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Abstract— Granivorous birds are known to destroy grain crops in 

farms, and various studies are underway to find a solution to the 

problem. In recent studies, state-of-the-art deep learning technologies 

have been actively applied. However, image resolution has made 

detecting smaller pest birds a challenging task.  Moreover, high-speed 

and low flight altitude bring in the motion blur on the densely packed 

birds, which leads to great challenge of object distinction. For that 

purpose, this paper presents an improved YOLOv5s model based on 

the YOLOv5 single-stage detector. The improved YOLOv5s model is 

proposed for application in bird deterrent systems where image 

background noise is high and identification of small birds is poor. To 

achieve this, the CSPDarknet backbone in YOLOV5s was replaced 

with DenseNet. Three convolution blocks and modules of the 

CSPbottleneck in YOLOV5s were also replaced with Transformer 

encoder blocks, and PANet in the original YOLOV5s neck was 

substituted with BiFPN. To further improve the performance of the 

improved YOLOv5s model, one additional prediction head was 

introduced for tiny object detection in the head. Both the original 

YOLOv5s and improved YOLOv5s models were trained using images 

from the Klim dataset. The dataset contains 1607 images for training, 

340 images for validation, and another 357 images for testing. The test 

results on the Klim dataset showed an improvement of up to 4.8% in 

mean average precision when detecting smaller birds with the 

improved YOLOv5s at 50% Intersection Over Union, at the cost of 

just a 4 milliseconds increase in inference time. Based on a comparison 

with the original YOLOv5s model on the Klim dataset, the proposed 

YOLOv5s model outperformed the original model and achieved the 

highest performance in terms of accuracy (97.30%), area under 

receiver operating characteristic curve (93.78%), precision (98.54%), 

and F1-score (57.85%). The results showed that the modified 

YOLOv5s model is suitable for detecting small birds in various 

environments and consequently applicable in bird deterrent systems.  
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I. INTRODUCTION 

Small object detection in images can be difficult owing to a 

low resolution of an object detection model and environmental 

variables [1]. Most existing systems that employ object 
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detection do so at real-time speeds, requiring particular 

computing capacity, notably if the computation is to take place 

on the same hardware that acquires the pictures [2]. This is true 

for many bird deterrent systems [3, 4].  

Because of the basis of object detection, the features of 

smaller birds lose relevance as each layer of the object detection 

model processes them. In this work, "small objects'' refers to 

objects that have fewer pixel points in the picture. YOLOv5 is 

a single-stage object detector that is renowned for its 

effectiveness and responsiveness [5]. YOLOv5 is available in 

four models, namely YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x, each of which offers different detection accuracy 

and performance. Respectively the YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x mean small (s), medium (m), large 

(l), and extra-large (x) models. Each model has its pros and 

cons, but generally, the differences are in their complexities, 

performances, and overall accuracy. Experimental results show 

the size of the models varies from 14MB to 168MB, mAP 

values for the full COCO dataset range from 36.8 to 50.1, and 

the inference time on the Nvidia V100 GPU varies from 2.2 to 

6.0 milliseconds. These results are suitable for real-time usage 

and are, however, achieved with a dedicated architecture. 

Generally, YOLOv5 has a simple and versatile architecture 

that is easily deconstructed, modified, and rebuilt. Although 

YOLOv5 is a powerful tool, it is not optimized to detect small 

objects because it is intended to be a general-purpose object 

detector [6, 7]. However, a lot of the systems that use the model 

and try to optimize it mostly depend on changing certain 

variables or expanding the training dataset to increase 

performance, with little regard for architectural modifications 

to adapt it for a particular use case [8-10].  

This study makes recommendations for improving the 

performance of YOLOv5s model in terms of small object 

recognition, with significant real-world applications. In this 

paper, an automated bird deterrent system is specifically taken 

into consideration. We will explore the effects of various 

modifications and offer a modified YOLOv5s model capable of 

detecting small birds better while retaining real-time processing 
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speeds. The remainder of this article is organized as follows: 

Section II outlines related works. Section III gives a brief 

review of the original YOLOv5s model, and the improved 

YOLOv5s model is described in section IV. Section V 

describes data preprocessing and training. Section VI describes 

the experimental results and section VII concludes the paper. 

II. RELATED WORK 

Real-time object detection systems have gained popularity due 

to the need for them to fulfill current needs. For instance, 

autonomous bird deterrent systems use a number of cameras 

and image processing techniques to detect approaching birds 

and scare them away. In manufacturing, identifying faulty 

assembly parts is necessary. The two examples given above 

demonstrate how important real-time object detection is. 

However, in order to be used later as inputs for other activities, 

such as triggering visual or acoustic bird deterrents as in 

autonomous bird deterrent systems, such real time object 

detection systems need early object detection. Early detection 

makes it such that representations of objects are often small 

[11].  

The main objective of small object detection is typically to 

quickly identify objects in an image, especially those objects 

that are small in size [12]. This implies that objects of interest 

are either those that have a physically large appearance but only 

take up a small portion of the image, like trains, or are actually 

small in appearance, like plates and computer mouse, as shown 

in Fig. 1. Therefore, detecting small objects is a difficult 

problem in computer vision because, in addition to having small 

depictions of the objects, the work is additionally complicated 

by the variety of input pictures [13]. For instance, a bird picture 

may be in a variety of resolutions, and if the resolution is low, 

the object detector may not be able to detect the birds. The 

visual information needed in this situation to localize the birds 

will be severely constrained. Small objects can also be 

deformable or be covered by larger ones [14]. 

 
Fig. 1 Illustration of small objects [14] 

 

To address the problems of small object detection, a variety 

of models have been put out with their accompanying 

assessments. However, the suggested detectors focus their 

abilities on the identification of objects of all sizes, not only 

small ones. For instance, Wang et al. [15] propose a YOLOv4 

network that applies a spatial pyramid pooling layer to extract 

features and compute the features over an entire image 

regardless of image size. The authors show that the YOLOv4 

object detection neural network, based on the CSP approach, 

scales both up and down and is applicable to small and large 

networks while maintaining optimal speed and accuracy. 

However, the model has a bias towards bigger objects. 

 R-CNN [16] improves on the prior techniques in various 

ways. For one, a picture is shrunk to a predefined size and fed 

into the network, which then uses an external algorithm to 

detect small objects. Fast R-CNN [17], an improvement on 

[16], uses areas of interest to extract a fixed-length feature from 

the proposal of each feature map. Instead of utilizing an external 

network, faster R-CNN [17] employs its own network to detect 

small objects. R-CNN and Fast R-CNN, among other 

convolution neural network-based object detectors can be 

divided into: 1) single-stage detectors: YOLOX [12], FCOS 

[13], Scaled-YOLOv4 [15], and EfficientDet [16]. 2) two-stage 

detectors: CenterNet2 [16] and VFNet [17]. 3) anchor-based 

detectors: ScaledYOLOv4 [15] and YOLOv5 [18]. 4) anchor-

free detectors: CenterNet [16], YOLOX [12], and RepPoints 

[19]. But from the perspective of architecture, they generally 

consist of two parts, a CNN-based backbone for image feature 

extraction, and a detection head to predict the class and 

bounding box for the objects. Furthermore, object detectors 

built in recent years frequently insert several layers between the 

backbone and the head, known as the neck.  

So far, most detection models do well on the MS COCO and 

PASCAL VOC datasets [18]. The datasets contain objects that 

take up medium or large portions of an image that contains a 

few small objects, resulting in an imbalance of data across 

objects of different sizes, leading to a bias of models towards 

bigger objects [19]. Furthermore, MS COCO and PASCAL 

VOC datasets have fewer small object classes, and most of the 

state-of-the-art detectors, both in one-stage and two-stage 

approaches, have struggled with detecting the small objects. 

Consequently, there have been attempts to enhance the 

detection of small objects [20], but several of these initiatives 

concentrate on focusing image processing on a particular region 

of the picture [21-23] or on two-stage object detectors, which 

are recognized for improving performance at the expense of 

inference time and are thus less suitable for real-time systems 

[24,25]. This is also the rationale for the proliferation of single-

stage object detectors for such application [26]. Another 

apparent option explored to get around the problem is to raise 

the resolution of input image, however doing so significantly 

lengthens process cycle time [27].  

As a consequence, the aim of this article is to improve the 

performance of YOLOv5s model in terms of small object 

recognition, with the objective of application in automated bird 

deterrent system. The following are the contributions of this 

paper: (1) A YOLOv5s modified model created specifically for 
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improved small object detection. (2) Developing a 

methodology for modifying the architecture of YOLOv5s in 

order to increase performance in a specific task. 

I. YOLOV5 NETWORK MODULE 

YOLOv5 is a single-stage object detection algorithm 

proposed by Glenn Jocher in 2020 [28]. Based on variances in 

network width and depth, YOLOv5 is separated into four 

network model variations: YOLOv5s, YOLOv5m, YOLOv5l, 

and YOLOv5x [29]. The YOLOv5s network has the quickest 

computation speed but the lowest average precision, whereas 

the YOLOv5x network has the opposite properties. Fig. 2 

depicts the entire design of the YOLOv5 model, which includes 

the backbone, neck, and head.  Typically, YOLOv5 uses the 

architecture of CSPDarknet53, with SPP layer as the backbone, 

PANet as neck, and YOLO detection head [30]. 

The backbone is dedicated to collecting the input image and 

extracting feature maps from it. This is an important stage in 

any object detector since it is the primary structure responsible 

for gathering contextual information from the input image and 

abstracting that information into patterns. Backbones for object 

detectors operating on GPU platforms might be VGG, ResNet, 

ResNeXt, or DenseNet [30]. SqueezeNet, MobileNet, or 

ShuffleNet might be the backbone for object detectors running 

on CPU platforms [29].  

The neck is important in the transmission of small-object data 

because it prevents information from being degraded to higher 

levels of abstraction [30]. It accomplishes this by upsampling 

the resolution of the extracted features once again, allowing 

distinct layers from the backbone to be consolidated and 

regaining influence on the detection phase. The advantage of 

this technique is that no feature layer aggregation procedure, 

such as SSD [34], is performed straight after the multi-level 

feature map. Path-aggregation blocks often utilized in the neck 

include: FPN, PANet, NAS-FPN, BiFPN, ASFF, and SFAM 

[30]. The use of various up-and-down sampling, splicing, dot 

sum, or dot product to construct aggregation algorithms is 

shared by all of these processes. Other blocks employed in the 

neck are SPP, ASPP, RFB, and CBAM [30]. 

  
Fig. 2 Structure of YOLOv5 model [19] 

 

The YOLOv5s backbone cannot accomplish the localization 

task because it is a classification network, hence the head is 

responsible for recognizing the location and category of the 

object using the features maps retrieved from the backbone. 

There are two types of heads: dense prediction and sparse 

prediction. The RCNN series is the most typical of sparse 

predictors, which have long been the dominating approach in 

the area of object detection [31]. In comparison to the sparse 

detector, the dense detector predicts both the bounding box and 

the class of objects [32]. The dense detector has a clear speed 

advantage, but its accuracy is poorer. The most representative 

models for dense detectors are the YOLO series [33]. 

II. IMPROVED YOLOV5S ARCHITECTURAL CHANGES 

A. Backbone 

In this study, the CSPDarknet YOLOv5 backbone was 

replaced with DenseNet. Implementing the DenseNet structure 

necessitated breaking it down into its essential components and 

ensuring that the layers interacted properly. This involved 

maintaining the correct feature map size, which necessitated 

significantly changing the scaling factor for the width and depth 

of the model. It was critical to avoid dramatically changing the 

number of layers from the original model in order to preserve a 

comparable level of complexity. As a result, DenseNet was 

downscaled appropriately to retain its basic capability. Three 

convolution blocks and modules of the CSPbottleneck in the 

original version of YOLOv5 were also replaced with 

Transformer encoder blocks in order to fully utilize the global 

information of the bird pictures. The structure is shown in Fig. 

3. Each TRANS module was divided into two sub-layers, the 

first of which was a multi-headed attention layer and the second 

of which was a completely linked layer. 
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Fig. 3. The architecture of the transformer encoder 

 

B. Neck 

PANet, as shown in Fig. 2, is used in YOLOv5. However, in 

this paper, it was substituted with a BiFPN [34]. By adding 

extra weights to the input characteristics of multiple resolutions, 

BiFPN helps the network to comprehend the value of each 

feature resulting in improved integration of varied scale 

information. When it comes to difficult-to-identify birds, 

deeper features are better in abstracting the properties of the 

problem. 

 
Fig. 4 Feature network design (a) PANet adds an additional bottom-up 

pathway on top of FPN (b) BiFPN implements two optimizations for 

cross-scale connections [34] 

 

When fusing features at multiple scales, BiFPN adds weights 

to the input features of different resolutions rather than merely 

summarizing or concatenating them [35]. As illustrated in Fig. 

4, if the original input nodes and output nodes are at the same 

level, BiFPN inserts more edges between them to fuse more 

information without contributing too much extra processing. 

BiFPN combines bidirectional cross-scale connection with 

trainable parameters and fast normalization fusion [36]. 

 

C. Head 

In this study, one additional prediction head for tiny object 

detection was introduced. The four-head framework, when 

combined with the other three prediction heads, mitigates the 

detrimental impact produced by violent object size variation. 

The whole network structure is shown in Fig. 5.  

 
Fig. 5 The whole network structure. (1) DenseNet backbone with a 

TRANS module at the end. (2) Neck using the structure of the BiFPN. 

(3) Feature map of four detection heads using the TRANS module in 

neck 

III. DATA PREPROCESSING AND TRAINING 

a. DATASET 

The dataset used in this study was the Klim dataset. The 

dataset contains 1607 images for training, 340 images for 

validation, and another 357 images for testing. Fig. 6 shows bird 

size statistics from the Klim datasets. Fig. 7 shows a sample 

image from the dataset. The mosaic data augmentation 

approach was utilized to enlarge the image collection before it 

was fed into the improved YOLOv5s network model. The 

photos were spliced using a variety of approaches, including 

random scaling, random cropping, and random arrangement, 

which not only increased the image collection but also 

enhanced the recognition of tiny objects. Furthermore, before 

training the model, adaptive scaling and filling operations were 

conducted on the training dataset, and the input image size was 

adjusted to 416 x 416 pixels.  
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Fig. 6 Bird size statistics from Klim datasets. 

b. EXPERIMENTAL EQUIPMENT 

The models were implemented on Google Colab Pro cloud 

services with Tesla P100-PCIE 16GB GPUs. 

c. MODEL TRAINING 

To train the models, transfer learning was applied. Training 

began with YOLOv5s weights that had been learned on the MS 

COCO dataset. The first 10 layers of the backbone were frozen 

so that the weights in the backbone layers did not change during 

transfer learning. The Klim dataset was used to train the head 

layers. Grid search was used to find the best combinations for 

learning rates, batch size, network resolution, subdivision, and 

anchors. The hyperparameters were set as follows: batch size: 

16, height and width: 416, sub-division: 32, momentum: 0.921, 

learning rate: 0.001, decay: 0.0005.  

Since there is only one class, the number of filters before 

each of the three YOLO layers was set to 18. Stochastic 

Gradient Descent was used as the optimizer in the network. For 

a custom object detector, anchors are important parameters to 

tweak based on the object sizes in the annotated training dataset. 

In YOLO, anchor boxes are estimated using k-means clustering 

with cluster size of 9 on the dimensions of the ground truth 

bounding boxes. Each model has 9 anchor boxes to learn small, 

medium, and large objects. The optimized parameters for each 

model are listed in Table I.  

TABLE I.  TRAINING PARAMETERS FOR ORIGINAL YOLOV5S 

AND IMPROVED YOLOV5S 

 
 Original YOLOv5 Improved YOLOv5 

Burn in 100 100 

Steps (1600,1800) (1400, 1700) 

Scale (0.1, 0.1) (0.1, 0.01) 

Anchors (5,8) (7,11) (11,13) 

(13,18) (20,18) (20,29) 

(33,27) (50,47) (60,98) 

(5,8) (7,11) (11,14) 

(15,17) (21,20) (19,31) 

(32,27) (48,46) (61,97) 

 

The model was then trained for 100 epochs. Fig. 8 shows the 

flow diagram of the training process. The best network weight 

was acquired when the training was done. Following that, the 

improved YOLOv5s performance was assessed using the test 

set and compared to the test results of the original YOLOv5 

network.  

 

Fig. 7 Sample image from the Klim dataset 

 

 

Fig. 8 The flow diagram of the training method 

VI. EXPERIMENTAL RESULTS 

CONVERGENCE RESULTS OF THE NETWORK MODEL 

The training and validation sets were inputted into the 

network for training. Both the original YOLOv5s and improved 

YOLOv5s models were trained using images from the Klim 

dataset. The dataset includes 1607 objects for training, 340 for 

validation, and another 357 for testing.  After 100 epochs of 

training, the loss function value curves of the training and 

verification sets for the improved YOLOv5s were determined 

as shown in Fig. 9, and they included the detection frame loss, 

the detection object loss, and the class loss. The graphs show a 

good fit between validation and training data, confirming that 

the model was not suffering from over-fitting or under-fitting. 

The detection frame loss reflects if an algorithm can accurately 

locate the center point of an object and whether the detection 

target is covered by the projected bounding box. 
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Fig. 9 Training and validation curves for improved YOLOv5s for the 100 training epochs 
 

 

The more precise the prediction frame, the less the loss 

function value. The object loss function is simply a probability 

measure of the presence of the detection target in the region of 

interest. The better the precision, the smaller the value of the 

loss function. The class loss measures the ability of the 

algorithm to properly anticipate a certain item category. The 

lower the loss value, the better the categorization. As shown in 

Fig. 9, the loss function value had a downward trend during the 

training process, the Stochastic Gradient Descent algorithm 

optimized the network and the network weight and other 

parameters were constantly updated. Before the training batch 

reached 20, the loss function value dropped rapidly, and the 

accuracy, recall rate and average accuracy rapidly improved. 

The network continued to iterate. 

When the training epochs reached approximately 50, the 

decrease in the loss function value gradually slowed. Similarly, 

the increases in parameters such as average accuracy also 

slowed. When the training epochs reached 50 the loss curves of 

the training and validation sets showed almost no downward 

trends, and other index values also tended to have stabilized. 

The network model basically reached the convergence state, 

and the optimal network weight was obtained at the end of 

training.  

VERIFICATION OF THE NETWORK MODEL 

It was critical to utilize proper assessment measures for each 

problem while evaluating the detection performance of both the 

original YOLOv5s and improved YOLOv5s network. The 

evaluation measures were precision, recall, average precision, 

F1 score, and mean average precision, which were defined as 

follows:  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     (1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (2) 

 

 𝐴𝑃𝑖 = ∫ 𝑃
1

0
(𝑅)𝑑(𝑅)    (3) 

 

𝐹1 =
2𝑃𝑅

𝑃+𝑅
     (4) 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1     (5) 

  

Where: True positives (TP) indicate that birds have been 

recognized and that there are birds in the real image. True 

negatives (TN) indicate that no birds were identified and that 

no birds were present in the real image. False positives (FP) are 

recognized when there is no bird in the picture. FN (false 

negatives) indicates that no birds were identified, yet there were 

birds in the real image. 

The recall rate is used to calculate the proportion of birds 

identified to the total bird price in the sample. The accuracy rate 

is used to calculate the percentage of accurate birds detected out 

of all birds detected. When the two are close, F1 score is used. 

The greater the F1 score, the better the algorithm.  In all, 357 

images from the Klim dataset were utilized as the test set, and 

the test results for both the original YOLOv5 network and the 

improved YOLOv5 network included recall rate (R), accuracy 
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rate (P), and mAP score. Table II shows the results of the 

original YOLOv5s and improved YOLOv5s models evaluated 

on the Klim dataset.  

As the data in Table II shows, original YOLOv5s has the 

fastest detection speed but the lowest mAP. Fig. 10 shows that 

the original YOLOv5s has a lower detection accuracy for small 

birds compared to the improved YOLOv5s model. The 

proposed method based on YOLOv5s has better detection 

accuracy in both relatively static and highly dynamic 

backgrounds images in the Klim dataset compared to the 

original YOLOv5s as shown in Fig. 11 where the improved 

YOLOv5s accurately localized the bird and Fig. 12 where the 

original YOLOv5s was unable to localize the bird. The original 

YOLOv5s model achieved a mAP score of 84.1% on the 

validation set. The detection threshold was set at 0.5. Improved 

YOLOv5s model achieved a mAP score of 88.1% on the test 

data. This was a 4.8% improvement over the original YOLOv5s 

model. 

TABLE II. AP50 AND MAP SCORES FOR ORIGINAL YOLOV5S 

AND IMPROVED YOLOV5S MODELS ON THE KLIM DATASET 

 Original YOLOv5s Improved 

YOLOv5s 

Training/Validation/Test Set 1607/340/357 1607/340/357 

AP50  (%) 

(Validation) 

82.5 87.3 

mAP(%) 

(Validation) 

81.7 84.1 

AP50 (%) 

(Test) 

82.5 83.2 

mAP(%) 

(Test) 

83.3 88.1 

 
Fig. 10 mAP curves of improved YOLOv5s and original YOLOv5 

 

 
Fig. 11 Visualization results from our Improved YOLOv5s on Klim 

dataset 

 

 
Fig. 12 Visualization results from the original YOLOv5s on Klim 

dataset 

VII. CONCLUSION 

This paper identified architectural modifications to 

YOLOv5s that deliver a clear improvement in performance at 

relatively low computational cost, as the improved YOLOv5s 

model retains real-time inference speed and better detects 

smaller objects. The scenario in which the proposed approach 

is used, that of autonomous bird deterrent, is one that would 

benefit substantially from such an upgrade. Comparing Fig. 11 

and Fig. 12, such modifications have a quantifiable effect on 

bird detection on the Klim dataset. The proposed approach only 

significantly enhanced the performance of the baseline model, 

but also identified a number of specific strategies that may be 

used for any other application requiring the detection of small 

distant objects.  

Finally, while the empirical advantages of the proposed 

architectural improvements are significant in this study, the 

consistency and applicability of the results should be studied 

further. For example, the analysis might benefit substantially 

from more testing with diverse datasets. This would be a 

significant step toward a more robust small object detection 

model. 
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