. The middle region is characterized 

by forested areas, woodlands, and bush vegetation. The transition extends further to 
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a sub-humid zone in the lowland semi-arid plateau and eventually to arid plains 

(Kiteme, 2020). 

The upper parts of the catchment experience annual temperatures ranging from 9°C 

to 22°C, while the lower parts range between 15°C to 29°C. The annual potential 

evapotranspiration (PET) in the basin varies from 1200 to 1800 mm/year. The basin 

exhibits spatial and temporal variations in annual rainfall, with values ranging from 

300 mm in the northeast areas to 1500 mm at the source in the Nyandarua ranges 

(Ericksen et al., 2012). The rainfall pattern in the region is characterized by three 

distinct seasons, including long rains from April to June, short rains in October and 

December, and a brief rainfall season in August. 

various traditional pastoral communities such as the Borana, Mukogodo, Maasai, 

Turkana, Samburu, Gabra, and Rendille residing in the lowlands. Additionally, the 

highlands are inhabited by the Kikuyu, Meru, and Europeans. As of 2019, the 

population of the basin was estimated to be around 334,405 individuals (KNBS, 

2019a; Wamucii et al., 2023). 

The primary land uses within the basin include livestock rearing, agriculture, and 

wildlife and forestry. Pastoralism is mostly practised in the drier lowlands while 

livestock ranches and agriculture are practised in the high rainfall areas around Mt 

Kenya and the Nyandarua Ranges. The Ranches are managed by commercial 

enterprises together with smallholder farmers and commercial agriculture enterprises 

oversee (Omwoyo et al., 2017). Agriculture in the basing includes commercial 

horticulture, floriculture and wheat farming alongside subsistence farming. Both 

government and private wildlife conservancies are responsible for wildlife and forest 

conservation efforts in the area.  

3.2 Assessment of Drought Trends  

3.2.1Collection Rainfall and Temperature Data  

Monthly Rainfall and temperature data spanning the years 1981 to 2020 were 

acquired from ten meteorological stations. These data sources included the Kenya 
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Meteorological Department (KMD) and the Centre for Training and Integrated 

Research in ASAL Development (CETRAD). The stations, as designated by 

CETRAD, are shown in Figure 3.1, and listed in Table A1.  

3.2.2 Data Cleaning 

Missing data poses a significant obstacle to conducting trustworthy statistical 

analyses. Therefore, before computing the indices, the data underwent a thorough 

examination to identify any missing values, followed by a data reconstruction 

process. To achieve this, a comparison was made between the data from the stations 

and data from neighbouring stations, along with satellite data obtained from NASA's 

Langley Research Centre (LaRC) Prediction of Worldwide Energy Resource 

(POWER). The computations to handle missing data were performed in the R 

environment using the Multiple Imputation Chained Equations (MICE) technique 

implemented through the MICE package.  

3.2.3 Standard Precipitation Index Analysis 

Average monthly rainfall data from 1981-2020 were employed for the computation 

of the Standardized Precipitation Index (SPI). To calculate the SPI, a 40-year 

aggregated monthly rainfall data series was fitted into the Gamma probability 

distribution function and subsequent conversion into a normal distribution function, 

following the methodology outlined by Dalezios (2014).  

The rationale behind selecting the gamma probability distribution function was 

supported by its capacity to accommodate both positive and non-zero values, as 

highlighted by Khan et al. (2020). Initially, the SPEI library in R was utilized to 

calculate the SPI indices. Various distributions, including Gamma and Pearson III, 

were initially tested in R to compare their functionalities and identify the most 

suitable distribution. Subsequently, the results were juxtaposed to determine the 

distribution that exhibited the best fit to the raw precipitation data. Additionally, 

sensitivity analysis was conducted using Excel to explore the impact of changes in 

distribution parameters on the outcomes. It was found that Gamma distributions 

outperformed the Pearson III distribution in fitting the precipitation data. This finding 
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aligns with the conclusion drawn by Vergni et al. (2017) , who observed that the two-

parameter gamma distribution yielded less reliable estimates of precipitation 

probability compared to Pearson type III and generalized normal distributions.  

Based on Equation 2.7, computation of the 3-, 6-, and 12-month SPI values for this 

study was facilitated through the SPI packages available via the Comprehensive R 

Archive Network. In this analysis, a drought event is identified when the SPI value 

consistently remains negative. Conversely, the conclusion of a drought event is 

indicated when the SPI value turns positive, as discussed by Mishra and Singh(2010) 

and Khan et al. (2020). Table 2.2 shows the classification of drought based on SPI. 

3.2.4 Standard Precipitation Evapotranspiration Index Analysis 

Input parameters encompassed a comprehensive 40-year dataset of monthly 

precipitation alongside maximum and minimum temperature records. In the 

computation of the SPEI, the first step involved calculation of Potential 

Evapotranspiration (PET). Nevertheless, determining PET presents several 

complexities as it relies on a range of variables, including surface temperature, air 

humidity, incoming soil radiation, water vapor pressure, and ground-atmosphere 

latent and sensible heat fluxes. Various methods exist for PET calculation, contingent 

upon the accessibility of meteorological data. In this study, the Thornthwaite method, 

as introduced by Thornthwaite (1948), which relies on monthly mean temperature, 

was employed. 

Negative values of the SPEI denoted drought conditions, while positive values 

indicated wetter or above-average conditions, as outlined in Table 2.2. The 

computation of SPEI values for all meteorological stations across 3-, 6-, and 12-

month time scales was executed using Equation 27, leveraging the SPEI packages 

accessible through the Comprehensive R Archive Network. 

3.2.5 Spatial Analysis of SPI and SPEI 

Geographic Information Systems (GIS) was utilized to generate isopleth maps. To 

estimate SPI and SPEI values across the UENB, data from all ten monitoring stations 
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underwent interpolation using the kriging interpolation method implemented in the 

Surfer Mapping Software. In kriging, a predefined radius was used to fit the weights 

of the ten known station points into a function, thereby deriving the output values for 

each station. 

3.2.6 The Mann–Kendall Trend Test Method 

To analyse drought trends based on SPI and SPEI characteristics, the Mann-Kendall 

(M-K) trend test was applied, alongside Sen's Slope (SS) estimator. The M-K trend 

test, recommended by the WMO for investigating trends in hydrological and 

meteorological variables was employed. Utilizing the formula provided by Khan et 

al. (2020), Pei et al. (2020), and Mehta and Yadav (2022), the Modified M-K (MMK) 

trend test package in the R programming language was utilized to assess drought 

trends across the ten stations within the study area. A significance level of 95% and 

a p-value of ≤0.05 were applied in this evaluation. In this context, positive SS values 

indicated an increasing trend, signifying a rise in wet conditions, while negative 

values denoted a decreasing trend, indicating an increase in dry conditions.  

3.2.7 Assessment of the Linear Relationship Between SPI and SPEI 

The Pearson correlation coefficient (r) is a statistical measure that helps us 

understand how two variables are related. It gives us a number between -1 (meaning 

a perfect negative relationship) and 1 (representing a perfect positive relationship), 

with 0 suggesting that there's no significant correlation between the variables. This 

coefficient provides insights into the strength and direction of the relationship 

between two variables (Mehr et al., 2020). In this study, the Statistical Package for 

the Social Sciences (SPSS) was employed to compute the coefficient and assess the 

SPI/SPEI relationship.  

3.3.1 Artificial Neural Network Model Data Sources  

SPI and SPEI were used as inputs for the ANN. Drought events were predicted based 

on drought indices on a range of short three months, medium six months, and long-

term 12 months.  
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3.3 Drought Forecasting 

3.3.2 Artificial Neural Network Model Development 

To model the drought using the DIs, time-series data was partitioned into short three 

months, medium six months, and long-term 12 months (Figure 3.2). A dataset was 

prepared for each case involving the inputs and the corresponding output. The 

workflow of neural network design is summarised in Figure 3.2, 7 key stages 

including: 1) Collect data; 2) Create the network; 3) Configure the network; 4) 

Initialise the weights and biases; 5) Train the network; 6) Validate the network (post-

training data); 7) Use the network. 
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Figure 3.2: ANN Model Development Process 
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The SPI and SPEI data values for the different stations in the UENB were used to 

model the ANN program in the Matrices Laboratory (MATLAB). The first step, 

ANN network selection, involved creating and configuring the network. The feed-

forward MATLAB function was used to create the network. The number of input 

neurons in the input layer and the number of hidden neurons in the hidden layer, 

equal to 2n+1, were selected. The data were then pre-processed and divided into three 

groups for training, testing and validating the model. Using the MATLAB divider 

and function, the data were randomly divided into groups for training, validating and 

testing on a ratio of 0.7: 0.15: 0.15. To configure the network, the inputs were 

identified, and the weights and biases were initialised. Figure 3.3 shows a basic 

multilayer ANN with 12 neurons in the hidden layer that was used in the study in 

MATLAB. 

 

 

Figure 3.3: Basic Multilayer ANN 

 

After initialisation, the network was then trained using the Levenberg-Marquardt 

training algorithm. The model training process involved adjusting the network 

parameters, i.e. the weights and biases, to optimise the network's performance. The 

validation dataset was used to validate the performance of the calibrated model and 

to check if the model outputs compare well with the desired targets. During this 

process, the error on the validation set was monitored, and at minimum error, the 

weights and biases were saved. After training, the test dataset was then used to test 

the model's performance. Mean square error (MSE) was used as the performance 

indicator. The MSE was monitored during the training session using the validation 
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dataset; training stops when the value is the minimum and there is no further 

reduction.  

By employing a trial-and-error approach, the quantity of hidden neurons was 

modified by either incrementing or decrementing it by a value of one relative to the 

previous quantity. The best ANN was selected by picking the model architecture with 

the best efficiency in forecasting the indices. This process was repeated for all the 

meteorological stations and different drought indices. 

The three stages are plotted in curves and examined to evaluate the model's 

performance after the training. For training to be successful and sufficient, the testing 

and validation curves should have minimal differences (R. Wambua et al., 2014). 

According to Beale, Hagan, & Demuth (2014), the curves detect issues like 

overfitting and underfitting errors that might result from memorising the training 

examples by the network. The network fails to learn how to generalise new situations; 

thus, the training error becomes small, but with a new dataset, the error becomes 

large. This error was resolved by adjusting the number of hidden neurons and 

stopping training after validation when the MSE did not show any changes. This 

study adopted the ANN with the least MSE as the most efficient model. The other 

factor considered in the study was the regression coefficient. The Coefficient 

indicated the strength of the relationship between the output and the target. The closer 

the R-value to 1, the stronger the relationship, thus the better the model (Beale et al., 

2014). Another model assessment plot is the model training performance curve. This 

indicated the reduction rate of MSE for the training, validation and testing datasets. 

If the training and validation curves have no significant differences, the model is 

regarded as well-trained and unlikely to suffer from overfitting.  

3.4 Assessing the Impacts of Drought on the Livelihoods of Communities 

3.4.1 Data Sources for Drought Assessment 

Primary data on farmers' livelihoods and their strategies for adaptation were gathered 

through surveys and interviews with key informants. Additional secondary data was 

obtained from reviewing published literature such as books, reports and journals on 
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drought modelling and livelihoods, impacts of drought and adaptation strategies. This 

was used to supplement the primary data collected.  

3.4.2 Data Collection for Drought Assessment   

Semi-structured questionnaires were used to collect data on farmers and their drought 

adaptation strategies. The semi-structured questionnaires focused on the effects of 

drought on the livelihoods and their adaptation strategies during drought 

events.  Interviews with key informants selected based on their ability to inform study 

objectives were held. A standard interview guide was prepared before the interviews.  

3.4.3 Sampling Procedure and Sample Size 

A stratified random sampling survey acquired the population group of 58 individuals. 

The criteria for stratification were based on the economic activity in relation to 

agriculture. The population was first divided into two or more groups; for this study, 

the groups were the pastoralists, small-scale farmers and commercial farmers. The 

sub-groups identified were the people vulnerable to drought impacts. This method 

aimed to obtain the representation from the various subgroups in the basin. According 

to Mugenda & Mugenda (2003), the individuals should be selected so that the 

subgroups in the population are more or less reproduced in the sample, which means 

that the population sample should be made up of not less than two subgroups.  

To determine the required sample size, Slovin’s formula was used. It is an approach 

based on precision rate and confidence level.  The sample size was calculated using 

Equation 3.1, assuming the population is too large to sample every member. 

𝑛 =
𝑧2𝑝𝑞𝑁

𝑒2(𝑁−1)+𝑧2𝑝𝑞
       (3.1) 

Where n is the size of the sample 

 N is the actual population (See table 3.1)     

 P is the sample proportion (assumed 0.05%) 
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 q= 1-p 

 z is the value of standard variate at a given confidence level calculated from 

the area under the normal curve table (1.96 at 95% confidence level). 

 e is the acceptable error (the precision) (the acceptable error is 5% which is 

0.05) 

The study took place in three villages in the UENB: Kisima, Lekurruki and Leparua 

conservancy in identified villages selected based on accessibility to the area and 

safety of the researcher. The villages are located in areas most prone to drought 

(NDMA, 2017). The selected sub-locations had a total household of  1003 (Kenya 

National Bureau of Statistics, 2019a), translating to 82 calculated households.  

Table 3.1: Study location and sample size 

County  Sub-county Villages Total 

households(N) 

(KNBS, 2019b) 

Sample 

households(n) 

Isiolo  Isiolo  Leparua 

Conservancy 

358 30 

Laikipia Laikipia 

North  

  Lekurruki 286 22 

Meru Buuri  Kisima 

(Munyagalo) 

359 30 

Eighty-two questionnaires were administered to the selected household respondents 

for the household survey. Out of 82 questionnaires administered, some were 

incomplete and biased and could not be considered during analysis. During the data 

analysis phase, fifty-eight questionnaires were taken into account, indicating a 71% 

response rate. This response rate is deemed sufficient to draw conclusions for the 

study. As per Mugenda & Mugenda (2003), a 50% response rate is considered 

acceptable, 60% is viewed as favourable, and a response rate exceeding 76% is 

regarded as highly commendable. 
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3.4.4 Impacts of Droughts on the Livelihoods of the Communities 

The effects of drought events that the participants can remember on their livelihoods 

were also evaluated. The questionnaire was analysed using SPSS, and the data was 

coded and categorized based on the responses. The evaluation of drought impacts on 

the communities' livelihoods involved assessing the perception of drought and the 

consequences of droughts on households using questionnaires. These effects 

encompassed aspects related to health, environment, and social well-being. The 

evaluation also considered the participants' recollections of drought events and their 

impact on livelihoods. The questionnaire responses were analysed using SPSS, with 

data being coded and categorized accordingly. 

The data collected from the field was analysed based on the assigned codes from the 

questionnaire responses. Additionally, the questionnaire allowed participants to 

provide comments not covered in the closed-ended questions. SPSS was 

predominantly used to analyse the data, focusing on the percentage of participants 

who selected a specific option out of the total number of respondents, which 

amounted to 58 households.  

3.5 Assessment of the Drought Adaptation Strategies by the Communities 

For the community's adaptation strategies, similar to the assessment of drought 

impacts, an assessment was conducted using questionnaires that specifically targeted 

their responses to various drought events experienced in the region. The 

questionnaire data was analysed through SPSS, with coding and categorization 

employed to organize the responses.  

3.6 Data Validation  

Rainfall and temperature data were cleaned to prevent any missing data, as detailed 

in subheading 3.2.2. It's essential to highlight that this study solely focused on 

drought events based on rainfall and temperature data and did not consider climate 

change trends. This limitation was due to financial constraints and data availability, 

as analysing climate change trends requires extensive resources and data. 



58 

 

Additionally, the drought forecasting in this study specifically evaluated the 

performance of ANN in predicting SPI and SPEI values rather than utilizing climate 

change trends to forecast future drought events. 

To ensure the validity of the research instruments, two steps were taken to validate 

the questionnaire. First, two expert reviews were conducted, followed by a pilot study 

in Meru, Timau area. This preliminary study helped refine the questionnaires, making 

them as clear as possible and avoiding uncomfortable questions before gathering 

primary data. The questionnaire was revised after the expert reviews and pilot study, 

and unclear questions were adjusted. 

For the sample study group, there was a conflict over biased views and personal 

issues; hence, the study only selected the data that supported the main research 

argument. During data analysis for the impacts and adaptation, the frequency of 

responses for each factor was considered rather than the number of people who 

responded. This approach allows respondents to provide multiple responses to the 

same questions. For instance, an individual might be affected by drought in various 

ways, such as migrating in search of pasture and experiencing conflicts over water. 

Consequently, certain responses may exceed the number of respondents. 

3.7 Ethical Considerations  

This study adhered to three fundamental ethical principles in research: respect for 

persons, beneficence (concern for welfare), and justice and equity (Vanclay et al., 

2013). Participation in the research by communities and other participants was 

entirely voluntary, and they were provided with all relevant information in an 

appropriate format before giving their consent. Research objectives and the use of 

the acquired information were orally explained to the participants. Written consent 

was obtained when possible, and in cases where it was not feasible, oral consent was 

recorded on the phone. Participants were assured of their right to withdraw from the 

study at any time. 

To prioritize the welfare of the participants, the data collected was anonymized to 

ensure that their identities remained undisclosed. Information was presented in a 
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generalized manner to protect individual privacy. Participants were fully informed 

about potential risks and benefits associated with the research, and those who might 

be negatively affected were not included in the study. Confidentiality was strictly 

maintained, and personal information, transcripts, audio and video recordings were 

kept in secure storage. Sensitive topics, like inter-communal conflicts, were avoided 

to prevent causing discomfort to participants. The opinions of women and youth were 

sought and included in the research to promote fairness and to ensure justice and 

equity. 

3.8 Observation of COVID-19 Protocols 

The field personnel strictly adhered to all health recommendations related to COVID-

19 issued by the state, county, and town authorities at the research sites. They also 

followed the guidelines provided by the Ministry of Health (MOH) (2021). Before 

visiting the research areas, each researcher assessed COVID-19 symptoms. If any 

symptoms were present, they refrained from participating in the study. Throughout 

the research, the personnel ensured they had sufficient personal protective equipment 

and sanitation solutions and consistently wore masks when interacting with people. 

They maintained physical distancing, avoided overcrowding and body contact, and 

meticulously kept a log of all their movements, including dates, times, locations, and 

descriptions of interactions. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Drought Trends in the Upper Ewaso Ng’iro North Basin 

4.1.1 Spatial-Temporal Drought Variations in the UENB 

Figures 4.1, 4.2, and 4.3 depict the variation of SPI and SPEI at 3-, 6-, and 12-month 

scales. The results, observed across all stations, indicate an increase in dry periods, 

particularly after 1999. This monthly variation in SPI and SPEI highlights distinct 

shifts in dry and wet conditions each month. Post-2014, both indices exhibit a 

significant rise in dryness during certain months, leading to the identification of four 

drought characteristics: mild drought, moderate dryness, extreme dryness, and severe 

dryness (Figures 4.1 to 4.3). 

The results reveal that SPEI identifies more drought years than SPI in the Northern 

(stations 1, 22, 94) and Central (10, 9, 80) parts of the basin. SPEI 3 detects additional 

drought years in 2002, 2007, and 2012, while SPEI 6 and 12 reveal droughts in 2017 

and 2018 (see Figures 4.1 and 4.2 and Figure A2). Conversely, in the Southern region 

(stations 51, 69, 83, 89), closer to the river's source, both indices indicate fewer 

drought years compared to the North and Central parts. Here, SPI and SPEI show 

similar drought years (Figure 4.3). Notably, the study period between 2013 and 2019 

witnesses an extended drought phase in the basin. SPEI identifies extreme droughts 

in 1987, 2000, 2004, 2006, 2009, 2014, 2018, and 2019, while SPI recognizes 

extreme droughts in 2000, 2004, 2009, 2014, 2018, and 2019 (Figures 4.1, 4.2, and 

4.3).  
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Figure 4.1: SPI and SPEI values for 3-, 6-, and 12-month timescales from 1981-2020 

for Archer’s Post Station (1). 
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Figure 4.2: SPI and SPEI values for 3-, 6-, and 12-Month Timescales from 1981-

2020 for Colcheccio Station (9). 
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Figure 4.3: SPI and SPEI Values for 3-, 6-, and 12-Month Timescales from 1981-

2020 for Mukogondo Station (69). 

The spatial evolution of meteorological drought between 1981 and 2020, as revealed 

by SPI and SPEI, illustrates drought severity (Figures 4.4 and 4.5), duration (Figure 

4.6), and intensity (Figure 4.7). Over a ten-year scale, the UENB exhibits an evident 

trend of increased drought intensity and severity in most regions from 1981 to 2020. 

SPI presents the highest drought values, ranging from -0.1 to -0.9 between 1981 and 

2000, -0.6 to -1 from 2001 to 2010, and -0.8 to -1.5 from 2002 to 2020. In contrast, 

SPEI indicates severe drought values of -1 from 1981 to 1991, -1.5 to -2 from 1991 

to 2010, and -2 to -2.5 from 2011 to 2020.  

For SPI, the Northeast part of the UENB, the lowland, inherently the most arid, 

consistently leans towards extreme drought across all time scales, while the central 

and southeast regions, the higlands and mountain areas, tend towards mild drought. 

In the case of SPEI, extreme to severe droughts persistently manifest in the North, 
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Northwest, Northeast, and Central parts of the basin, the Laikipia Plateau and 

lowlands, from 1981 to 2020, with the East and West experiencing moderate drought. 

 

Figure 4.4: Spatial distribution of drought severity for SPI in the UENB.  

At 6- and 12-month scales, the Northeast demonstrates extreme drought consistently 

from 1981 to 2020, while the Central area gradually experiences an escalation in 
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severe to extreme drought across all time scales from 2001 to 2020. Overall, both 

indices indicate that the northern part of the basin, closer to the river's outlet, is highly 

susceptible to frequent droughts.this findings aligng with findings by Karanja (2018) 

and Odhiambo et al. (2018) who discussed that there has been an increase of drought 

occurrences in the Laikipia Plateau and the lowlands of the basin.  
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Figure 4.5: Spatial Distribution of Drought Severity for SPEI in the UENB. 

Examining drought duration, in this case the duration of a historic drought event from 

1980 to 2020 i.e., a total of 480, SPEI identifies the North and Central regions as 

experiencing the most prolonged periods, extending beyond 410 months (Figure 4.6). 

In contrast, the Southern areas have shorter drought periods, with approximately 380 

months of drought, while the East, West, and parts of the lower Central region record 

drought durations ranging from 385 to 400 months. SPI exhibits a similar trend but 

with a lower number of drought months compared to SPEI. The North and West 

regions show 400 months, the Central and East range from 395 to 360 months, and 

the South region experiences less than 360 months of drought.  

 

Figure 4.6: Spatial Distribution of Drought Duration in the UENB from 1981-

2020. 

Regarding drought intensity, represented by the number of events below -1.5 (Figure 

4.7), drought intensity increases from South to North and with longer time scales. 

SPI indicates 16-31 months, 18-38 months, and 22-38 months, while SPEI shows 26-

73 months, 26-40 months, and 26-42 months of high intensity for the -3, -6, and -12 

timescales, respectively. Across both indices, it is consistently observed that the 
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number of drought events with high intensity increases from the South to the North 

of the basin, with mountainous areas exhibiting fewer months of high intensity (22-

26 months) and lowlands registering higher numbers (up to 42 months). The analysis 

reveals that drought severity, duration, and intensity in the UENB escalate from the 

South, near the river's source, to the North in the lowlands and the outlet. 

Between the two indices, SPEI portrays drought intensity as more severe than SPI. 

SPEI outperforms SPI in detecting the spatial evolution of drought because it 

accounts for both temperature and rainfall changes. In summary, due to variations in 

SPI and SPEI values in time series, their drought characteristics differ in space across 

different timescales. 

 

Figure 4.7: Spatial Distribution of Drought Intensity in the UENB from 1981-

2020. 

Since the start of the 21st century, drought events in the UENB have become more 

frequent. Notably, variations in SPI and SPEI are discernible across various time 

scales, signifying shifts in dryness and wetness each month. This shift is especially 

pronounced after 1999, with an increase in dryness observed in some months. it 

became evident that SPI and SPEI portrayed slightly distinct drought patterns each 
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month similar to findings by Liang, Su, and Feng (2021) in their research conducted 

in the Jinta River basin in Northwestern China.  

The study identifies moderate to extreme drought events in multiple years, including 

1983/84, 1987, 1991/92, 1995/96, 1999, 2001, 2004/2005, 2006, 2007, 2008, 2009, 

2011, 2014, 2016, 2017, and 2019. Among these, the droughts in 2007, 2011, and 

2016/2017 are notably severe, aligning with previous studies by Karanja (2018) and 

Mwangi et al. (2014); NDMA (2017) and FEWSNET (2020). In fact, the 2016/2017 

drought was designated a national disaster by the Kenyan government and incurred 

significant economic loss of up to US$ 12.1 billion (NDMA, 2017). Moreover, 

Mbogo et al. (2014) report that the 2011 drought affected more than 13.3 million 

people across Kenya, Ethiopia, and Somalia. Both SPI and SPEI highlight 2020 as a 

moderately wet year, consistent with reports by FEWSNET (2020) confirming it as 

a relatively wet.  

Both SPI and SPEI identified the year 2010 as a non-drought year, which aligns with 

findings by Karanja (2018) and Odhiambo et al. (2018), who noted that areas around 

station 80 experienced heavy rainfall and subsequent flooding in that year. However, 

it should be noted that SPEI indicated moderate drought conditions in 2008/2009, 

consistent with the observations of Odhiambo et al. (2018), Mwangi et al. (2014), 

and NDMA (2017). In contrast, SPI also indicated a moderately wet season in 2007. 

This discrepancy may be attributed to SPI not accounting for PET (potential 

evapotranspiration).  

Furthermore, both SPI and SPEI identified a severe drought in 2007, consistent with 

the findings of FEWSNET (2020) and Mbogo et al. (2014), which led to significant 

government expenditure on relief efforts. The study also identified drought events in 

previous years, including 1983/84, 1987/1988, 1991/92, 1995/96, 1999/2000, and 

2004/2005, confirming that drought events have become increasingly severe over the 

past four decades. This is in line with predictions by FEWSNET (2022) and Mwangi 

et al. (2014) of more frequent drought events in the future. Additionally, as indicated 

by Famine Early Warning Sign Network (FEWSNET) (2020) and United Nations 

Environment Programme (UNEP) & GOK (2006) assessments, climate change is 
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anticipated to bring about more severe drought occurrences in the basin, which will 

contribute to elevated water stress, decreased agricultural yields, heightened food 

insecurity, and malnutrition. 

Regarding meteorological drought events in the UENB, an upward trend was 

observed, particularly after 1999, with an increase in drought frequency noted after 

2004. This increase in drought intensity and severity varied across stations, with 

tropical forest regions (stations 51, 69, 83, 89) experiencing milder droughts 

compared to arid and semi-arid regions (stations 1, 9, 10, 22, 80, 94). This difference 

is attributed to the basin's topographical characteristics, where precipitation 

decreases with decreasing altitude while PET rises. Consequently, the downstream 

Northern region experiences more frequent and severe drought events, rendering it 

more vulnerable to drought. This aligns with the findings of Omwoyo et al. (2017), 

who also observed higher precipitation levels upstream compared to downstream in 

the basin. Both regions, however, face increasing drought challenges that 

significantly impact agriculture and socioeconomic activities (Huho et al., 2010; 

Karanja, 2018). 

4.1.2 Consistency of SPI and SPEI 

The consistency of SPI and SPEI was analysed through correlation coefficients (r) at 

different time scales, revealing significant positive correlations in all stations (Table 

4.1). The strongest relationship (r = 0.876) was observed between SPI12 and SPEI12 

in stations 51, 83, and 89. Longer time scales exhibited stronger correlations, while 

shorter time scales showed weaker correlations. This trend is consistent with the 

findings of Mehr et al. (2020) and Ojha et al. (2021), highlighting the importance of 

time scale in assessing the correlation between the two indices. Furthermore, the 

findings highlight that in arid regions such as the Northern area, encompassing 

stations 1, 9, 10, and 94, characterized by higher average temperatures and lower 

average precipitation levels, the correlation between SPI and SPEI tends to be lower 

compared to more temperate climatic zones. This outcome aligns with similar 

observations made by Homdee et al. (2016) and Lotfirad et al. (2022), suggesting 

that SPI's performance in arid and semi-arid regions, often referred to as ASAL (Arid 
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and Semi-Arid Lands) regions, is relatively limited. This limitation arises from the 

SPI's simplistic approach, which solely relies on precipitation data without 

considering other factors contributing to drought dynamics. This discrepancy is 

further underscored by the fact that the SPEI incorporates evapotranspiration, a 

critical factor in drought assessment. SPEI tends to be higher in the Northern region 

(with an annual average of 1800 mm) compared to the Southern parts (with an annual 

average of 1200 mm), as discussed by Mehr et al. (2020) study of drought in Ankara 

Turkey. 

Table 4.1: Pearson Correlation Coefficients of the SPI and SPEI Values. 

Station ID Station Name SPI3/SPEI 3 SPI6/SPEI6 SPEI12/SPEI12 

1 Archer's Post 0.737** 0.613** 0.813** 

9 Colcheccio 0.729** 0.775** 0.793** 

10 Dol Dol Dao 0.754** 0.764** 0.771** 

22 Isiolo Dao 0.677** 0.761** 0.807** 

51 Mukenya Farm 0.722** 0.786** 0.876** 

69 Mukongondo Farm 0.771** 0.797** 0.823** 

80 Rumuruti Mow 0.755** 0.794** 0.792** 

83 Segera Plantations 0.722** 0.786** 0.876** 

89 Suguroi Estate 0.722** 0.786** 0.876** 

94 Wamba Do 0.581** 0.664** 0.703** 

 **. Correlation is significant at the 0.01 level (2-tailed). 

4.1.3 SPI and SPEI Trends  

The application of the Mann-Kendall (M-K) trend test and Sen's slope estimator 

revealed notable trends in drought occurrence.  
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Table 4.2 provides an overview of the drought trends and their magnitude in the 

UENB basin, as assessed through SPI and SPEI.  

Table 4.2: SPI and SPEI Trend Analysis Results With Significance level (p) = 5%. 

Station Test SPI3 SPI6 SPI12 SPEI3 SPEI6 SPEI12 

Archer's Post 

 

P value 0.548 0.354 0.296 0.029 0.026 0.009 

Sen's value 0.000 -0.001 -0.001 -0.002 -0.002 -0.003 

Colcheccio P value 0.802 0.912 0.619 0.019 0.020 0.019 

Sen's value 0.000 0.000 0.027 -0.001 -0.001 -0.002 

Dol Dol Dao 

Isiolo Dao 

P value 0.802 0.912 0.619 0.019 0.020 0.019 

Sen's value 0.000 0.000 0.000 -0.001 -0.001 -0.002 

Isiolo Dao P value 0.494 0.311 0.247 0.025 0.022 0.008 

Sen's value 0.000 -0.001 -0.001 -0.002 -0.002 -0.003 

Mukenya 

Farm 

 

P value 0.144 0.149 0.161 0.138 0.134 0.114 

Sen's value -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 

Mukongond

o Farm 

P value 0.110 0.099 0.108 0.040 0.070 0.083 

Sen's value -0.001 -0.002 -0.002 -0.002 -0.002 -0.003 

Rumuruti 

Mow 

 

P value 0.006 0.005 0.001 0.100 0.061 0.009 

Sen's value 0.002 0.002 0.003 0.001 0.002 0.002 

Segera 

Plantations 

P value 0.144 0.149 0.161 0.138 0.134 0.114 

Sen's value -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 

Suguroi 

Estate 

 

P value 0.144 0.149 0.161 0.138 0.134 0.114 

Sen's value -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 

Wamba Do P value 0.547 0.827 0.794 0.000 0.000 0.000 

Sen's value 0.001 0.001 0.001 -0.002 -0.003 -0.003 

Stations 1, 9, 10, 22, 69, and 94 exhibited a significant and consistent downward 

trend in drought when considering the SPEI over all the analysed time series. 
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However, no significant trend was observed for SPI at these same stations. On the 

other hand, at station 80, SPI displayed an increasingly significant trend across all 

time scales, while SPEI did not exhibit a significant trend. Conversely, stations 51, 

83, and 89 did not show a discernible trend in either SPI or SPEI based on the Mann-

Kendall test, but Sen's slope values (SS) indicated a negative trend, implying an 

increasing frequency of drought events.  The overall trend within the basin suggests 

a rising occurrence of dry periods, indicating the potential for these periods to 

become more prevalent in the future. This analysis demonstrates that the trends in 

drought conditions vary across different stations and time scales, highlighting the 

complexity of drought patterns in the UENB basin. 

When evaluating the suitability of SPI and SPEI for drought assessment, both indices 

offer distinct advantages and can generally serve as effective tools for monitoring 

regional drought conditions. However, it's essential to acknowledge that differences 

between the two indices are inevitable due to climate change and the varying climatic 

conditions present in different regions   (Pei et al., 2020). In this study, SPEI emerged 

as the more robust indicator, revealing a higher frequency of drought events and a 

consistent upward trend in drought occurrence across all stations and time scales. 

SPEI's superior performance in arid areas can be attributed to its consideration of the 

Potential Evapotranspiration (PET) parameter, which plays a crucial role in detecting 

elevated evaporation rates resulting from higher temperatures and reduced rainfall 

(Vicente-Serrano et al., 2010; Homdee et al., 2016). Consequently, SPEI is deemed 

more suitable for monitoring drought in arid and semi-arid regions, particularly in 

the context of global warming (Mehr et al., 2020; Pei et al., 2020). For instance, at 

stations 10, 94, and 80, situated in the central, northern, and eastern parts of the basin, 

respectively, SPI failed to reflect severe and extreme drought conditions. In contrast, 

SPEI consistently indicated an escalating trend in drought severity across all time 

scales. This disparity can be attributed to the fact that these stations experience a 

warmer and drier climate, leading to higher evapotranspiration rates due to rising 

temperatures  (Omwoyo et al., 2017; Kimwatu et al., 2021b). SPI, which does not 

account for evaporation effects, proved less effective in capturing the evolving nature 

of drought under these conditions.  
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4.2 Modelling Drought Using Artificial Neural Network.  

This section presents the results of the performance of ANNs in modelling 

meteorological drought using the DI SPI and SPEI. In this study, the lead time was 

categorised into short (3 months), medium (6 months) and long (12 months). 

The results of DIs under the meteorological drought were investigated. The 

performance of different ANN models in forecasting other drought indices at 

different meteorological stations is shown in Table A2 (in the appendices). The best-

performing models at different timescales were selected based on the least MSE 

value in the training stage and the highest regression coefficient, R. The correlation 

coefficient values were used to measure the model's forecasting ability. The ANN 

architecture defines the number of neurons in the structure. For instance, architecture 

1.13.1 means one neuron in the input layer, 13 in the hidden and 1 in the output of 

the ANN. 

From the results summarised in Table A3, the highest coefficient of determination 

(0.993) and the smallest RMSE (0.0124) were captured at meteorological station 51 

at SPEI 12. On the other hand, the ANN model resulted in minor predictions at 

meteorological station 22, as it provided a low coefficient of determination (0.818) 

and a high RMSE (0.319) at SPI 3. Nevertheless, the model performance metrics 

averaged over all stations confirmed that the ANN model accurately forecasted the 

drought index (Mulualem & Liou, 2020). Furthermore, the results show that R values 

increase, and MSE values decrease when forecast lead time increases. This suggests 

that the forecasting capability of ANN improves with longer lead times, agreeing 

with research conducted Anshuka et al. (2019), Kigumi (2014) and Santos et al. 

(2009).  
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Figure 4.7: Observed Versus Predicted SPEI Values for Isiolo Dao Station (22) 

The observed time series of the SPEI (Figure 4.7) and SPI (Figure 4.8) values against 

the forecasted values with 3, 6- and 12-month lead times at meteorological station 22 

were plotted. Figures 4.7 and 4.8 show that although the model could predict the 

general trend, predictions deviate at extreme values, especially for SPI and SPEI 3. 

Additionally, the deviations between observed and predicted values are more 

apparent in SPI compared to SPEI. Poor prediction in the short term is due to the 

short observation record; it is challenging to derive enough drought events to 

characterize droughts identified from the rainfall data (Kigumi, 2014). However, it 

is deduced from the Figure that the predicted indices values are close to the observed 

values, slightly overestimating wet periods and underestimating the extreme periods. 
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Figure 4.8: Observed Versus Predicted SPI values for Isiolo DAO Station (22) 

When comparing the performance of ANN in predicting the two indices, SPEI 

forecasting performed better than SPI. For example, at station 89, the SPEI values 

show that the best forecasting models correlate 0.9576, 0.9863, and 0.9934 for 3,6 

and 12 lead times, respectively. On the other hand, the corresponding R values for 

the same lead time series based on SPI are 0.8560, 0.9375 and 0. 9600, which is 

slightly lower than for SPEI. Additionally, the comparison of the performance of the 

SPI and SPEI in drought forecasting was illustrated by plotting the performance level 

versus the lead time for the meteorological stations 1 and 69, and results are given in 

Figure 4.9. 
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The results show that the SPEI's R is higher than those of the SPI for both stations. 

A similar trend is depicted in the other stations. This means that SPEI performs better 

than SPI in meteorological drought forecasting for the UENB. ANN performs better 

when estimating the SPEI because SPEI considers both temperature and rainfall data.  

 

Figure 4.9: Performance level versus the lead time for the meteorological 

Archer’s Post (1) Station and Wamba Dao station (94) 

It may be seen that the forecasting effectiveness is lower in 3 months, reaching the 

best result in the forecast for 12 months. This is due to the high temporal variability 

in precipitation in SPI-3, while for the other scales, this variability is attenuated 

because more monthly data could be collected. Thus, while the time scale increases, 

the forecast is improved. It is also possible to see a significant increase in the mean 

square error occurs when the month horizon forecast is increased, which is very 

common in forecasting. This has been seen in studies by  Litta et al. (2013). It can be 

observed that there are no significant differences in the forecast model performance 

when the meteorological zone is changed, which shows that the forecast SPI using 

the proposed ANN is not strongly affected by the rainfall regime of the region. 

The other stations' results follow a similar trend but indicate different performance 

levels. As far as a practical application, accurate forecasting can inform water 

resources managers, agricultural systems and hydropower generation of the expected 
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severities of particular droughts. Such information is helpful for the timely 

formulation of mitigation and coping mechanisms. 

4.3 Impacts of Droughts on the Livelihoods of the Communities of the UENB 

4.3.1 Demography of Respondents 

The demographic composition of respondents in the surveyed communities’ sheds 

light on several important trends, particularly in relation to age and gender dynamics. 

According to Figure 4.11, the predominant age group among respondents was 40-49 

years old.  

 

Figure 4.11: Age of respondents 

This trend suggests a notable absence of younger participants, which could be 

indicative of a broader pattern of rural-to-urban migration among the youth 

population.  

The fewer respondents below 30 years may be attributed to young people migrating 

to urban areas for employment and education opportunities. Many young individuals 

in the area showed little interest in traditional agricultural practices, preferring jobs 

or businesses in urban centres. Research studies have also shown an increasing rural-

urban migration among young men and women seeking better prospects (Onyango 
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et al., 2021; Research and Evidence Facility, 2020). The analysis indicates that the 

active farmers and pastoralists in the catchment mostly fall within the age range of 

30-59. However, responses from the younger age group (below 30) were not as 

comprehensive in describing the impacts and adaptation strategies of the 

communities over the years. This observation resonates with the findings of Olabanji 

et al. (2021) in South Africa, indicating that age may shape economic perspectives 

vis-à-vis drought experiences.  

 Regarding gender, 51% of the respondents were women, while 49% were men. This 

balanced representation suggests an equitable involvement of both genders in the 

survey, providing diverse perspectives on the challenges and strategies related to 

drought in the studied communities.  

The demographic makeup of respondents highlights the intricate interplay of age, 

gender, and socio-economic factors in shaping community resilience to drought. The 

overrepresentation of older age groups and women emphasizes the need for targeted 

interventions to enhance the participation of younger individuals, especially men, in 

discussions and initiatives aimed at developing sustainable adaptation strategies for 

rural communities facing environmental challenges United Nations Development 

Programme (UNDP), 2019).  

4.3.2 Community Perceptions of Drought Events 

Drought significantly affects farmers and pastoralists as they heavily rely on climate-

sensitive factors like rain and water. Understanding their perspectives on climate 

change, especially drought, is essential for comprehending their adaptive behaviour 

(Olabanji et al., 2021). The respondents' viewpoints are closely related to their 

primary source of income, which influences the strategies adopted by different 

households (Table 4.3). According to the study by Karanja (2018), some farmers' 

perspectives are also shaped by information obtained from radio and TV. 
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Table 4.3: Household Perception of Drought 

 Villages Kisima Leparua Lekurruki 

Perception Percent Percent Percent 

Lack of rainfall 40.6 34.5 33.3 

Lack of pasture 15.6 37.9 37.5 

Lack of food 9.4 20.7 25.0 

Drying of rivers 34.4 3.4 4.2 

Other 0.0 3.4 0.0 

Total% 100.0 100.0 100.0 

 

Most respondents are aware of the climatic changes in the region and have distinct 

opinions about drought (Table 4.3). Farmers in Kisima predominantly perceive 

drought as a lack of rainfall, as they depend on rainwater for agriculture and pasture. 

In contrast, some farmers in Kisima view drought as the drying of rivers, particularly 

because they heavily rely on river water for irrigation and domestic needs due to 

unreliable rainfall. 

For pastoralists in Leparua and Lekurruki villages, drought is often seen as a lack of 

pasture, given their dependence on livestock as a primary source of income and 

sustenance. Lack of food during drought is a major concern for women from nomadic 

pastoral communities, who are responsible for providing food to their families while 

the males search for pasture. Due to limited finances, these women resort to gathering 

wild fruits, vegetables, or herbs or rely on assistance from male family members to 

obtain food or money to buy food (Huho & Mugalavai, 2010; Karanja, 2018). 

4.3.3 Effects of Drought on Household Livelihoods  

The impact of drought on household livelihood in EUNB County was examined 

across four categories: crops, livestock, and health and social effects. The study 
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specifically focused on the effects of the drought during the last decade, with most 

respondents referring to the droughts between 2015 and 2021.  

4.3.4 Effects of Drought on Crops  

Household survey results in Table 4.4 show that droughts reduced crop yield for the 

respondents from Kisima and Lekurruki who practised crop production. The main 

crops grown are in Table A4.2. 

Table 4.4: Effects of Drought on Crops 

Villages Kisima Leparua Lekurruki 

Effects on crops Percent Percent Percent 

No Yield 6.5 78.6 5 

Reduced crop Produce 54.8 0.0 12.5 

Increased crop 

pest 

45.2 21.6 37.5 

Total% 100.0 100.0 100.0 

A study by Muthee (2014) also found that the farmers in Kisima experienced highly 

reduced crop production during dry seasons. Most crop farmers from Leparua and 

Lekurruki experienced crop failure. Some farmers reported an increase in crop pests 

and diseases during the drought, leading to total crop failure. Adhikari (2018) 

explains that the impact of reduced crop production and productivity is the 

consequence of reduced water availability for agricultural uses, hindrances in the 

operation of conventional irrigation systems, decreasing efficiency of water use, 

increasingly degrading agricultural land, and epidemics of diseases and pests. 

Adhikari further mentions that poor quality planting resources, technology and 

neglect of traditional crop cultivating methods could contribute to poor crop 

productivity. 
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4.3.5 Effects of Drought on Livestock 

The findings in Table 4.5 illustrate the effects of drought on livestock based on the 

livestock kept in the basin shown in Table A4.2.  

Table 4.5: Effects of Drought on Livestock 

Villages Kisima Leparua Lekurruki 

Effects on Livestock Percent Percent Percent 

Normal produce 4.5 0.0 0.0 

Reduced Livestock produce 54.5 0.0 0.0 

Lost<25% 0.0 7.5 0.0 

Lost=50% 0.0 17.5 14.7 

Lost = 75% 0.0 20 32.4 

Lost>100% 0.0 7.5 5.9 

Increased livestock diseases 40.9 47.5 50 

Total% 100.00 100.0 100.0 

In Leparua, a notable proportion of respondents observed that drought led to 

significant livestock deaths, while a similar observation was made by respondents in 

Lekurruki. Furthermore, in Leparua and Lekurruki, respondents mentioned losing a 

substantial portion of their livestock. Some participants also reported a complete loss 

of all their animals during the drought, particularly in all the areas. 

Farmers also pointed out an increase in the occurrence of livestock diseases during 

the drought period. This aligns with a report by the Government of  Kenya (2021), 

which also observed a rise in livestock diseases during drought conditions. The 

compromised health and elevated mortality rate of animals due to lack of water and 

grazing areas could be exacerbated by the extended journeys undertaken in search of 

pasture and water, as indicated by FEWS NET (2022) and Karanja (2018). 

The substantial number of respondents reporting animal deaths and diminished 

animal productivity underscores the profound impact of drought on livestock 
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farming. It is important to note that even though these communities heavily rely on 

meat and milk production from their livestock (FEWSNET, 2022), only farmers from 

Kisima mentioned reduced livestock output. A few of the respondents did not address 

this aspect. Instead, they highlighted that they do not anticipate significant yields 

from their animals during the dry season due to their malnourished state. Their 

primary concern is to prevent the animals from perishing, allowing them to be sold 

to acquire other essential food items. 

4.3.6 Effects of Drought on the Social Practices of Communities in UENB  

Apart from the impact on agricultural and livestock activities, drought had significant 

social consequences for communities in the EUNB region. While food and water 

scarcity were prevalent issues (as indicated in Table 4.6), the most prominent 

problem was conflicts arising from competition over water and pasture. 

Table 4.6: Social Impacts of Drought to Livelihoods of Communities  

Villages Kisima Leparua Lekurruki 

Social Impacts of 

drought 

Percent Percent Percent 

Children miss School 0 14.9 18.2 

Reduced interaction 9.5 6.00 5.5 

Seasonal migration 0.0 22.4 21.8 

Increased water 

distance 

9.5 20.9 20.0 

Animal attack 0.0 7.5 7.3 

Conflict over water 81.0 25.4 25.5 

Others 0.0 3.0 1.8 

Total 100.0 100.0 100.0 

This conflict was particularly pronounced in Kisima, Leparua, and Lekurruki. 

Studies by Kiteme (2020) and Lesrima et al. (2021) also confirm that water-related 

conflicts, especially during dry periods, are a major regional concern.  These conflicts 
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occurred between upstream and downstream users and among neighbouring 

communities. For instance, pastoralists in Leparua and Lekurruki often found 

themselves in conflicts with groups like the Maasai, Samburu, Turkana, and Borana. 

In Kisima, conflicts revolved around neighbours living near a stream (Kiteme, 2020).  

Frequent seasonal migrations with livestock were a common practice among 

pastoralist communities. This migration pattern often separated families, with 

women and children remaining at home to manage the household. This situation 

sometimes led to shortages of food. Additionally, during these migrations, 

communities could encroach on each other's lands, sparking conflicts over pasture 

and even incidents of cattle theft (Lesrima et al., 2021). As the drought persisted, 

water scarcity forced individuals to travel longer distances to access water sources. 

Other studies also revealed the issue of long-distance travel in search of water (Hao 

et al., 2018; Mbogo et al.; 2014; Meybeck et al. 2012). Such extended travel exposed 

women to risks such as attacks by bandits, human trafficking, and, in some cases, 

desperation that drove them to resort to negative coping mechanisms, including 

engaging in transactional sex  (OCHA), 2021). 

Another significant social effect of drought was children missing school, with rates 

of 14.90% in Leparua and 18.2% in Lekurruki. The reasons for this absenteeism were 

primarily lack of food and school fees, which could be attributed to income loss due 

to the drought ( NDMA, 2015; UNISDR, 2014). Older male children sometimes 

migrated with their fathers in search of pasture. In households led by single mothers, 

younger and older male children were forced to migrate to support their mothers. 

This phenomenon had been similarly observed in Lekurruki West by Karanja (2018), 

where school absenteeism often led to poor academic performance or dropouts. 

Moreover, insufficient food in schools could lead to more reported cases of dropouts, 

along with an increase in early child marriages and incidents of child labour (Kalele 

et al., 2021).  

Another aspect highlighted by key informants was rural-urban migration. Drought 

directly impacts income-generating activities, prompting many young individuals, 

particularly men, to migrate to urban areas for alternative income sources. This 
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migration often leads to permanent relocation, as these communities often follow 

patriarchal structures with men responsible for herding and cultivation, leaving the 

family with limited labour. Similarly, Adhikari (2018) noted in his study that male 

out-migration generates gendered vulnerabilities in agrarian societies. 

Additional consequences of drought in the UENB included conflicts or attacks by 

wild animals and reduced social interactions (EU & NDMA, 2018; Karanja, 2018; 

The World Bank, 2013). Wild animals, particularly elephants, would attack 

homesteads and destroy crops. Predators like hyenas would target goats and sheep at 

night. Respondents mentioned that the Kenya Wildlife Service (KWS) did not 

adequately compensate them for crop or livestock losses due to wildlife attacks. 

Similarly, findings by Karanja (2018) highlighted that KWS would respond to wild 

animal attacks but not to property destruction. Rangers from conservancies noted that 

human-wildlife conflicts sometimes led to communities encroaching on preserved 

pasture for wild animals. Addressing these issues may require intervention from 

county authorities, religious leaders, community elders, and conservancy leaders. It 

was also noted that these conflicts occasionally led to conservancy rangers 

mistreating communities, potentially necessitating resolution through collective 

efforts (ACAPS, 2022).  

4.3.7 Effects of Droughts on Livelihoods of the Communities 

Given that agriculture and livestock keeping are the main income sources in the 

region (Table A4.1), drought significantly exposes communities to poverty. 

Understanding the adaptation strategies of these communities depends largely on 

their economic stability, making it crucial to examine how drought affects their 

economies. Analysing the economic impacts of drought on livelihoods will also 

guide the development of effective adaptation measures and equitable resilience 

policies in the area (Mutekwa, 2016).  

Respondents frequently mentioned that during droughts, they experienced indirect 

financial losses due to diminished farm or livestock yields. As shown in Table 4.7, 

the highest economic impacts were reduced crop yields and livestock losses. In 

Kisima, crop failure was the second most significant effect. Both areas also faced 
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considerable reductions in animal product yields. Respondents from Leparua and 

Lekurruki reported experiencing increased prices of goods, particularly food items. 

The rise in food prices or scarcity can be attributed to reduced production due to 

livestock and crop losses (Gautier et al., 2016; Kalele et al., 2021). These studies also 

pointed out that drought's impact on water indirectly affects livestock and crop 

production, potentially reducing herd sizes through animal deaths, sales, or sharing 

to cope with the consequences. 

Table 4.7: Economic Impacts of Drought to Livelihoods of EUNB Communities 

Villages Kisima Leparua Lekurruki 

Economic Impact Percent Percent Percent 

Reduced crop yield 27.9 6.3 1.9 

Crop failure 25.0 6.3 5.7 

Reduced animal production 19.1 23.8 24.5 

Loss livestock 4.4 31.7 34.0 

High cost of goods 7.4 19.0 18.9 

Reduced wage 10.3 0.0 0.0 

Loss of Business 4.4 9.5 15.1 

Others 1.5 3.2 0.0 

Total% 100.0 100.0 100.0 

Furthermore, some respondents from pastoralist communities noted the absence of 

livestock markets, with the available markets offering low prices. Reports by 

FEWSNET (2020) and the World Food Program (2022) also highlighted reduced 

markets for livestock as a major drought problem in the Horn of Africa. This decline 

in market prices could be due to increased supply as individuals aim to sell their 

livestock due to drought-induced challenges or malnourishment (Crossman, 2018; 

Food Security and Nutrition Working Group (FSNWG), 2022; Kalele et al., 2021; 

NET & Organization, 2021; The Kenya Ministry of Agriculture (2016). Similarly, 

crop farmers expressed dissatisfaction with either a lack of markets or low product 

prices. Additionally, the country's COVID-19 lockdown measures in 2020 

contributed to market shortages due to restrictions on intercounty movement of 
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people and goods (ACAPS, 2022). Revenue from pastoralism declined by 50% in 

May 2020 from the same period in 2019 (Kirui et al., 2022). Low market prices 

during droughts could stem from poor product quality and excessive market supply 

(ACAPS, 2022; Gautier et al., 2016; Kalele et al., 2021). Alongside low selling 

prices, reduced production and losses lead to food scarcity, elevated prices and 

decreased consumption. For instance, according to ACAPS (2022), the 2021 drought 

in the Horn of Africa led to approximately 3.5 million people in the ASALs facing a 

food crisis, with a 75% increase projected for 2020. Decreased income levels in 

pastoral and agropastoral regions have diminished household purchasing power and 

intensified food insecurity (Kirui et al., 2022; World Food Program, 2022). 

In regions like Kisima, casual farm work such as sowing, weeding, pruning, and 

harvesting often involves hiring individuals from other households to employ 

unskilled labour. However, during droughts, available work diminishes, leading to 

fewer employment prospects, reduced wages, and ultimately, job losses for many 

individuals (ACAPS, 2022; World Food Program, 2022). This downturn also impacts 

workers in larger commercial farms; for example, casual labourers in flower farms 

in Kisima reported experiencing job losses or reduced working hours accompanied 

by decreased pay. 

Business community mentioned that during droughts, they experienced business 

losses primarily due to the lack of customers and high costs for goods, resulting in 

financial setbacks. Some businesspeople adjusted their ventures to align with 

available product and service demand. Due to financial challenges, some households, 

particularly in Kisima, resorted to borrowing loans from banks or self-help groups to 

buy cultivation supplies like improved seeds, fertilizers, or pesticides and purchase 

food. However, extended drought periods resulting in crop failures meant these 

households could not generate income to repay the loans. Consequently, they either 

failed to meet repayment obligations or borrowed more, leading to financial distress. 

The study by Mutekwa (2016) also found that due to droughts, some farmers who 

could not afford to repay their loans lost their properties attached as collateral for 

loans to financial institutions.  
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4.3.8 Effects of Drought to the Communities  

Drought's impact on the livelihoods of communities also extended to health concerns, 

as indicated in Table 4.8. Some respondents noted an increase in human diseases and 

malnutrition. Gautier et al. (2016) study similarly revealed that drought-induced 

water scarcity led to a rise in diseases like Bilharzia in Ghana. 

Table 4.8: Health Effects of Drought on Livelihoods of EUNB Communities 

Villages Kisima Leparua Lekurruki 

Health Impacts Percent Percent Percent 

Increased human diseases 0.0 19.1 27.8 

Increased malnutrition 15.8 57.1 55.5 

No diseases and malnutrition 84.2 23.8 16.7 

Total 100.0 100.0 100.0 

Malnutrition emerged as a significant issue in the basin. Notably, most respondents 

from Kisima (84.2%) did not identify rising human diseases or malnutrition as a 

major problem, while Leparua and Lekurruki expressed similar sentiments. Food 

scarcity often leads families to reduce their consumption rates, with adverse 

implications for human health, including increased disease occurrence, mortality, and 

childhood malnutrition, affecting growth and cognitive development (Gautier et al., 

2016; Stanke et al., 2013). Based on the report by ACAPS (2022), over 658,000 

children and women in ASAL counties require treatment for acute malnutrition, with 

around 558,500 under-five children experiencing global acute malnutrition as of 

February 2022, marking a 20% increase from August 2021. 

During droughts, inadequate water supply often results in poor hygiene standards, 

particularly in ASALs like Leparua Community and Lekurruki. However, 

communities in Kisima possess improved water management resources   (FSNWG, 

2022; OCHA, 2021). However, communities in Kisima possess improved water 

management resources (Odhiambo et al., 2018), which may account for the fewer 
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reported cases of malnutrition and disease in the area. Respondents in Leparua 

mentioned sharing water sources with their livestock during droughts, which could 

lead to contamination and subsequently increase the risk of diseases for humans and 

animals.  Karanja (2018) also highlighted that drought often entails compromised 

hygiene standards, undermining water quality and increasing human and livestock 

disease rates. Moreover, the study found that reduced water volumes in rivers and 

lakes during droughts led to higher concentrations of pollutants. The lack of access 

to hospitals likely compounds the issue of increased diseases in areas like Lekurruki 

and Leparua (FSNWG, 2022; Koech et al., 2020; Mutekwa, 2016).  

4.3.4 Analysis of Drought Assessments and Impacts in the UENB 

Comparing the outcomes of drought assessments and their consequences in the 

UENB basin unveils notable trends and variations. The analysis of drought 

occurrences during the study period showed an increasing frequency and severity of 

droughts in the UENB, evident through the SPI and SPEI indices (Huho et al., 2010; 

Karanja, 2018; Odhiambo et al., 2018). These findings agree with the observations 

of local farmers who have reported heightened drought impacts. These impacts 

manifest prominently in reduced crop yields and livestock losses, representing the 

most significant economic repercussions of drought, alongside social and health 

consequences, as illustrated in Tables 4.4 to 4.8. This concurs with earlier research 

conducted by Gichuki (2006) and Ngigi (2009), which shows the role of recurrent 

drought cycles in increased irregular rainfall distribution.  

The UENB basin's diverse geography translates into distinct drought patterns and 

consequences. These distinctions become particularly apparent when comparing the 

lowlands (northern central and western regions), such as Leparua and Lekurruki 

villages, with the highlands (southern areas) like Kisima. These differences carry 

significant implications for the local communities and emphasize the necessity of 

devising location-specific strategies to address both the occurrence and effects of 

drought within the UENB basin. In the lowlands, notably in areas like Leparua and 

Lekurruki, susceptibility to severe and recurrent drought events is evident in the 

temporal and spatial distribution of drought results. Historical records chart an 
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upward trajectory in drought frequency, culminating in prolonged water scarcity and 

livelihood challenges. The persistently arid conditions lead to protracted and severe 

drought episodes, significant livestock losses, an elevated occurrence of livestock 

diseases, resource conflicts, and difficulties in maintaining basic hygiene standards, 

exacerbating disease prevalence. The economic repercussions are profound, entailing 

reduced income levels and elevated food prices.  

Conversely, in the highlands and mountainous regions, i.e. Kisima, the increase in 

drought severity is comparatively milder. These areas are less susceptible to 

prolonged and intense drought events, partly owing to the presence of nearby 

mountains that mitigate the severity and duration of droughts. Here, livestock losses 

are fewer, livestock diseases during droughts are less severe, access to water 

resources is relatively reliable due to mountain proximity, hygiene standards are 

higher, and disease prevalence during drought periods is lower. Although economic 

impacts are discernible, they are less severe when compared with the northern 

regions. 

In summary, the study's findings substantiate farmers' perceptions of drought as a 

recurring event with the potential for devastating impacts on their livelihoods. 

Farmers are keenly aware of the multifaceted threats posed by drought to their food 

security, income, and way of life. The cumulative consequences of drought, 

compounded by limited water availability, pose a tangible risk of resource disparities 

within the basin, potentially leading to conflicts over natural resources among local 

communities, as previously noted by Gichuki (2006) and Lanari et al. (2018). 

Additionally, assessments by FEWSNET (2020) and the United Nations 

Environment Programme (UNEP) and GOK (2006) anticipate even more severe 

drought occurrences in the basin due to climate change. This predicts heightened 

water stress, diminished agricultural productivity, increased food insecurity, and 

heightened malnutrition. 
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4.4 Drought Adaptation Strategies of the Communities 

4.41 Drought Preparedness Strategies 

Table 4.9 illustrates that many households lacked adequate preparation for drought.  

Table 4.9: Drought Preparation Strategies of EUNB Communities 

Villages Kisima Leparua Lekurruki 

Drought preparedness strategies Percent Percent Percent 

Set aside some emergency fund 20.0 4.0 5.0 

Preserve food supplies 20.0 24.0 10.0 

Mobilize neighbours 12.0 0.0 0.0 

Attend training on drought 

management 

0.0 4.0 0.0 

Women Group 0.0 4.0 15.0 

Sell Livestock 0.0 16.0 5.0 

Wait for relief food 0.0 4.0 5.0 

Not Prepare 36.0 44.0 60.0 

WRUAS Support 12.0 0.0 0.0 

Total% 100.0 100.0 100.0 

The unpreparedness among respondents primarily stemmed from an inability to 

predict drought early warning signs, with many traditional indicators no longer being 

reliable due to shifting climatic patterns. Instead, they often relied on delayed 

forecasting news from local radio stations. Financial constraints were another major 

factor hindering preparedness. Respondents noted that sufficient funds would allow 

them to purchase ample pasture and food and even invest in water harvesting and 

borehole construction during rainy periods in anticipation of droughts. A study by 

Kalele et al. (2021) also underscored that some individuals lacked traditional 

strategies to mitigate drought impacts.  

In Kisima, households successfully stockpiled food supplies and allocated 

emergency funds for potential droughts. In contrast, in Leparua and Lekirruki, 
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smaller proportions of households safeguarded food and set aside emergency funds. 

Some households opted to sell their livestock and save the proceeds to purchase food 

during drought, as described in Table 4.9. Additionally, these communities 

implemented various other preparatory measures. In Kisima, they collaborated with 

WRUAS to identify sustainable ways to utilize river water while anticipating rainfall. 

However, this approach predominantly benefited the upstream communities in 

Kisima, as indicated by Lesrima et al. (2021). Organizations like Caritas conducted 

training sessions on drought preparedness and adaptation in Leparua, although it was 

noted that only a limited number of individuals participated in these training 

programs. These findings are consistent with those of Karanja (2018), which suggests 

that churches and mosques provide educational opportunities to households. 

Certain women formed community groups to save money, practice table banking, 

and sometimes provide food support to members during drought periods. Others 

focused on harvesting rainwater during the wet season for use during dry periods. 

Despite these efforts, area leaders highlighted that much lacked proper knowledge of 

effective water harvesting practices. A study by Kalele et al. (2021) also revealed 

that water conservation and harvesting activities were prominent adaptation 

strategies in the Kenyan ASALs.  

Key informant interviews revealed additional strategies employed by households. 

Some relied on relief food from well-wishers and conservancies during droughts. 

(Huho et al., 2010) also found that during droughts, farmers have a high dependency 

on relief aid. Conservancies often reserved pastures and food for wildlife in 

anticipation of drought events, thereby preventing conflicts over grazing land with 

communities. At times, these resources were distributed to nearby households to 

reduce the temptation of farmers to take the pasture. This practice mitigated the 

potential for conflicts between humans and wildlife and minimized the chances of 

wild animals damaging crops and pastures.  

4.4.2 Household Response to Drought 

Household adaptation strategies in the EUNB region are intricately tied to their 

primary sources of income and livelihoods. The analysis findings (refer to Table 
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4.10) highlight UENB residents' diverse strategies to navigate droughts and enhance 

their agricultural and animal production. 

Table 4.10: Drought Adaptation Strategies of Rural Communities in EUNB 

Villages Kisima Leparua Lekurruki 

Response to drought Percent Percent Percent 

Sold livestock 2.94 11.84 10.29 

Migrated with Livestock 0.00 25.00 25.00 

Reduce stock- slaughtering 1.47 21.06 14.70 

Preserve land 0.00 5.26 5.88 

Steal Pasture from Conservancy 1.47 3.95 4.41 

Irrigation 17.65 2.63 2.94 

Change crop pattern 23.53 0.00 2.94 

Reduce Farm size 10.29 0.00 2.94 

Rehabilitation/ Construction of 

critical boreholes 

2.94 0.00 0.00 

Planting trees and reforestation 4.41 1.32 1.47 

Searched for employment 13.23 9.22 7.35 

Close Business 2.94 11.84 7.35 

Stockpiling of cereals and grains 11.76 5.26 7.35 

emergency aid 0.00 0.00 2.94 

Other 2.94 2.63 4.41 

Total % 100.00 100.00 100.00 

 

Among pastoralists in Leparua and Lekurruki, a common practice is to engage in 

seasonal migrations with their livestock in search of suitable grazing land. Seasonal 

migration for pasture is a recognized and crucial adaptation strategy among 

pastoralists in arid and semi-arid areas, as indicated by research conducted by Huho 

et al. (2010), Karanja (2018); Kirui et al. (2022); Koech et al. (2020) and Mutekwa 

(2016). Some choose to reduce the size of their livestock herds by selling animals, 

while others opt to cull animals showing signs of decline. Notably, these pastoralists 
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view selling their animals as a loss due to limited market access.  Koech et al. (2020) 

also identified the lack of market access as a significant challenge in the region. Some 

households intentionally sell, cull, or give away animals as part of their efforts to 

reduce the size of their herds.  

Farmers in Kisima adopt strategies like changing crops or reducing cultivated land 

in response to drought (Table 4.10). Reducing cultivated land aims to mitigate 

potential losses in case of crop failure. Some farmers diversify crops to those more 

suited to arid conditions or with deep root systems, hoping to yield better results with 

less water (Muthee, 2014). Those with access to river water engage in irrigation, even 

during dry seasons with water rationing. Some farmers, who once practised early 

planting up to 1-2 weeks before the rains to make the most of available moisture, no 

longer do so due to unpredictable rainfall onset, consistent with Muthee's (2014) 

findings. Those with access to river water might plant trees, especially fruit trees, to 

contribute to river conservation and mitigate drying. Households with non-functional 

boreholes would repair or drill new ones to obtain water. 

Individuals with jobs or businesses initially stock up on food at the onset of drought. 

However, extended drought periods may deplete their supplies, prompting them to 

seek alternatives. Borrowing food and pasture from neighbours and relatives 

becomes a common strategy. Inhabitants turn to conservancies and private ranches 

for pasture. Some individuals, mainly those with only primary education, move to 

towns for casual jobs, reducing their reliance on agriculture and livestock. Others, 

especially young men, sell livestock to purchase motorbikes and venture into 

transport businesses. Businesspeople adapt by closing or changing their business 

types according to market demands. 

In Lekurruki, some young individuals burn charcoal while women gather wild fruits 

and vegetables for sustenance. Artistic women, notably the Maasai and Samburu in 

the Lekurruki and Leparua Communities, engage in beadwork, selling their creations 

to tourists and businesses in urban centres. Some households set aside land during 

the rainy season to preserve grazing areas for drought. Key informant interviews 

revealed that women often join savings groups known as "chama" to secure funds 
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for beadwork projects and small business loans. Gannon et al. (2020) report revealed 

that women’s groups like table banking can potentially overcome barriers to 

entrepreneurship in ASALs. Some wealthier households send their children to 

boarding schools to ensure uninterrupted education. Beekeeping emerges as an 

alternative to rain-dependent activities, although a lack of expertise occasionally 

results in failures  (Karanja, 2018).  

4.4.3 Communities’ Suggestions on Strategies to Enhance Adaptation  

The respondents were also inquired about potential avenues through which local and 

national governments and well-wishers could support their adaptation to drought 

(Table 4.11).  

Table 4.11: Communities' Recommendations on Strategies to Enhance Drought 

Adaptation. 

Villages Kisima Leparua Lekurruki 

Strategies to enhance adaptation Percent Percent Percent 

Boreholes and water 

harvesting 

82.6 60.9 33.3 

Education of Children, Youth & 

Women group 

0.0 8.7 11.1 

Provide Drought resistant crops 8.7 13.0 29.6 

Social amenities 0.0 8.7 9.3 

Relief food 8.7 8.7 16.7 

Total% 100.0 100.0 100.0 

 

As highlighted in, a notable portion of respondents revealed their preferences for 

specific forms of assistance. Among these, the most prevalent requirement was for 

aid in establishing strategically positioned public boreholes near their residences. 

They believed these boreholes would yield improved access to water. Concurrent 

with the establishment of boreholes, these individuals sought instruction in 
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techniques for harvesting water during rainy seasons. The Kenya Ministry of 

Agriculture (2016) has reported undergoing projects to focus on water harvesting, 

encompassing practices like roof water collection, river dams, water storage, and the 

creation of on-farm water pans to store water for future use and safeguard water 

sources. These initiatives aim to diminish conflicts arising from lack of access to 

water. 

Addressing the issue of ensuring food security during drought emerged as another 

significant concern. A notable percentage of respondents in Leparua and Lekurruki 

(Table 4.11) emphasized the importance of having access to drought-resistant food 

crops and pastures. Their reasoning centred on the potential of these crops to serve 

as dependable sources of sustenance during drought periods, ultimately helping to 

mitigate losses in livestock and instances of malnutrition. This perspective aligns 

with  MoALF (2016), which advocates for the promotion of alternative crops as a 

means of diversification, a strategy that offers protection against overreliance on 

specific crops susceptible to the impacts of climate change and variability. 

Moreover, the respondents expressed the need for enhancements in fundamental 

infrastructure. Given the historical marginalization and insufficient representation in 

Kenya's arid and semi-arid lands (ASALs), these communities advocate for inclusion 

in decision-making processes and administrative structures. The communities 

suggest enhancements across infrastructure, services, and economic opportunities. 

This is primarily due to the substandard infrastructure and inadequate availability of 

sanitation, healthcare, and educational services, all contributing to heightened 

poverty levels and limited literacy rates (National Gender and Equality Commission 

(NGEC), 2017). For instance, they proposed the establishment of "nomadic schools" 

that would enable teachers to accompany students during droughts, ensuring 

uninterrupted learning. 

Furthermore, they stressed the necessity of internet access, electricity, and improved 

road networks. Notably, young individuals highlighted a recurring issue where they 

missed job opportunities due to a lack of network coverage. They pointed out that 

potential employers might try to reach them via phone, but the absence of a signal 
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renders them unreachable. Consequently, they are compelled to venture uphill in 

search of connectivity, often far from their residences. The challenging state of the 

roads adds an extra layer of difficulty, impeding their access to urban areas for 

employment prospects or the transportation of their goods to markets. 

Other recommendations encompassed offering relief food, especially for children, 

and promoting free secondary-level education. Women's groups also conveyed a 

desire for instruction in alternative income generation methods and strategies for 

saving finances. Interestingly, the (Government of Kenya, 2021; Ministry of 

Agriculture Livestock and Fisheries (MoALF), 2016) aligns with these suggestions 

by emphasizing the importance of intensifying training like value addition training 

for farmers. This focus aims to empower them to attain improved returns from their 

agricultural outputs. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

1. Drought occurrences have consistently increased since 1999, with a 

prolonged drought period from 2012 to 2019. The trends indicate that the 

lowlands in Leparua Conservancy and Lekurruki have experienced more 

severe droughts compared to the highlands near the mountain, 

highlighting the complex drought patterns in the UENB basin. 

2. The ANN model performed best at meteorological station 51 with the 

highest coefficient of determination (0.993) and the smallest RMSE 

(0.0124) at 12 months. Overall, the results showed that the ANN model 

accurately forecasted the drought index, with better performance for 

longer lead times, particularly for the SPEI index which includes both 

temperature and rainfall data. 

3. Drought has severely impacted household livelihoods in the Upper Ewaso 

Ng’iro Basin (UENB). Crop yields dropped by 27.9%, with 25% of 

farmers in Kisima experiencing crop failures. Livestock losses were 

substantial, with 31% in Leparua and 34% in Lekurruki reporting deaths, 

leading to lower market prices and food scarcity. Water conflicts affected 

81% in Kisima and 25.4% in Leparua and Lekurruki, straining 

community relations. Education and health also suffered, with increased 

school absenteeism due to food and fee shortages, and poor water quality 

leading to higher malnutrition rates. 

4. Communities in the UENB adapted to drought based on their financial 

resources, but many strategies were unsustainable, leaving them 

vulnerable during extended droughts. Adaptations included migration, 

changing crops, reducing livestock, using irrigation or boreholes, storing 

cereals, and engaging in artistic activities. Despite these efforts, many 

faced significant economic losses and had to rebuild their livelihoods.  
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5.2 Recommendations 

5.2.1 Recommendations from the Study 

1. To alleviate the widespread consequences of drought on household livelihoods, 

the study recommends implementation of targeted support programs for 

affected communities. Programs like refurbishing existing water sources and 

implementation of soil and water conservation strategies within the 

communities. 

2. To support the community’s adaptation strategies through collaboration 

between Public and Private sectors investing in ASALS and enhance access to 

financial resources, infrastructure, healthcare, and education.  

5.2.2 Recommendations for Further Studies 

The following areas of study would help enrich the understanding of the drought 

discourse. 

1. There is a need for further research on the relative effect of climate change and 

land use/cover change on drought based on climate models in the UENB. This 

could involve assessing the contribution of human-induced climate change to 

observed drought patterns. This research used precipitation and temperature 

data in assessing drought using the DIs. 

2. For developing drought forecasting models, the study used the Levenberg-

Marquardt (LM) training algorithm for calibration without exploring other 

alternatives. It's recommended to explore different training algorithms like 

backpropagation (BP), Conjugate gradient (CG), Perceptron, and Multi-layer 

perceptron (MLP) to evaluate the model's parameter robustness and reliability. 

3. Future research could explore how gender dynamics and age intersect with 

drought effects and adaptation strategies. This could involve investigating 

differential experiences between women and men during droughts and 

assessing if adaptation measures adequately consider gender. Additionally, the 

research could examine age-related variations, comparing impacts and 

adaptation strategies among youth, children, and seniors.  
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APPENDICES 

Appendix I: Meteorological stations ID 

Table A1: Meteorological Stations according to CETRAD 

Station ID Station Name Longitude Latitude 

1 Archer's Post 37.6681 0.6335 

9 Colcheccio 36.80318 0.61932 

10 Dol Dol (Dao) 37.15697 0.38849 

22 Isiolo (Dao) 37.58509 0.35384 

51 Mukenya Farm 36.82054 0.24204 

69 Mukongondo Farm 37.29269 0.09152 

80 Rumuruti Mow 36.54844 0.26748 

83 Segera Plantations 36.88782 0.1689 

89 Suguroi Estate 36.64205 -0.02835 

94 Wamba (Do) 37.33198 0.98218 
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Appendix II: SPEI and SPI Values 

 

Figure A2: SPI and SPEI values for all stations 
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Appendix III: ANN Performance 

Table A3: ANN performance 

 

Station SPI SPEI 
 

ANN Arch R MSE ANN 

Arch 

R MSE 

3Month 

1 1.11.1 0.82463 0.3132 1.13.1 0.91884 0.1529 

9 1.12.1 1.84463 0.1646 1.13.1 0.9573 0.1592 

10 1.10.1 0.84681 0.2851 1.13.1 0.9139 0.0729 

22 1.10.1 0.81821 0.3187 1.10.1 0.93 0.1231 

51 1.13.1 0.85234 0.2725 1.12.1 0.9561 0.0847 

69 1.13.1 0.84126 0.2877 1.13.1 0.9489 0.0956 

80 1.10.1 0.86169 0.2392 1.13.1 0.91722 0.1558 

83 1.12.1 0.84816 0.2726 1.12.1 0.95967 0.0788 

89 1.13.1 0.85603 0.2598 1.13.1 0.95763 0.0813 

94 1.10.1 0.84171 0.2782 1.13.1 0.90638 0.1685 

6month 

1 1.12.1 0.92942 0.1372 1.10.1 0.97063 0.0548 

9 1.12.1 0.93747 0.1236 1.13.1 0.98203 0.0362 

10 1.12.1 0.96114 0.0741 1.11.1 0.96302 0.0697 

22 1.13.1 0.92742 0.1354 1.13.1 0.97122 0.0515 

51 1.13.1 0.93859 0.1135 1.11.1 0.98522 0.0284 

69 1.11.1 0.90315 0.1745 1.11.1 0.91129 0.1661 

80 1.13.1 0.93454 0.1171 1.11.1 0.96945 0.0577 

83 1.12.1 0.94123 0.1089 1.13.1 0.98608 0.0267 

89 1.11.1 0.93753 0.1155 1.12.1 0.98632 0.0263 

94 1.13.1 0.92754 0.12383 1.11.1 0.95983 0.0723 

12 months 

1 1.10.1 0.96992 0.057 1.11.1 0.98731 0.2444 
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9 1.12.1 0.969501 0.0649 1.13.1 0.96381 0.0699 

10 1.11.1 0.96408 0.0694 1.10.1 0.98191 0.3348 

22 1.13.1 0.9693 0.0574 1.12.1 0.9867 0.0246 

51 1.12.1 0.97701 0.0439 1.12.1 0.99352 0.0124 

69 1.11.1 0.9762 0.0396 1.12.1 0.94367 0.1045 

80 1.12.1 0.96742 0.0581 1.13.1 0.98245 0.0325 

83 1.10.1 0.97868 0.0409 1.11.1 0.99351 0.0124 

89 1.10.1 0.97745 0.0429 1.10.1 0.9934 0.0126 

94 1.11.1 0.96002 0.736 1.12.1 0.98167 0.034 

 

Appendix IV: Communities’ Sources of Income 

Table A4.1: Household Income sources 

Household Income 

Sources 

Meru Isiolo Laikipia 

N Percent N Percent N Percent 
 

Crop production 19 41.3 11 28.9 5 16.7 

Livestock 16 34.8 20 52.6 17 56.7 

Business 7 15.2 5 13.2 6 20.0 

Salaried employment 2 4.3 1 2.6 1 3.3 

Casual labourer 2 4.3 1 2.6 1 3.3 
 

 Total % 46 100.0 38 100.0 30 100.0 
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Table A4.2: Summary of crops grown in EUNB 

 Crops Grown Meru Isiolo Laikipia 

N Percent N Percent N Percent 
 

Maize 9 11.3 11 45.8 5 45.5 

Beans 3 3.8 10 41.7 4 36.4 

Fruit trees 2 2.5 2 8.3 1 9.1 

Vegetables 10 12.5 1 4.2 0 0.0 

Carrots 16 20.0 0 0 0 0.0 

Peas 4 5.0 0 0 0 0.0 

Potatoes 18 22.5 0 0 0 0.0 

Onions 2 2.5 0 0 0 0.0 

Wheat 1 1.3 0 0. 1 9.1 

French beans 10 12.5 0 0 0 0 

Trees 3 3.8 0 0 0 0 

Napier Grass 1 1.3 0 0 0 0 

Oats 1 1.3 0 0 0 0 

Total% 80 100.0 24 100.0 11 100.0 
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Table A4.3: Summary of Livestock in EUNB 

 Livestock  Meru Isiolo Laikipia 

N Percent N Percent N Percent 

Livestock Goat     21 39.6 18 36.0 

Sheep 1 5.3 9 17.0 9 18.0 

Cow 14 73.7 18 34.0 13 26.0 

Donkey 0 0. 2 3.8 3 6.0 

Camel 0 0. 3 5.7 4 8.0 

Bees 1 5.3 0 0.0 3 6.0 

Chicken 2 10.5 0 0.0 0 0.0 

Rabbit 1 5.3 0 0.0 0 0.0 

Total %   19 100.0 53 100.0 50 100.0 
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Appendix V: Questionnaire 

Understanding Drought Impacts: Community Survey in the Upper Ewaso Ng’iro 

North River Basin 

Introduction 

The survey is part of the research requirements for the award of a Master of Science 

degree. The objective of this research is to investigate the effects of droughts to the 

livelihoods of rural communities in the Upper Ewaso Ng’iro North River Basin. I 

am collecting information from households, government officials, and researchers to 

understand the effects of drought on their daily lives and their adaptation strategies. 

You have been randomly selected to participate in this survey, and I kindly request 

you to answer the following questions as appropriate. The data collected will be kept 

strictly confidential and findings will be used for academic purposes and if need be, 

will be availed to the community to help to improve livelihoods of the households and 

build coping capacity to deal with droughts in future. 

The Language used for interviews was majorly Swahili with a few respondents in 

English. Some of the respondents also responded in Maasai and Samburu, then 

translated to English by a local translator.  

 

1. Personal Data 

Village  

Name of the 

Respondent (optional) 

 

No of 

respondent 

   

Gender Female Year of birth  

Male  

Other 
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2. Livelihood characteristics 

Livelihood 

(Specify  how 

long have you) 

Crop production  

Livestock  

Agro pastoral  

Business  

Salaried 

employment 

 

Casual laborer  

Other (Specify)  

Crop type  Quantity  Usage 

(commercial 

(C)/ 

subsistence(S)  

How do you describe your 

produce or harvest in the 

past few years? 

number 

of bags of 

harvest or 

amount of 

animal 

product 

     

     

     

Livestock      

Cattle     

Sheep     

goats     

Donkey     

Camel      

Chicken     

Other(specify)     

 

3.  Your perception and effects of drought  

(tick as appropriate)  

 

Lack of rainfall    
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What 

does 

drought 

mean to 

you? 

Lack of pasture    

Lack of food   

Drying of rivers   

Other Specify   

How 

frequent 

are 

drought 

episodes 

in this 

area? 

 

 

What was the impact of drought in your household? (tick as appropriate)  

Economi

c impact 

Reduced crop yield  

Crop failure  

Reduced milk production  

Loss of livestock  

High cost of goods  

Reduced salary/wage  

Others (Specify)  

How was your crops/livestock impacted by drought? (Rate on the scale of 0-10, zero being not impacted 

and ten being serverly impacted) 

Crops  Livestock 

  

Social 

Impact 

Children missed school for lack of 

food 

 

Reduced interactions e.g., church 

gatherings 

 

Seasonal migration with animals  

Increased distance to the water point  
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Job losses in farms  

Conflict over water  

Others specify  

Health 

effects 

Increased 

livestock 

diseases 

    

Increased crop 

pest 

   

Human 

diseases 

   

Malnutrition    

Human death    

Others specify  

Environ

mental 

impact 

Drying of 

rivers 

    

Increased cases 

of fires 

    

Loss of 

vegetation/tree 

cover 

    

Lack of 

household fuel 

    

Others specify     

  

 

4. Adaptation strategies (tick as appropriate)  

How did 

you 

Sold livestock  

Migrated with the animals  
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respond to 

the drought 

episode? 

Searched for employment  

Changed my source of income  

Slaughtered the animals  

Bought food supply  

watered crops  

Planting trees and reforestation  

Stock piling of cereals and grains  

Planted drought evading crops/ Changing 

cropping patterns 

 

Rehabilitation/ Construction of critical 

boreholes 

 

emergency aid  

Irrigation of crops  

Other (specify)  

What 

strategies 

do you use 

to prepare 

for drought 

Set aside some emergency fund  

Preserve food supplies  

Mobilize my neighbours and discuss the 

way forward 

 

Attend trainings on drought management  

Seek information on drought preparedness  

Wait for relief food  

Other specify  

Which 

adaptation 

strategies 

did you 

use?  

  

  

  

  

 

5. What do you think can be done to help curb the impact of the drought to your 

livelihoods?  
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Appendix VI: Key Informants Interview Questions  

The objective of this interview is to assess the drought effects on household 

livelihoods and adaptation strategies in County. The target populations are Chiefs, 

Elders, Ward Agriculture and livestock officers, ward devolution officers and NGO 

Officials 

1. What does drought mean in Ewaso Ng’iro North River Basin (Or the specific 

county)? 

2. What was the effect of the 2017 drought in the county? 

3. How many livestock died during the 2017 drought? 

4. How did crops perform during the 2017 drought period? 

5. How many people needed food aid during the 2017 drought in this location? 

6. What criteria do you use in distribution of relief food? 

7. How many people died due to the 2017 drought in the location? 

8. How did the households and Community respond during the 2017 drought? 

9. What are the Community drought adaptations strategies used in the area? 

10. What are the household drought preparedness and adaptation strategies in the 

Basin? 

11. What are the government’s drought disaster preparedness strategies? 

12. Describe some of the activities undertaken to enhance drought preparedness? 

13. What are the adaptation challenges facing household and community in the 

Basin? 

14. What do you think should be done to enhance drought adaptation in the 

Basin? 

 

 


