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ABSTRACT 

The demand for baobab fruit pulp (BFP) is growing significantly due to increasing 

popularity of natural, organic, and nutritious ingredients. This demand has created the 

need for quality control to ensure quality and safety of the pulp. Conventional methods of 

assessing the quality of BFP are subject to human error, destructive and costly. Therefore, 

this study evaluated the ability of portable NIR spectrometer for rapid and non-destructive 

determination of key quality attributes of BFP. The study also evaluated the potential of 

the technique to monitor quality changes of stored BFP and to detect adulteration. A 

portable NIR spectrometer (Model: NIR-S-G1, Tellspec, Toronto, Canada) was used to 

acquire BFP spectra. Reference measurements on total titratable acidity (TTA), total 

soluble solids (TSS), vitamin C, and moisture content were immediately collected through 

specific wet-chemistry procedures.  Chemometrics of partial least square regression 

(PLSR) was used to correlate between NIR spectra and reference measurements. 

Prediction model specific to each parameter was constructed and validated.  This study 

proved that portable NIR spectrometer could be used for rapid, accurate, and non-

destructive determination of BFP quality parameters with R2 of above 0.63 and RPD of 

above 2.00. A 23 factorial design storage experiment establishing the effect of storage 

duration (six months), storage conditions (25°C/75%RH and 35°C/83%RH), and 

packaging materials (unbleached kraft paper, UbKP and low-density polyethylene, LDPE) 

on quality of BFP. Constructed models were used to monitor changes in stored BFP. 

Additionally, microbial safety of stored pulp (total aerobic counts, TAC and total yeast 

and mold counts, TYMC) was determined through specific wet-chemistry procedures. 

Results indicated that the nutrient composition of stored BFP deteriorated regardless of 

the effect of packaging material and the storage conditions used. The TTA declined 

insignificantly (P>0.05) while TSS and vitamin C significantly reduced (P<0.05) at the 

end of the storage period. The moisture content of stored samples also increased 

significantly regardless of the protection offered by the packaging material. There was a 

significant growth of TAC over time (P>0.05) in all samples regardless of packaging and 

storage conditions. Yeast and molds were not detected in samples kept in LDPE bags until 

the end of storage. However, the increase in moisture content and microbial load of stored 

pulp did not surpass the upper limits stipulated by KEBS.  Finally, the potential of portable 

NIR spectrometer to detect and quantify the adulterants in BFP was evaluated. Partial 

Least Square Discriminant Analysis (PLS-DA) was adopted for classification purpose. 

The device was sensitive and precise in the discrimination of pure and adulterated BFP. It 

detected rice, wheat, and maize fours adulterants with sensitivity and specificity of above 

0.982 and error of below 0.009 for all two-class PLS-DA models. Finally, the PLSR was 

also used to establish predictive modes for quantifying the amount of adulterants present 

in BFP. The models proved to be efficient with prediction R2 and RMSE of above 0.88 

and below 6.20% respectively. The models also resulted in reasonably low limits of 

detection (LODs) of 8.79%, 11.01%, 13.79% for rice, wheat and maize flours, 

respectively. Therefore, portable NIR spectrometer paired with chemometrics could be 

used for rapid, non-destructive, and cost-effective quality assessment of BFP. The 

adoption of portable NIR spectrometers by baobab value chain actors could help reduce 
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post-harvest losses by enabling rapid, non-destructive quality screening of fruits to 

identify and reject immature or poor-quality batches. Furthermore, this cost-effective 

technique could be utilized to monitor changes in stored BFP, and rapidly screen for 

adulteration, thereby maintaining product authenticity and quality. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Baobab (Adansonia digitate L.) fruit is part of a long-standing, iconic, and multipurpose 

tree belonging to the family Bombaceae and Malvales order that is widely distributed in 

the savannas and savanna woodlands in sub-Sahara Africa (Ismail et al., 2019). Baobab 

fruit is long and barrel-shaped with black seeds ingrained in a white and chalky pulp. 

Baobab fruit, also known as "monkey bread" or "cream of tartar," is traditionally 

consumed by local communities in various countries on the continent, including Senegal, 

Ghana, and Zimbabwe (Ibrahima et al., 2013). Baobab pulp is rich in nutrients such as 

carbohydrates, proteins, lipids, fibers, and minerals such as potassium, magnesium, 

calcium, and sodium (Chadare et al., 2009). The fruit is high in vitamin C and has a tart, 

citrus-like flavor and it qualifies as homegrown vitamin C for Africans (Sidibe and 

Williams, 2002). Additionally,  it contains many different phenolic compounds such as 

procyanidin, epicatechin, gallic acid, hydroxycinnamic acid, glycosides (Ibrahima et al., 

2013) tannins, phenols, and flavonoids (Kamatou et al., 2011) which are linked to various 

biological properties such as anti-microbial, anti-oxidant and anti-inflammatory (Ismail et 

al., 2019). Due to its incredible nutrient density, baobab fruit as a source of food, holds 

promise of achieving Zero Hunger. The fruit can also empower local communities, 

increase incomes, improve food security, and build resilience. 

Recently, baobab fruit pulp (BFP) has received a lot of attention from vendors and 

processors. This is due to its usefulness in several products such as juices, sweets, seed 

oil, and other valuable products (Ismail et al., 2019). It is also applied in various 

formulations such as sauces, yogurt, and appetizers (Rahul et al., 2015). In 2008, 

European Union certified baobab pulp as a novel food ingredient and authorized it to be 

merchandised and applied in the food industry. This opened the door for the exportation 

of BFP from African countries (Christine et al., 2010). In 2009, Food and Drug 

Administration (FDA) gave Generally Recognized as Safe (GRAS) status through 
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scientific procedures and approved it as a food ingredient for use in fruit drinks and fruit 

cereal bars in the United States. In the United Kingdom, baobab fruit imports have 

increased by over 1600% due to its application in chocolates, jams, cereals, bars, sauces, 

and alcoholic spirits (Wang et al., 2017). According to Baobab Research Report. (2020), 

the global market for baobab is expected to reach US$3.75 billion by 2024.  

In Kenya, BFP is gaining recognition for health benefits, as food industries incorporate it 

into “healthy” products (Wegelin, 2021), while scientific publications demonstrate its 

nutritional and phytochemical value (Chadare et al., 2009; Coe et al., 2013). This has 

driven BFP demand and baobab powder exports from small community facilities, where 

rural workers manually harvest, deseed, and dry the pulp, as well as from medium 

processors that collaborate with local communities on packaging and distribution 

(Egbadzor et al., 2023). However, a key challenge facing this business is biopiracy and 

illegal export of whole baobab trees and warranting a potential ban would prevent 

smuggling across the borders. 

In scientific literature, the edible dehydrated powder is typically referred to as baobab fruit 

pulp or simply baobab pulp. In commercial trade and among food vendors or processors, 

this same baobab fruit pulp powder is commonly labeled and marketed as baobab powder. 

While scientifically it is more precise to specify baobab fruit pulp powder, the term baobab 

powder has become widely used and understood in the food industry and marketplace to 

refer specifically to the dried, milled fruit pulp material. Therefore, food scientists 

studying baobab pulp chemistry and nutrition refer to it as “baobab fruit pulp” while 

commercial providers label essentially the same product as “baobab powder.” Despite 

differing terminology, both terms refer to the edible nutritional powder from dried baobab 

fruit mesocarp (Munissi., et al. (2022). 

The development in instrumentation has resulted in alternative, non-destructive, cheap, 

and rapid methods of determining the internal quality parameters of intact fruits and 

vegetables. Specifically, near-infrared (NIR) spectrometer has found its use in the food 

industry for qualitative and quantitative analysis. This is because NIR spectrometer is 

simple, rapid, non-destructive, requires minimal or no sample preparation.  It enables 
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simultaneous determination of several parameters using single measurements. It is also 

fast, has  non-contact operation procedures and low operating cost (Li et al., 2019). The 

NIR region of the electromagnetic spectrum lies between the visible and infrared regions 

with wavelengths ranging between 750-2500 nm (Beghi et al., 2013). Recent advances in 

NIR spectrometer have led to the development of miniature, commercial 

handheld/portable scanners that have contributed to additional speed, simplicity, 

sensitivity, and convenience (Amuah et al., 2019). These scanners are ideal for onsite 

quality determination of intact fruits either in the fields or in cold rooms during inspection. 

A handheld/ portable spectrometer coupled with chemometric techniques has been used 

to determine internal quality parameters such as total titratable acidity (TTA), total soluble 

solids (TSS), and sugar content of fruits (Chia et al., 2012; Li et al., 2019). Additionally, 

a portable NIR spectrometer has been used to classify and quantify adulteration in palm 

oil (Basri et al., 2017), authenticate paprika powder (Oliveira et al., 2020), and predict the 

eating quality of apples (Mart et al., 2013). However, the ability of this technique for non-

invasive quality assessment of BFP has not been explored. Therefore, this study aimed at 

evaluating the potential of a portable NIR spectrometer for rapid and non-destructive 

testing of quality and authenticity of BFP in Kenya.  The use of this technique both by 

producers in the field and the baobab value chain actors will ensure the uniformity of 

batches of fruits not only in terms of external appearance but also in terms of pulp quality 

parameters such as texture, color, titratable acidity, sugar, and vitamin content.  

1.2 Problem Statement  

Baobab fruit has gained recognition as ‘super fruit’ due to its high nutrient content and 

associated health benefits. The fruit pulp is normally consumed raw or processed into 

different products such as beverages, food, dietary supplements, and even personal care 

products. Due to these multiple applications, quality control of BFP is paramount in 

ensuring the safety and attainment of certain quality standards. The quality of fruit is 

normally assessed through visual inspection, measurement of physical characteristics, 

wet-chemistry analyses, and sensory evaluation using taste panels (Shewfelt, 2014). These 
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procedures involved are laborious, destructive, require sample preparation, and often use 

expensive chemicals and equipment (Jiang et al., 2016).  

Lack of efficient quality testing techniques leads to postharvest losses and safety issues 

(Barbin et al., 2012). Massive quantities of food are lost due to spoilage and infestation 

on their way to consumers or processors (Blakeney, 2019). In Africa, food losses and 

waste goes up to 40-50% due to poor infrastructure and storage conditions (Spore, 2011). 

Extracted BFP often goes to waste due to improper post-harvest handling e.g. poor 

storage, yeast/mould infestation, unhygienic conditions, and poor processing (James et al., 

2022). Eldoom et al.(2014) reported significant nutrient loss especially vitamin C in 

poorly stored BFP. Microbial contamination and infestation during storage not only causes 

sensory defects but also introduce toxins, making BFP unsafe for consumption. 

Mycotoxins from mold growth pose a health risk if the contaminated pulp is consumed. 

Bacterial contaminants like Salmonella, E. coli, and Staphylococcus aureus have been 

isolated from baobab pulp samples stored in unhygienic conditions (James et al., 2022). 

Food commodities have always been vulnerable to fraudulent adulteration with cheaper 

and inferior materials. In sub-Sahara Africa, food safety has been a growing concern with 

rampant instances of adulteration and contamination of food products (Onyeaka et al., 

2021). It is estimated that more than 20% of foods are likely to be adulterated (Pal and 

Mahinder, 2020) with a cost implication of   US$ 49 (McGrath et al., 2018). The BFP is 

well known in Sub-Saharan Africa due to its incredible nutrient density, application in 

several consumer products, and rapidly growing demand worldwide. The potential 

adulterant for baobab is cereal flour with the main motive being high weight adjustment, 

increase sales and  profits, or stretch the supply of the product (Chepngeno et al., 2022a). 

Adulteration of BFP is a concern because it compromises the safety and quality of the 

product. It dilutes the nutrient composition and destroys the reputation of genuine baobab 

producers.  It also mislead consumers about the true nature of the product and those who 

pay premium for quality BFP does not get value for their money (Muthai et al., 2017).  
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1.3 Justification 

Conventional methods of BFP quality assessment such as visual inspection, measurement 

of physical characteristics, and physico-chemical testing have several limitations. They 

are highly subjective in nature, relying on personal bias and interpretation. They require 

specialized equipment, skilled personnel, and are generally destructive to the samples 

being analyzed (Amuah et al., 2019). Conventional quality testing also tends to be tedious, 

labor-intensive and time-consuming (Ncama et al., 2017; Magwaza and Opara, 2015). For 

instance, assessing parameters like TSS and TTA involves extraction of juice from the 

BFP, making solutions, and running multiple tests (Munyebvu et al., 2022). This is time 

consuming and the cost implications of acquiring equipment and chemicals, and also 

training staff adds to the complexity of conventional testing. These deficiencies of 

traditional quality evaluation restrict the ability to carry out rapid, reliable, and routine 

assessment of BFP at critical points along the supply chain such as harvest, transport, 

storage, and processing sites. 

NIR spectrometer has emerged as a viable alternative to subjective conventional methods 

for non-destructive quality testing of agricultural produce (Amuah et al., 2019). NIR 

spectrometer is simple to use, rapid, and requires no or minimal sample preparation. It 

allows simultaneous measurement of multiple parameters using a single scan and has low 

operating costs compared to traditional wet-chemistry techniques (Ncama et al., 2017). 

The development of miniaturized handheld NIR devices has enabled portability, speed, 

and ease-of-use for on-site quality analysis (Tugnolo et al., 2021). The use of 

chemometrics makes it easier to retrieve chemical information from complicated spectrum 

data (Amuah et al., 2019). Implementing portable NIR spectrometer could significantly 

improve efficiency, accuracy and objectivity in routine quality control practices for BFP. 

This would in turn help reduce post-harvest losses, ensure safety and standards 

compliance, and support income generation across the baobab value chain in sub-Saharan 

Africa. 

Adoption of efficient quality testing techniques could help reduce postharvest losses by 

ensuring harvesting of fruits that meets the required quality standards. It would help 
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address safety issues and support the livelihoods and income generation of baobab 

producers and traders in sub-Saharan Africa. Quick, non-destructive quality checks using 

portable NIR spectrometer gives information about quality and also identify pulp that does 

not meet safety standards. This allows problematic batches to be sorted out early, reducing 

post-harvest losses that can severely impact incomes. Equipping producers and 

cooperatives with portable NIR units enables them to guarantee the quality of their pulp 

before transport to processing sites or export markets. This increases chances of 

acceptance and profitability. Traders and vendors also benefit from being able to rapidly 

authenticate the quality of purchased BFP. Avoiding losses helps baobab value chain 

actors maximize revenues and make their operations more financially sustainable. 

Increasing incomes for the predominantly rural baobab harvesters and processors 

contributes to poverty alleviation and greater food security, aligning with Sustainable 

Development Goals like Zero Hunger. Therefore, this study aimed at evaluating the ability 

of portable NIR spectrometer for non-destructive assessment of quality and authenticity 

BFP.   

1.4 Objectives of the Study 

1.4.1 Main Objective 

To evaluate the potential of portable NIR spectrometer for rapid and non-invasive 

determination of quality and authenticity of BFP in Kenya. 

1.4.2 Specific Objectives 

1. To determine the ability of a portable NIR spectrometer for rapid, non-destructive, 

and simultaneous determination of BFP quality parameters (TTA, TSS, vitamin C 

and moisture content).  

2. To evaluate changes in BFP quality during storage using portable NIR 

spectrometer. 

3. To assess the potential of a portable NIR spectrometer for rapid and non-

destructive detection and quantification of BFP adulteration.  
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1.5 Scope of the Study 

The study was targeted to determine the ability of a portable NIR spectrometer as a rapid 

and non-destructive alternative method for checking the quality, nutrient deterioration 

during storage, and authenticity of BFP. The study used a portable NIR spectrometer 

(Model: NIR-S-G1, Tellspec, Toronto, Canada) to collect spectral data in the wavelength 

range of 900-1700 nm. Each sample scan recorded 256 data points across the NIR region. 

Wet chemistry (TTA, TSS, vitamin C, and moisture content) analyses were carried out 

immediately after spectral data acquisition using wet-chemistry methods. The study used 

chemometrics of partial least square regression (PLSR) to correlate spectra and reference 

quality parameters of BFP. Constructed PLSR models were validated both internally using 

cross-validation and externally using external set of samples. Constructed models were 

used to predict the degradation of quality parameters of BFP during storage. Additionally, 

microbial safety of stored BFP samples was assessed through standard wet-chemistry 

procedures. The study also involved evaluating the ability of a portable NIR spectrometer 

for the detection and quantification of rice, wheat, and maize flour adulterants in BFP. 

Adulteration level exceeding 10% was utilized as the delineation between accidental and 

deliberate adulteration (Chepngeno et al., 2022). The study utilized partial least square 

discriminant analysis (PLS-DA) and partial least square regression (PLSR) to classify 

adulterants and quantify the level of adulteration. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Description of Baobab Trees 

Adansonia digitata L. (Malvaceae) commonly known as the ‘Baobab tree’ is a long-lived 

and multipurpose African native species commonly found in the African thorny 

woodlands. It belongs to the family of Bombaceae and Malvales order that is widely 

distributed in the savannas and savanna woodlands in sub-Sahara Africa (Sidibe and 

Williams, 2002). It is a massive tree characterized by a distinctive huge trunk and a height 

of up to 20 m and a diameter of between 10-12 m (Figure 2.1). 

 

Figure 2.1: Shows (a) baobab tree, (b) baobab fruit, (c) cracked baobab fruit and (d) 

baobab fruit pulp (World Economic Forum and Resita So Image  

https://t.ly/S6AW7). 

Globally, there are eight species of baobab trees and six of them are native to Madagascar 

where it is believed that the name Adansonia originated (Sidibe and Williams, 2002). In 

Africa, baobab trees are plenty in several countries such as Mozambique, Zimbabwe, 
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Kenya, Malawi etc. (Kamatou et al., 2011). Recently, another species of baobab called 

Adansonia Kilima has been discovered in Tanzania, Kenya, Zambia, Namibia, and South 

Africa (Douie et al., 2015). Baobab trees do well in semi-arid areas with low annual 

rainfall. It also grows on a wide range of well-drained soils from clay to sand and a latitude 

of 16°N and 26°S in areas limited to frost annually (Gebauer et al., 2002). They grow 

slowly probably due to an insufficient amount of water received annually and can have a 

lifespan of up to 1000 years (Rahul et al., 2015). 

Baobab trees growing in fields begin to bloom eight to twenty-three years while grafted 

ones takes less than five years to start flowering (Anjarwalla et al., 2017). Peak flowering 

occurs at the same time usually in November each year and the flowering stops altogether 

in April (Wickens, 2007). Flowering is determined by the temperature and the conditions 

of the previous season (Munyebvu et al., 2018). Seasonally, a matured baobab tree is 

estimated to produce about 200kg of fruits (Kabbashi et al., 2017). The previous season 

of baobab and the ability of the tree to flower influence flowering and fruit production 

(Venter and Witkowski, 2019). Baobab fruit, also known as "monkey bread" or "cream of 

tartar fruit," is eaten by local communities in various countries on the continent, including 

Senegal, Ghana, and Zimbabwe. The fruit is high in vitamin C and other nutrients and has 

a tart, citrus-like flavor. It is often used to make juice, jam, and other food products.  

2.2 Traditional and Modern Uses of Baobab Products 

Rural communities in some African developing countries depend on products and services 

from baobab trees for their livelihoods. In northern Namibia, the rural communities 

consider all parts of the baobab tree to be useful and they obtain benefits such as food, 

medicine, fiber, fodder, materials for crafts, aesthetics, and spiritual services (Lisao et al., 

2017). All parts of the tree are used for traditional medicine although the medicinal 

purpose differ from country to country. Leaves, fruits, seeds, stems, and roots are used as 

a traditional remedy to treat conditions such as malaria, fever, diarrhea, dysentery, asthma, 

and inflammation among other illnesses (Rahul et al., 2015). The leaves and pulp are used 

to stimulate the immune system (De Caluwé et al., 2009).  Indians use baobab pulp to 

treat diarrhea and young leaves as a remedy for swellings (Sidibe and Williams, 2002). 
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Leaves are also used to treat different conditions such as infections of the urinary tract and 

Guinea worms (Sidibe and Williams, 2002), and as an insect repellant in West Africa 

(Denloye, et al., 2006). The seed oil is utilized against loose bowels and hiccups (De 

Caluwé et al., 2009). In Africa, the bark is used to treat malaria and paste made from the 

fruit pulp is used to treat swollen joints (Wickens, G.E., 2008). Baobab's medicinal 

properties include; anti-oxidant, pre-biotic-like activity, antipyretic, anti-inflammatory, 

anti-dysentery, and anti-diarrhea (Sidibe and Williams, 2002). 

Baobab pulp is rich in carbohydrates (in form of sugars and pectin) and is currently used 

in a variety of formulations such as juices, sauces, yogurt, and as an appetizer in seasoning 

(Christine et al., 2010). Also, the dry pulp is either eaten directly or dissolved in water or 

milk to make a beverage (Sidibe and Williams, 2002). The crude oil obtained from baobab 

seeds is used in cosmetics due to its high fatty acid composition (Kamatou et al., 2011) 

and to treat skin diseases because it does not irritate or cause allergic reactions (Sidibe and 

Williams, 2002). Additionally, crude oil obtained from baobab seeds is suitable for 

cosmetics and pharmaceutical industries because it is excellent in restoring and re-

moisturizing the skin. The oil is rich in vitamin A and vitamin F for the rejuvenation and 

cell integrity, and vitamin E for antioxidant and anti-aging (Muthai et al., 2017). It also 

contain vitamin D3 which helps in increasing calcium absorption and reducing blood 

pressure (Nyam et al., 2009). Despite the nutritional components of baobab seed oil, it 

contains a high degree of cyclopropenoid fatty acid (CPFA) which is dangerous to human 

health and perceived to be carcinogenic (Msalilwa et al., 2020). It contains CPFA at a 

range between 10-12.8% (Msalilwa et al., 2020) which is above the 0.4% minimum 

allowable limits. In Kenya, extracted pulp powder is used in a wide range of consumer 

products such as juices, smoothies, ice creams, herbal teas, cereal bars, biscuits, and 

chocolates. Baobab seeds are also coated with a colored, fragrant sugar layer to make 

baobab candies which are locally known as Mabuyu or Ubuyu which are commonly made 

and marketed in coastal and other parts of Kenya (Lisa et al., 2019). 
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2.3 Proximate and Nutritional Composition of Baobab Fruit Pulp 

Baobab pulp contains moisture content of between 8.81 and 10.4% (wet basis) with those 

from Kenya and Mali having the highest moisture content compared those from Zambia 

(Osman, 2004; Muthai et al., 2017; Stadlmayr et al., 2013). The low moisture content is 

due to low annual rainfall, high temperatures, sunlight, and wind exposure which has been 

reported to contribute to dryness (Abiona DL et al., 2015). The baobab fruit pulp (BFP) 

is an excellent source of carbohydrates in form of pectin and sugars. Pectin ranges between 

61 to 71% (Edogbanya, 2016; Coe et al., 2013; Chadare et al., 2009) while total sugars 

ranges between 16.9 to 25.3% (Asogwa et al., 2021). Different studies have reported a 

low amount of crude protein between 1.86 to 8.2% that is contained by the pulp (Muthai 

et al., 2017; Edogbanya, 2016; Sidibe & Williams, 2002). The fat content of pulp is 

extremely low with levels reported by different studies to range from 0.3 to 13% (Osman, 

2004;  Muthai et al., 2017; Ibrahima et al., 2013) and fiber content ranging between 4.0 to 

28.0% (Stadlmayr et al., 2013; Osman, 2004; Ibrahima et al., 2013). 

The ash content of different varieties of BFP from different ecological zones is reported 

to range between 3.86 and 5.0% (Muthai et al., 2017; Abiona DL et al., 2015; Stadlmayr 

et al., 2013).  The pulp is an excellent source of potassium, calcium, and magnesium but 

a poor source of zinc, iron, and copper. The high calcium content of the fruit makes it 

natural calcium supplementation for young and elderly as well as pregnant and lactating 

mothers (Assogbadjo et al., 2012). Both seeds and pulps contain high amounts of amino 

acids (glutamic acids, aspartic acids, and arginine) and are low in sulphur-containing 

amino acids (Sidibe and Williams, 2002). Additionally, BFP contains several vitamins 

which include vitamins A, F, C, D3, E, and B (Nyam et al., 2009). Baobab fruit has been 

referred to as a 'super fruit' because of the high amount of vitamin C and fiber it contains. 

Chadare et al (2009) reported that consumption of 40g of BFP by a pregnant woman (19-

30 years) provides 100% of the daily requirement of vitamin C. Various studies have 

revealed that the vitamin C content of BFP ranges between 60.0 to 467.08.1mg/100g 

(Dandago, 2016; Eldoom et al., 2014; Chadare et al., 2009; Ibrahima et al., 2013).  
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In addition to both macro and micronutrients, it contains many different phenolic 

compounds such as procyanidin, epicatechin, gallic acid, hydroxycinnamic acid, 

glycosides (Ibrahima et al., 2013) tannins, phenols, and flavonoids (Kamatou et al., 2011). 

These compounds are linked to various biological properties such as anti-microbial, anti-

oxidant and anti-inflammatory activity (Ismail et al., 2019). These polyphenols together 

with the high vitamin C content of the pulp make baobab fruit superior in preventing 

oxidation activity in the human body (Ibrahima et al., 2013). 

2.4 Commercialization of Baobab Fruit Pulp 

Baobab fruits are collected either in small or large-scale quantities and sold to vendors or 

commercial companies for processing into powder, candies, fruit juice, seed oil, and other 

valuable products (Ismail et al., 2019). Some rural African communities bartered baobab 

fruits for other useful food items or sold them to generate income that supports the 

livelihoods of the people (De Caluwé et al., 2009). In Zimbabwe, more than 5000 rural 

producers are engaged in exporting baobab pulp to European countries, with many 

involved in selling fruits on local markets (Wynberg et al., 2015). The demand for baobab 

pulp has recently moved to global markets after being certified as a novel food ingredient 

by Food and Drug Administration (FDA) allowing it to be traded and applied in European 

food and cosmetic industries (Christine et al., 2010). This gave an additional valuable 

ingredient to the food, cosmetic and pharmaceutical industries both locally and abroad. 

Luckert et al. (2014) reported that every household in South Africa is gaining between 

US$ 350 and US$ 1500 per year from the direct or indirect business of baobab pulp. 

Baobab pulp is expected to earn up to US$1 billion annually for producer countries 

(Wynberg et al., 2015).  

The sales of baobab pulp in the United Kingdom have increased significantly due to its 

uses in several commercial products (Wang et al., 2017). According to the baobab 

research report of the year 2020, the global market is projected to reach US$ 3.75 billion 

by 2024 and grow at a significant Compound Annual Growth Rate (CAGR) of 9.4% 

during the period from 2019 to 2024.  Also, according to Market Research Future. (2021), 

the global market for BFP is showing healthy growth and is expected to grow at a CAGR 
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of 8.5% between 2021 and 2027. The global market for baobab powder is expected to 

reach US$ 10 billion (€ 9.3 billion) by 2027 (Future Market Insights., 2021). This growth 

is driven by an increase in demand for nutrient-rich and antioxidant-rich organic products 

in the global health and wellness industry. In addition, the rising awareness of the health 

benefits of BFP is also driving market growth. Europe is the world’s largest market for 

baobab powder, accounting for 25% of the global market in 2017. The market for baobab 

powder in Western Europe is anticipated to expand at an average annual rate of 6.3% and 

2.6% in terms of value and volume from 2017 to 2027 (Future Market Insights., 2021). 

Innova Market Insights. (2019) reported that 52% of all food and beverage launches with 

baobab occurred in Europe.  

2.5 Quality Control of Baobab Fruit Pulp 

Quality control is considered as the activities involved in the food chain to avoid 

production, storage, distribution, marketing, traceability, and safety problems (Chen et al., 

2021). The baobab pulp business presents a lucrative business opportunity to rural 

communities, vendors, and processors especially due to its nutritious content and 

certification by Food and Drug Administration. The rising demand for baobab pulp 

worldwide has created the need to quality control in order to guarantee quality, safety and 

compliance to the set standards (Munissi et al., 2022). Conventional methods of BFP 

quality assessment are subjective and highly based on external attributes such as 

appearance, color, freshness, texture, presence of debris and insects, and freedom of decay 

(Munissi et al., 2022). Sensory parameters, which are frequently linked to the internal 

composition of fresh produce, have emerged as important factors that determine the 

consumers' perceptions of the quality (Magwaza and Opara, 2015). Consumers and even 

small-scale processors consider BFP with a smooth, creamy texture, pale yellow to off-

white color, and unique citrus-like flavor, which is often described as tangy or sour, to be 

of high quality (Mpofu et al., 2014).  

With the advancement in technology and improvement in income and living standards, 

objective methods employing modern technologies, which are quite accurate and reliable, 

are increasingly replacing the commonly used conventional methods of fruit quality 
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assessment (Nguyen et al., 2014). Commercially, the organoleptic quality of fruit is 

currently evaluated by measuring total soluble solids (TSS) and total titratable acidity 

(TTA) which contributes to sweetness and flavor (Chen and Opara, 2013). Currently, the 

most significant quality criteria to indicate sweetness used by the industry to establish 

marketing standards is the TSS content, which is typically determined from extracted juice 

using a refractometer (Kader, 2002). However, TSS is majorly composed of 75-85% sugar 

and the remaining components constitutes dissolved acids and minerals, and phenolic 

compounds (Magwaza and Opara, 2015). Another factor shaping consumers' perception 

of the flavor of the fruit is its TTA. This is often measured in the laboratory by extracting 

the juice from the fruit and titrating it against a known concentration of a base usually 

0.1N sodium hydroxide (Kader, 2002). Apart from the appearance, texture, and flavor of 

fruits, other factors such as nutritional value (carbohydrates, proteins, lipids, vitamins, and 

minerals) and safety (naturally occurring toxicants, contaminants, mycotoxins, and 

microbial contamination) influence consumers’ purchase decision and are considered 

during quality evaluation (Ncama et al., 2017). Objective methods of fruit quality 

assessment are typically more reliable and accurate than subjective methods which are 

generally less reliable as they are influenced by personal bias or subjective interpretation 

(Lorente et al., 2012).   

2.6 Baobab Value Chain in Kenya 

BFP is gaining popularity in Kenya and worldwide as a nutritious superfood due to its 

high nutrient content and interests from health-conscious consumers. Baobab fruit 

harvesting and processing provides income opportunities to rural communities in Kenya's 

arid and semi-arid lands where the baobab trees grow (Fischer et al., 2020). During the 

harvesting season, local women often pick the baobab fruits by hand (Meinhold & Darr, 

2022). The work is labor-intensive, requiring the fruit to be cracked open and seeds 

separated from the chalky white pulp. But it provides jobs for female pickers, pulp 

producers, transporters, and processors in rural villages. These roles in the baobab value 

chain help generate incomes for women and their families (Meinhold & Darr, 2022). Once 

harvested, the BFP must undergo processing to produce the final product. The fresh pulp 
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is manually deseeded, then sun-dried or dehydrated to remove moisture (Muthai et al., 

2017). After drying, mills grind the pulp into a fine powder. This multi-step production 

process often occurs in small community facilities, often powered by manual labor instead 

of machines. However, it provides local employment opportunities for those involved in 

the production (Momanyi et al., 2019). 

Some key companies in Kenya processing and exporting BFP include Vokenel Limited 

and Ecovibes Africa Investment Limited. These companies partner with fruit harvesters, 

then handle processing, packaging, and distribution of the baobab powder. They sell the 

packaged pulp in powdered form, under their brands, to Kenyan and export markets. 

Exporting processed Kenyan baobab powder to Europe, the US, and Asia is an important 

part of the value chain, with the supplement and nutrition industries as major markets 

(Egbadzor et al., 2023). The major challenges in the baobab value chain include lack of 

organization among producers, lack of processing equipment, need for consistent quality 

standards, and biopiracy of baobab trees. The unlawful harvesting and export of baobab 

trees deprives local communities in Kenya of natural resources while destroying 

vulnerable tree populations before their benefits are fully explored (Odhiambo., 2023). 

Implementation and enforcement of an outright ban on the export of whole baobab trees 

could help alleviate this challenge by making it illegal to transport these uprooted trees 

across borders. 

2.7 Baobab Fruit Processing  

After harvesting, the baobab fruits are transported to processing sites, where the fruits are 

thoroughly cleaned to remove the fur in the shells before dehusking.  The hard outer shells 

of the fruits are cracked open, often by pounding with a mortar and pestle. This breaks 

open the hairy coating to reveal the white powdery pulp, fibers, and seeds inside. On a 

large commercial scale, baobab fruits are dehusked mechanically using specialized 

equipment such as roller crushers. This machine is consisting of two parallel rotating 

rollers with ridges that crush and shear off the hard shells as fruits pass through 

(Munyawiri et al., 2022). Direct steam treatment (90°C to 100°C) is at times applied to 

intact baobab fruits to loosen and soften the pulp inside, making it easier to extract and 
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separate fibers and seeds from the pulp (Galanakis, 2012).  After dehusking, the content 

is sieved to separate the seeds and fibers before drying and milling of the pulp into a fine 

powder (De Caluwé et al., 2009).  

Sun drying, solar drying, spray drying or oven drying are methods used to achieve the 

desired moisture specifications for the powder (Mpofu et al., 2014). Drying is aimed at 

reducing the high moisture content and water activity of the fresh pulp to make it shelf 

stable (Mpofu et al., 2014). Industrial pulp producers use thermal drying such as spray 

drying or heating using kilns (Mpofu et al., 2014). The dried pulp is ground into powder 

using mechanical mills like hammer mills or attrition mills. This produces the final baobab 

fruit pulp powder which is then packaged, sealed, and stored awaiting for sale and 

distribution (Mpofu et al., 2014).  The coarsely ground powder is further micronized into 

finer powder to enable formulation into different matrices.  

Sieving and straining separate the fibers from the pulp during baobab fruit processing 

(Mpofu et al., 2014). The fibers are dried along with the pulp, but not incorporated into 

the final powder. Traditionally, the fibers were discarded as waste or used as animal feed 

or cooking fuel (Chadare et al., 2009). But recently, fibers have been incorporated into 

compost as organic matter (Mwale et al., 2016).  Additional treatments are also subjected 

to the fiber to extract remaining nutrients like pectins, cellulose and hemicellulose 

(Boukari et al., 2021). The fibers can also be used to reinforce composite materials like 

bioplastics (Manjang et al., 2022).  

The seeds are cold-pressed to extract baobab seed oil for use in cosmetics (Chadare et al., 

2009). The crude oil typically undergoes refining processes like degumming, 

neutralization, bleaching and deodorization to remove impurities and improve aroma, 

flavor, color and stability (Gebauer et al., 2002). This produces a refined baobab seed oil 

suitable for consumption and cosmetic use. The refined seed oil is then packaged into 

containers like glass bottles, plastic bottles, or metal cans (Silva et al., 2021). Packaged 

baobab seed oil is distributed to retailers, wholesalers, and industrial buyers. It can be 

branded and marketed based on origin, sustainably wild-harvested, cold-pressed, organic, 

etc (Jasinska et al., 2006). 
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2.8 Postharvest Handling of Baobab Fruit Pulp 

BFP storability and shelf-life depend on several intrinsic and extrinsic factors. The 

intrinsic factors (e.g., maturity stage, moisture content, and nutrient composition) and 

extrinsic factors (e.g., temperature, humidity, pest and diseases, packaging, gases, and 

vapors) affect physical, chemical, and biochemical changes in stored fruits (Li et al., 

2017). Temperature and type of packaging materials are the most important factors 

affecting food deterioration and the shelf life can be extended by controlling these 

parameters (Li et al., 2017). The blackening of BFP is a result of enzymatic activity on 

phenolic compounds and ascorbic acids. The reaction is attributed to the initial enzymatic 

oxidation of phenols into slightly colored quinines following polymerization (Zhu et al., 

2010). 

Extracted baobab pulp is liable to deterioration on exposure to environmental conditions. 

For instance, exposure to heat, oxygen, moisture, and light accelerate chemical reactions 

leading to nutrient loss (Chadare, 2010). Poor handling and storage of BFP often trigger a 

decline in nutritional quality and unfavorable color changes resulting in postharvest losses. 

Dandago. (2016) studied the effects of storage conditions on the ascorbic acid content of 

BFP and reported an overall decrease in vitamin C content during storage. The author also 

recommended storage of pulp inside a refrigerator, with unbroken pods, and wrapped in 

black polythene to preserve the ascorbic acid content. Packaging has significant effects on 

the nutritional value of BFP especially vitamin C, total titratable acidity (TTA), ash, 

moisture, pH, and total and reducing sugar content (Eldoom et al., 2014).  

2.9 Baobab Fruit Pulp Adulteration  

Food fraud is any suspected deliberate action committed when a person intentionally 

decides to deceive customers about the quality and/or content of the food they are 

purchasing to gain an undue financial advantage (FAO, 2021). The main motivating factor 

for food adulteration is economic since the adulterants used are cheaper or they are added 

to cover the low quality of the original product and consequently increase the price of the 

product (Galvin-King et al., 2018).  It is estimated that around 22% of foods are 
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adulterated yearly (Pal and Mahinder, 2020) with an estimated cost implication of US $49 

billion (McGrath et al., 2018). This high economic loss related to food adulteration is 

attributed to a lack of detection techniques and a rampant increase in malicious fraudsters 

(Bouzembrak and Marvin, 2016). Other factors contributing to food adulteration 

opportunities are; the increase in the complexity of supply networks, advancement in 

technology, and modernization (Meerza and Gustafson, 2018).  Much interest has been 

directed to adulterations that have serious health implications and less directed to 

adulteration on economic aspects (Oliveira et al., 2019). Some of the cases of food 

adulteration that have been reported include; the adulteration of paprika powder with lead 

oxides (Everstine., 2013), the adulteration of cumin with almond peel in the UK (Everstine 

et al., 2013), and the adulteration of spices with Sudan dye (Kearney., 2010). Adulteration 

of baobab powder with cereal flours has been reported with the main motivation being 

weight increase for economic gains (Chepngeno et al., 2022).  

2.10 Near-infrared Spectrometer  

For the past 40 years, near-infrared (NIR) spectrometer (wavelength range of 800-2,500 

nm or 12,500 to 4,000cm-1) has emerged as one of the most popular and widely used 

techniques for food analysis and quality control (Liu et al., 2015). It is a non-destructive 

analytical tool that enables quick and simultaneous means for qualitative and quantitative 

assessment of various samples concerning their chemical and physical composition 

(Ozaki et al., 2006). The NIR spectrometer serves as the best alternative for the 

determination of parameters characterizing the quality of fruits since it non-invasive and 

provide real-time analysis of samples. It is also quick, simple, cost effective and require 

minimal or no sample preparation (Hao et al., 2022). Miniaturization of NIR spectrometer 

has led to the development of portable NIR devices that has led to the additional speed, 

accuracy, simplicity, cost-effectiveness, and convenience (Amuah et al., 2019; Wang et 

al., 2020). Figure 2.2 shows a portable NIR spectrometer in the wavelength range of 900-

1700 nm 
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Figure 2.2: Portable/handheld NIR spectrometer (Model: NIR-S-G1, Tellspec, 

Toronto, Canada). 

2.11 Principles of Near-infrared Spectrometer 

NIR spectrometer is a technique based on the absorption of electromagnetic radiation in 

the near-infrared region of the electromagnetic spectrum (Shaw et al., 2022; Mishra et al., 

2022). It relies on the molecular overtone and combination vibrations involving C-H, O-

H, and N-H functional groups (Roger et al., 2020). The fundamental principle behind NIR 

spectrometer involves illuminating a sample with NIR light and measuring how much 

light is absorbed at each wavelength (Workman, 2020). The energies associated with NIR 

photons are low enough that they allow overtones and combinations of fundamental 

molecular vibrations to be excited. As a result, the positions and intensities of the 

absorption peaks in an NIR spectrum provide a unique molecular ‘fingerprint’ 

corresponding to the sample composition (Rinnan., 2021). During NIR analysis, a 

broadband NIR light source illuminates the sample, and the transmitted or reflected light 

is measured by a detector. The obtained spectrum depicts the absorbance intensities across 

the NIR region, governed by the Beer-Lambert law. Chemometric techniques are then 

utilized to correlate the absorption patterns to the chemical information of interest, which 

allows qualitative and quantitative analysis of sample properties (Rinnan., 2021). 

2.12 Instrumentation of NIR spectrometer 

The main components of the Tellspec enterprise scanner are a light source, wavelength 

selection, and a detector (Figure 2.3). This commercial spectrometer uses two integrated 
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tungsten halogen lamps. These lamps are thermal emitters where tungsten filament is 

resistively heated to high temperatures to emit broadband NIR light (Beć et al., 2021). 

These lamps are reliable and inexpensive therefore providing stable output once thermally 

equilibrated. However, thermal stability can be a concern in handheld spectrometers 

which experience fluctuating external temperatures and have limited thermal mass (Beć 

et al., 2021). 

 

Figure 2.3: Main components of a portable NIR spectrometer  

Source: (Chen et al., 2020). 

Other commercial portable scanners use light-emitting diodes (LEDs). LEDs operate via 

electronic recombination in semiconductors, emitting photons (Lu et al., 2019). They offer 

compact size, low power consumption, durability, and low cost (Huang et al., 2018). 

LEDs covering the visible/short-wave NIR are used in some miniaturized spectrometers 

emphasizing compactness over bandwidth (Masawat et al., 2020).  

Wavelength selection is a critical component of spectrometer design, and digital light 

processing (DLP) offers an effective approach for a miniaturized NIR spectrometer. By 

utilizing a digital micromirror device (DMD), the DLP modulate incident light intensity 

and filter specific wavelengths by tilting the micromirrors to direct light either to the 

detector or away from it (Huang et al., 2020). Careful selection of the wavelengths 
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sampled by selectively tilting micromirrors arrays allows the spectrometer to isolate and 

measure light intensity at targeted wavelengths across the NIR spectrum (Ou et al., 2022). 

DLP thus provides a pathway to create a highly compact spectrometer with versatile 

wavelength tuning capabilities ideal for ultraportable device (Jakubíková et al., 2016). 

The programmable nature of the DMD enables flexible spectral filtering tailored to the 

analytes of interest. 

The indium gallium arsenide (InGaAs) photodetector is a critical component providing 

high sensitivity and low noise detection across the near-infrared spectral range of the 

compact spectrometer (Ou et al., 2022). InGaAs has a wider bandgap compared to silicon 

detectors, allowing detection of photons from ~0.8 to 1.7 μm wavelength (Beć et al., 

2022). This covers the 900-1700 nm span of the NIR spectrum targeted by the 

spectrometer. The InGaAs detector also exhibits high quantum efficiency of over 80% 

across much of the NIR band (Huang et al., 2018). This enables efficient conversion of 

the filtered NIR light into electrical charge carriers and a strong electrical signal. InGaAs 

can operate at high speeds required for scanning the programmable micromirror filters 

across the NIR spectrum (Beć et al., 2022). Along with having a small footprint amenable 

to miniaturization, these attributes make InGaAs an ideal photodetector choice. It provides 

the sensitivity, resolution, and rapid response needed for the spectrometer to acquire high-

quality NIR spectra for mobile analytical applications (Zhou et al., 2016). 

2.13 Interpretation of NIR Spectra 

The near-infrared region of an electromagnetic spectrum ranges from the end of the visible 

region to the beginning of the infrared (IR) spectral region i.e. between 700-2500 nm. This 

region is characterized by absorption bands that are related to overtones and combination 

bands for the C-H, O-H, and N-H functional groups (Liu et al., 2015). An overtone is a 

higher-frequency signal that is produced when an object vibrates or stretches. When two 

or more vibrational modes of a molecule overlap or interact with each other, they produce 

a combination band in the spectrum.  
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Figure 2.4 shows absorption bands for different functional groups at a specific wavelength 

within the NIR region of an electromagnetic spectrum.First, second, and third overtone C-

H absorption bands occur at around 1500-2000 nm, 1000-1600 nm, and 700-1100 nm, 

respectively (Workman and Weyer, 2007).  The combination bands occur at around 1300-

1500 nm and 2100-2500 nm (Ismail et al., 2005).  The hydroxyl group (OH) representing 

water molecule in the matrix has absorption at around 1950 nm, 1450 nm, 1000 nm, and 

750 nm for the combination band, first, second, and third overtones respectively 

(Rongtong et al., 2018).  

The N-H absorption bands are located around 2200 nm, 1950 nm, 1500 nm, 1050 nm, and 

850 nm for combination band, first, second, and third overtones respectively (Liu et al., 

2015). The C-H, O-H, and N-H functional groups represent H2O, ROH, and 

NH2 functional groups i.e. water molecules, carbohydrates, and proteins (Cen and He, 

2007). Most chemical molecules exhibit NIR absorptions at specific wavelengths and 

therefore can be used for quantitative and qualitative assessment of an organic matter. NIR 

absorption bands are 10-100 times weaker compared to those of mid-IR spectrometer and 

this is advantageous to the analysis of strongly absorbing and high light scattering matrices 

like powders and pastes. NIR absorption bands are very broad and highly overlapping and 

it contains both chemical and physical information of samples being analyzed.  
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Figure 2.4: Major bands and their relative peak positions for prominent near-

infrared absorptions 

Source:  (Liu et al., 2015). 

2.14 Chemometrics in NIR Spectrometer 

2.14.1 Spectral Pre-processing 

Chemometrics is the scientific field that deals with the mathematical and statistical 

analysis of chemical data. It combines the principles of chemistry and mathematics to 

extract meaningful information from complex chemical data sets with the main motive of 

developing algorithms and models that can be used to process and interpret chemical data 

more efficiently and accurately. Interest in NIR spectrometer has risen due to the 

improvement in the instrumentation and software, and the development of chemometrics 

making the interpretation of NIR spectra easy (Roggo et al., 2007). The main chemometric 

techniques comprise spectral pre-treatments, classification, and regression methods.  

Spectral pre-processing involves a set of techniques that are used to remove artifacts, 

noise, and interferences in the spectra and the process improves the quality and usefulness 

of spectral data before analysis. The NIR spectra can be negatively affected by the sample 

particle sizes, variations of the optical path length, and crystalline forms. To avoid these 

interferences, spectral pretreatments are applied to the spectra. The most commonly used 

pretreatment methods include multiplicative scatter correction (MSC),  standard normal 
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variate (SNV), Savitzky Golay (SG) derivatives, mean centering (MC), and autoscaling 

(AS) (Roggo et al., 2007). Multiplicative scatter correction (MSC) is applied to the spectra 

to correct additive effects caused by light scattering. It is a row-oriented transformation 

that removes physical effects like particle size and surface blaze from the spectra. By 

MSC, it is presumed that each spectrum is determined by both actual sample 

characteristics and particle size, and using standard spectrum, the particle size can be 

represented by a baseline effect and the trend. This method then corrects the differences 

between the baseline and the trend in the spectrum (Maleki et al., 2007). The MSC 

transformation is executed through the equation below;  

𝑥𝑖𝑘(𝑛𝑒𝑤) =
[𝑥𝑖𝑘(𝑜𝑙𝑑)− 𝑎𝑖]

𝑏𝑖
, Equation 2.1 

where; xik(old) and xik(new) are the optical values before and after MSC transformation 

in k wavelengths; ai is the estimated effect of specular reflection in the sample; i and (1/bi) 

are the estimated scatter interferences in sample i. 

Standard normal variate (SNV) is the second most used pre-processing method after MSC. 

The SNV transformation is often used to correct for variations in the intensity of different 

wavelengths caused by changes in the measurement conditions, such as the sample size 

or the instrument used to measure the spectra. The SNV spectral preprocessing involves 

transforming the original spectra by subtracting the mean and dividing by the standard 

deviation at each wavelength (Olmos et al., 2018). This is done according the following 

formula; 

𝑍 =
𝑋 − 𝑚𝑢

𝑆𝑖𝑔𝑚𝑎 𝑍
, Equation 2.2 

where X is the original spectra, mu is the mean of the spectra at each wavelength, and 

sigma Z is the standard deviation of the spectra at each wavelength. This transformation 

results in a new set of spectra that follows a standard normal distribution with a mean of 

0 and a standard deviation of 1 at each wavelength. 

The SG derivatives is a digital filter that is used for resolving overlapped band 

characteristics to NIR spectra thus bringing out spectral information hidden in raw spectra 

(Yao and Lewis, 2010). It increases the precision of data without distorting the chemical 
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information contained in the data. It does this through a process known as convolution 

where adjacent spectral data points are fitted by a low degree of polynomial through linear 

least squares. This is achieved mathematically through the following equation;  

𝑌∗ j =  
∑ 𝐶𝑖𝑌𝑗+𝑖

𝑚
𝑖=−𝑚

𝑁
, Equation 2.3 

where Y is the raw spectra, Y٭ is the transformed spectra, Ci is the convolution coefficient 

for the ith spectral value of the filter within the filter window and N is the number of 

convolution integers, m is the half-width of the filter window and index j is the running 

index of the original ordinate data table.  

Mean centering (MC) is a preferred spectral pre-processing technique that is used for 

resolution enhancement. It ensures that mean-centered spectra are interpreted in terms of 

variation around the mean (Iacobucci et al., 2016). Mean centering is mathematically done 

as per equation 8; 

𝑀𝐶 𝑠𝑝𝑒𝑐𝑡𝑟𝑎 =  𝑋1 −  X̅1, Equation 2.4 

where X1 is the absorbance value and X̅1 represent the mean absorbance. 

Autoscaling (AS) implies mean centering and dividing the spectra values by their standard 

deviation. This means that auto-scaled spectra have means equal to zero and standard 

deviation equal to one (Olmos et al., 2018). Autoscaling is executed according to equation 

9; 

𝐴𝑆 𝑆𝑝𝑒𝑐𝑡𝑟𝑎 =  
𝑋1 −  X̅1  

𝑆𝐷
, Equation 2.5 

where SD is the standard deviation. 

Therefore, pre-processing NIR spectra before multivariate analysis is important in 

improving the quality of the spectral data, reducing background noise and variations not 

related to samples, and identifying the most important variables for modeling, leading to 

more accurate and reliable models. 
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2.14.2 Multivariate Modelling 

Multivariate modelling refers to statistical techniques that are used analyze complex data 

that contains multiple variables. The principal component analysis (PCA) is a 

dimensionality reduction method that is used for unsupervised classification purposes. It 

does this by finding the directions in which the data varies the most, and projecting them 

onto a new set of axes that are related to each other. The resulting axes are called principal 

components, and the number of principal components is usually less than the original 

number of variables in the data. The PCA is often used to pre-process data before 

performing other statistical analyses, such as regression or clustering. It can be used to 

reduce the complexity of the data, visualize the data in two or three dimensions, and 

identify patterns or trends in the data (Lavine et al., 2006). The maximum of the total 

variance is accounted for by the first principal component (PC1), the maximum of the 

residual variance is accounted for by the second principal component (PC2), and so on, 

until the maximum of the total variance is accounted for (Berrueta et al., 2007). It is 

paramount to retain those principal components that account for the highest percentage of 

the total variance explained. The correlation coefficients between variables and the 

principal components are called loadings. The values that represent the samples in the 

space defined by the principal components are called scores (Tewari and Irudayaraj, 

2005).  

Partial least square discriminant analysis (PLS-DA) is an all-round algorithm that is used 

for supervised classification purposes (Barker and Rayens, 2003). The PLS-DA is used to 

classify different groups of samples. It does this by linking X (spectral data) and Y (groups 

or class membership) and can handle multiple dependent categorical variables (Barker and 

Rayens, 2003). It is useful for modeling high-dimensional data since it integrates 

dimensionality reduction and discriminant analysis into one approach. The PLS-DA 

modelling has been applied in diverse fields such as forensic science, banking, medical 

diagnosis, food analysis, metabolomics, and soil science (Lee et al., 2018). By locating a 

linear subspace of the explanatory variables, this method aims to maximize the covariance 

between the independent variables (spectral data) and the corresponding dependent 
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variable Y (reference data) of highly multidimensional data. This new subspace enables 

the estimation of the Y variable based on fewer factors. Factors also referred to as latent 

variables or PLS components.  

The PLS-DA method is able to handle highly colinear and noisy spectroscopic data 

(Millington and Stevens, 2011). In addition, PLS-DA provides information on 

wavelengths or variables that took the major role in modelling process (Mehmood et al., 

2011; Krishnan et al., 2011). The PLS-DA generates low-dimensional and easily 

interpretable score plots that provide a visual interpretation of complex datasets. These 

score plots illustrate the discrimination between different groups and assign a class entry 

of either 0 or 1 depending on the class to which the samples are assigned (Worley et al., 

2013). Combination of score and loading plots facilitates the investigations of important 

variables that are relevant to the specific groups of interest (Hasegawa and Funatsu, 

2012).  

Partial least square (PLS) regression is a data reduction and modelling method for 

spectroscopic data. It is similar to PCA in extracting components or factors but differs in 

that both spectral and reference data are used together to construct a prediction model 

(Passos et al., 2019). The reference data, also known as chemical data collected from wet 

chemistry analysis are used to find patterns in spectral data and correlate with them. The 

goal of PLS is to determine components in the spectral data that have the greatest 

correlation with the desired value in chemical data while also describing as much as 

possible the relevant variations in the input variables (Berrueta et al., 2007). To be 

specific, PLS models both spectral and reference data simultaneously and identifies latent 

variables in spectral data that will predict the latent variables in the reference data. 

 A latent variable is a group of underlying variables that influences the relationship 

between the larger sets of data matrices i.e. spectral and reference data. The PLS 

components are like principal components but are referred to as factors.  An optimal 

number of factors or latent variables can be obtained by using cross-validation or external 

test sets. These factors are critical in constructing a robust model. A higher or lower 

number of factors will result in over-fitting and under-fitting the models, respectively. 
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When developing models, too many factors will result in more worthless information and 

dimensions, while too few components will result in a lack of key features in the spectrum 

data (Sisouane et al., 2017).  

2.14.3 Validation of the Models 

Validating a model means checking how well the model will perform on new data of the 

same kind that was used in developing the model. It estimates the uncertainty of future 

predictions that may be made with the model and if the uncertainty is reasonably low, the 

model can be considered valid and robust. After the successful construction of models, it 

is important to determine its ability to predict the unknown concentration of response (y 

values). An ideal parameter for estimating calibration errors is the root means square error 

of calibration (RMSEC). It calculates the average difference between the predicted and 

reference values and provides a general assessment of how well the model fits the data 

(how well the model predicts the same samples that were used to calculate the 

model).  The main disadvantage of RMSEC is that it is an estimation of the model error 

and not of the prediction error (Ziegel, 2004). Prediction testing is based on partitioning 

data into two sets, the calibration set (normally 75%) and the prediction set (25%). 

Prediction testing estimates the prediction error called room means square error of 

prediction (RMSEP). It is the simplest validation method since RMSEP estimates the 

prediction ability of the model to be used with all coefficient estimates already calculated. 

A drawback to this method is that a lot of samples are put aside for this purpose only 

which could have been used for the construction of more accurate and robust calibration 

models (Ziegel, 2004).  

Cross-validation (RMSECV) is another method that is similar to RMSEP only that a 

portion of samples used in the construction of the models is set aside for validating the 

model. Then the values for samples that were not used for modelling are predicted and the 

prediction errors are computed. It does this by comparing the mean values of the predicted 

response versus the actual response during the construction of the model (Ziegel, 2004). 

The same procedure is repeated several times until every sample has been left out once. 

The two major versions of cross-validation, are full cross-validation and segmented cross-
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validation. Full cross-validation is one that leaves only one sample at a time while 

segmented cross-validation leaves out a whole group of samples at a time.   

R-squared (R2) is a metric that measures the proportion of the total variation in the 

reference data that is explained by the model. The R2 value ranges between 0 and 1, where 

a value of 1 indicates that the model explains all of the variation in the data, and a value 

of 0 suggests that the model explains none of the variations. In PLS regression, a high R2 

value of close to 1 indicates that the model can explain a large proportion of the variation 

in the actual data collected from the wet chemistry (Palermo et al., 2009).  

The correlation coefficient (R) is another statistical metric for assessing the performance 

and validity of a PLS model.  It assesses the relationship between the predicted values 

from a PLS model and the actual observed values in the validation data set. In the context 

of PLS modeling, a high R between the predicted values and the actual observed values 

indicates that the PLS model is accurately predicting the behavior of the data. A low R 

may indicate that the PLS model is not accurately capturing the underlying relationships 

in the data, and may require further refinement or improvement (Alexopoulos, 2010). 

Residual prediction deviation (RPD) is also another measure of PLS model validity that 

is defined as the standard deviation of actual (reference values) divided by the RMSEP. 

The RPD provides a measure of model validity that is more objective than the RMSEP. A 

PLS model with an RPD of above 2 is considered robust and excellent (Davey et al., 2009; 

Bellon-Maurel et al., 2010).  

PLS-DA models are normally assessed in terms of sensitivity, specificity, and 

discrimination error (Yegon et al., 2023). Sensitivity also called recall refers to the 

proportion of true positives (TP) that are correctly identified by the model i.e. it measures 

the percentage of test samples that actually belong to a particular class and are correctly 

classified by the model as belonging to that class. It is calculated by dividing the number 

of true positives (TP) by the sum of true positives (TP) and false negatives (FN).  A high 

sensitivity indicates that the model is effective at identifying positive classes of samples 

(Oliveira et al., 2020). Specificity refers to the proportion of true negatives (TN) that are 

properly detected by the model.  It is determined by dividing the number of true negatives 
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(TN) by the sum of true negatives (TN) and false positives (FP). A high specificity 

suggests that the model is robust at identifying the negative class of samples (Oliveira et 

al., 2020).  

Discrimination error refers to the proportion of incorrect classifications made by the 

model. More specifically, it measures the percentage of test samples that are misclassified 

by the model, based on a threshold that is used to assign a sample to a particular class. It 

is calculated by dividing the number of misclassified samples by the total number of 

samples. A lower discrimination error indicates better performance of the model in 

accurately classifying new samples (Oliveira et al., 2020). Limits of detection (LOD) is 

another measure of validating PLS-DA models. The LOD is a measure of the smallest 

concentration of analyte that can be reliably detected by the model. It is calculated by 

analyzing a set of spiked samples with known concentrations of the compound of interest. 

The spiked samples are then analyzed using the PLS-DA model, and the LOD is defined 

as the lowest concentration that can be correctly classified with a certain level of 

confidence (Armbruster and Pry, 2008). Low LOD suggests that the PLS-DA model is 

robust and reliable. 

2.14.4 Application of NIR Spectrometer in Quality Assessment 

Near-infrared (NIR) spectrometer has emerged as an essential technology integrated into 

modern food quality monitoring and authentication systems (Cozzolino, 2022). It provides 

a potent and non-invasive analytical method for validating and quantifying the chemical 

constituents of biological materials (Amuah et al., 2019). The technique is based on 

detecting molecular vibrations stemming primarily from C-H, O-H, and N-H functional 

groups (Tao et al., 2021). A key advantage of NIR is its ability to penetrate deeper into 

samples relative to mid-infrared radiation, enabling analysis of bulk material with minimal 

sample preparation (Bellon-Maurel et al., 2010). This has enabled accurate quantification 

of complex components including proteins and carbohydrates in diverse foodstuffs via 

NIR spectrometer (Barbin et al., 2015). For example, prediction models based on NIR 

spectral data have been developed for determining strawberry soluble solids content with 

high accuracy (R2 = 0.939) (Guo et al., 2013). Mango internal quality parameters were 
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also assessed using visible and NIR spectrometer of intact fruit combined with 

multivariate partial least squares analysis (Cortés et al., 2016). Portable NIR devices 

coupled with chemometric analysis have been applied for on-site measurement of olive 

oil properties and for differentiating pineapple maturity stages (Fernández-Espinosa, 

2016; Amuah et al., 2019). Moreover, NIR spectrometer has proven capable of reliable 

quantification of sugars, acids, anthocyanins, and other quality markers in apple crops 

(Beghi et al., 2013). 

2.15 Gaps in Knowledge 

NIR spectrometer is a non-invasive analytical tool that is used for quantitative and 

qualitative assessment of organic matrix. Chemometrics of data pre-processing, 

classifications, and regression is necessary for making sense of the vast amount of NIR 

data and the construction of robust models that could be used to make predictions about 

the composition, structure and properties of samples with high confidence. NIR 

spectrometer together with chemometrics techniques has been used to determine the 

quality indices of several different samples with high efficiency and reliability. However, 

to the best of my knowledge, there is no published study on the application of NIR 

spectrometer in the quality assessment of baobab fruits or related products. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Introduction  

This study aimed at evaluating the potential of a portable near-infrared (NIR) spectrometer 

for rapid, non-destructive and accurate determination of quality and authenticity of baobab 

fruit pulp (BFP). Portable NIR spectrometer (Model: NIR-S-G1, Tellspec, Toronto, 

Canada) with spectral range 900-1700 nm was used to scan BFP samples. Immediately 

after spectral data acquisition, BFP samples were subjected to wet-chemistry analyses for 

the determination of quality attributes. Chemometrics were adopted to remove unwanted 

sample variation, train and validate predictive models. Constructed models were then used 

to monitor the deterioration in quality attributes of stored BFP samples. Finally, the 

spectrometer's capacity for screening adulterated BFP was also examined. 

3.2 Sample Collection and Preparation  

A random experimental design, evaluating the potential of a portable NIR spectrometer 

for rapid and non-invasive determination of quality and authenticity of BFP was adopted. 

Samples were collected from Kilifi County located in the coastal part of Kenya. Kilifi 

County is characterized by a high prevalence of baobab trees which are well adapted to 

the semi-arid conditions prevailing in the region (Momanyi et al., 2019). Ten fully mature 

baobab trees located at least 2 km apart were randomly selected. The selected trees were 

georeferenced for repeated sampling. The trees selected were mature and bearing fruits. 

At each tree, 30-40 intact and mature fruits were randomly selected and hand-picked from 

different spots around the tree to obtain good representation.  

The freshly harvested fruits were immediately transported to the postharvest laboratory at 

JKUAT for sample preparation and analysis. The fruits were then thoroughly cleaned by 

removing the fur on the exterior part of the shell using a washing brush and manually 

cracked using a machete. Edible portions of the baobab (pulp) were collected after 

removal of the inedible portion (bark, fiber, and seeds), hand-pounded using a wooden 
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pestle and motor to powder, and then sifted through a 0.09-micron sieve. The resulting 

powder was packed in ziplock bags and stored in a deep freezer at a temperature of -20 to 

-25°C awaiting experiments. 

Adulterants (rice, wheat, and maize flours) were purchased from a reputable miller 

(Kirinyaga Millers) located in Nairobi City. Packaging materials (unbleached kraft paper 

(UbKP) bags, and low-density polyethylene (LDPE) bags) were purchased from known 

dealers of packaging materials in Nairobi City.  

3.3 The application of a portable near-infrared (NIR) spectrometer in non-

destructive testing of baobab quality attributes 

3.3.1 Spectral Acquisition 

Near-infrared (NIR) spectral data were collected from 240 different pulp samples. The 

pulp samples were extracted from 240 individual fruits and scanned over the wavelength 

range of 900-1700 nm to acquire NIR absorption spectra containing 256 data points per 

sample. The spectrometer (Model: NIR-S-G1, Tellspec, Toronto, Canada) fitted with 

tungsten halogen lamps was used to scan the samples. The scanner was connected to a 

smartphone (Redmi 10C, Android version 12) with a pre-installed application (DC&M2) 

for spectral data management as shown in Figure 3.1. A microscope glass slide placed on 

top of the scanning window was used to hold samples for scanning. About 1.5 grams of 

baobab pulp was placed onto a clean glass slide before putting it at the top of a scanning 

window. Collected data were transferred to analytical software for processing and 

analysis.  
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Figure 3.1. Spectral data acquisition using Tellspec NIR spectrometer. 

3.3.2 Total Soluble Solids (TSS) and Titratable Acidity (TTA) 

Immediately after the spectral data acquisition, the TSS and TTA values of scanned 

samples were determined through the wet-chemistry procedures. The TSS was determined 

according to the method described by Jafari et al. (2017). Three replicates (of about 1 

gram) of pulp were dissolved in 50 ml distilled water, shaken well, and filtered using a 

Whatman number 4 filter paper. A hand refractometer (Model PAL-S, ATAGO Co., Ltd., 

Japan) was used to determine the TSS by placing two to three drops of the filtrate on the 

refractometer prism. Between each measurement, the refractometer prism was cleaned 

with distilled water and then dried with tissue paper before being used again. Before the 

experiment, the refractometer was calibrated with distilled water containing 0 °Brix and 

adjusted to room temperature.  

The TTA was determined using the method by Ncama et al. (2017), where 10 ml of the 

filtrate was measured and 2 to 3 drops of phenolphthalein indicator were added. The 

solution was titrated against 0.1N sodium hydroxide until a permanent pink solution was 

observed. The titer volume was recorded and the TTA (expressed as % citric acid) was 

calculated based on the equation below. 
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TTA (% Citric acid) =  

0.0064×𝑇𝑖𝑡𝑟𝑒 (𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑁𝑎𝑂𝐻 𝑢𝑠𝑒𝑑)𝑖𝑛 𝑚𝑙×𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
 × 100    Equation 3.1 

3.3.3 Vitamin C Content  

The concentration of vitamin C contained in BFP samples was determined according to 

Vikram et al. (2005), where about 2 g of samples was weighed and extracted using 25 ml 

of 0.8% metaphosphoric acid. The solution was centrifuged for 10 minutes at 10,000 RPM 

(Revolutions per minute). Using 0.45µ microfilters, the supernatant was filtered and about 

20µL injected into the high-performance liquid chromatography (HPLC) system (Model; 

20A, Shimadzu Corp., Tokyo, Japan). The HPLC system comprised an autosampler, UV-

VIS detector (SPD 20A) at a wavelength of 266 nm, and a C-18 ODS column. The mobile 

phase was 0.8% metaphosphoric acid at a 1.2 mL/min flow rate. Vitamin C standards were 

prepared with different concentrations ranging from 0, 10, 20, 40, 60, 80, and 100 ppm. 

These concentrations of vitamin C standard were used to generate a standard curve for the 

quantification of vitamin C content in the samples.  

3.3.4 Moisture Content  

The moisture content was determined using the oven drying method described by Reeb et 

al. (1999) where about 2 g of BFP samples was weighed into an aluminum dish and oven-

dried at 105 ±3°C for 3 hours. The percentage moisture content was calculated through 

the following equation. 

% Moisture Content =  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 −𝐹𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 
× 100  Equation 3.2 
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3.4 The use of a portable NIR spectrometer to monitor changes in baobab quality 

parameters during storage 

3.4.1 Storage Experimental Design and Set-up   

A 23 factorial design experiment establishing the effect of the storage duration, storage 

condition and the packaging material on the quality parameters of BFP during storage was 

laid out. There were two levels of storage duration (before storage (M0) and after storage 

(M5), two levels of storage conditions (25°C/75% RH and 35°C/83% RH), and two levels 

of packaging ((unbleached kraft paper (UbKP), and low-density polyethylene (LDPE)). 

Four BFP samples of about 300 g each were weighed and packaged in UbKP and LDPE 

bags. UbKP bag is permeable to oxygen and moisture, while LDPE offers a moderate 

barrier to moisture content and oxygen. The aforementioned bags are used on daily basis 

at homes and retail markets for packaging, distribution and selling of BFP.  

Packed BFP samples were stored for six months in incubators with pre-set temperatures 

and relative humidity (25°C/75% RH and 35°C/83% RH) as described by Hemery et al. 

(2020). The percentage relative humidity (%RH) conditions were maintained constant 

using saturated salt solutions, namely; sodium chloride (NaCl) for maintaining a relative 

humidity of 75% at 25°C and potassium chloride (KCl) for 83% at 35°C. These storage 

conditions were meant to imitate the climatic conditions experienced in the coastal and 

inland parts of Kenya. Figure 3.2 shows a schematic illustration of how the storage 

experiment was conducted. Spectral measurements were taken monthly starting from 

month zero (M0) until the end of the storage period (M5). 



37 

 

Figure 3.2. Schematic representation of the storage experiment. 

NIR spectral measurements were collected monthly over the 6-month storage duration for 

all BFP samples under different experimental conditions. For each storage time point, 

approximately 1.5 g of pulp was scooped from the sample bags and placed onto a clean 

glass slide. The glass slide was positioned on the scanning window of a portable NIR 

spectrometer connected to a smartphone for spectral data collection. To obtain 

representative spectral measurements for each sample, triplicate scans were performed at 

each time point by completely replacing the pulp on the slide between replicate scans.  

3.4.2 Microbial Load 

3.4.2.1 Total Aerobic Count (TAC) and Total Yeasts and Moulds Count (TYMC) 

The microbial load of the stored BFP samples was monitored monthly over the 6-month 

storage duration using standard microbial enumeration techniques. Specifically, the total 

aerobic counts (TAC) and total yeast and mould counts (TYMC) were determined using 

the total plate count method (TPC) (Arifan et al., 2019). This method provides an estimate 

of the total number of viable bacteria and fungi in the sample. One gram from each sample 

(under storage experiment) was weighed into 9 ml of 0.1% (w/v) peptone water in a test 

tube and allowed to stand for 2 minutes while stirring using a sterile glass rod. On pre-

prepared nutrient media, aliquots (0.1ml) of the sample were aseptically inoculated and 

spread onto the ready-to-use plate count agar (PCA agar) plates, followed by an incubation 
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period of 24 hours at 37°C. The colony counting method was used to count the number of 

colonies formed after incubation. The counts were expressed as logarithms of colony-

forming units per gram (Log10CFU/g) of BFP.  

For the determination and enumeration of yeasts and moulds, 0.1ml of the samples was 

inoculated and spread onto ready-to-use violet red bile glucose (VRBGA) agar plates 

followed by incubation for a period of 24hrs at 37°C. Colonies were enumerated and 

expressed as the logarithm of colonies forming units per gram (Log10cfu/g) of BFP. 

3.5 The application of portable NIR spectrometer for rapid and non-destructive 

detection and quantification of BFP adulteration 

3.5.1 Adulteration Experiment  

Adulteration of BFP was done according to Oliveira et al. (2020) with little adjustment. 

Maize flour (MF), rice flour (RF) and wheat flour (WF) were deliberately and separately 

added to BFP at 12 different adulteration levels; 0%, 1%, 3%, 5%, 10%, 15%, 20%, 25%, 

30%, 40%, 50%, and 60%.  For every adulteration level, 15 replicates were prepared, 

making a total of 180 samples for each adulterant used. The BFP is reported to be 

adulterated with cereal flours by malicious fraudsters in order to add weight, extend supply 

and gain undeserved profits (Chepngeno et al., 2022). The 12 levels of adulteration and 

15 replicates each were systematically chosen to rigorously evaluate the NIR spectrometer 

technique over a broad contamination scope while capturing natural sample diversity 

through sufficient replication (Oliveira et al., 2020). Afterward, the mixtures were 

vortexed for two minutes to obtain homogenous samples and minimize possible particle 

dispersion. The NIR spectral measurements were then taken for the homogenized samples. 

Figure 3.3 shows the experimental setup on how adulteration experiment was done. 
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Figure 3.3: Experimental set-up for adulteration experiment. 

3.5.2 Particle Size Determination  

The particle size distribution for BFP and all adulterants was determined according to 

Buzera et al.(2022). A laser diffraction particle size analyzer (SALD-2300; Shimadzu 

Corporation, Kyoto, Japan) was used to measure the particle size distribution of samples 

and adulterants. This machine was equipped with a cyclone injection unit (SALD-2300 

Cyclone Injection Type Dry Measurement Unit SALD-DS5) and capable of measuring 

particle sizes ranging from 17 nm to 2500 μm. About 5 grams of samples placed into a 

hopper was sucked across the laser beam by tapping the injector. The diffraction patterns 

formed by particles scattering light were used to determine the particle size distribution of 

the samples and the results were interpreted using Wing SALD II software (version 3.1.0, 

Shimadzu, Kyoto, Japan). 

3.6 Data Preparation and Analyses  

The raw spectral data were transferred to an Excel sheet (Microsoft Office Professional 

Plus, 2019) where they were converted into absorbances (log 1/R) before the construction 

of models. The mean, range, and standard deviation for the reference data were also 

calculated using an Excel sheet. 
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For the storage experiment, the data were subjected to a three-way analysis of variance 

using STATA MP (Version 17.0). Specifically, a three-way ANOVA (involving the main 

factors i.e. storage duration (A), storage conditions (B), and the packaging (C)), three-

two-way interactions (AB, BC, and AC), and three-way interactions (ABC) was run to 

establish their effects on the quality of BFP during storage. The P value of less than 0.05 

(P<0.05) was considered significant. Data organization and curve charts were done using 

MS Excel (Microsoft Office Professional Plus, 2019).  

Multivariate analysis; spectral visualization, pre-processing, construction, and validation 

of models were done using the Unscrambler X software (CAMO Software, 0349 Oslo 

Norway version 10.4) and Eigenvector PLS toolbox (Solo stand-alone software, version 

7.0). These software were designed for multivariate spectral data analysis and are used for 

the construction of calibration and predictive models.   

3.7 Data Preprocessing and Partitioning  

Raw spectra contain both chemical information related to the sample composition and 

noise signals. These unwanted noise signals interfere with the calibration models and the 

prediction of unknown sample composition (Rinnan et al., 2009). Hence, spectral pre-

processing is an essential part of chemometrics before modeling to reduce unwanted 

signals in the spectra (Cortés et al., 2016). For this present study, raw spectra were pre-

processed using multiplicative scatter correction (MSC), Savitzky Golay's first derivative 

(SG FD, Savitkzy Golay smoothing (SGS), and standard normal variate (SNV), mean 

centering (MC), and autoscaling (AS) techniques. The dataset (both spectral and reference 

measurements) after pre-processing with suitable techniques was randomly divided into 

two sets, the calibration set (75%) for the construction of models and the prediction set 

(25%) for validating the performance of constructed models. 
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3.8 Construction and Validation of Multivariate Models 

3.8.1 Partial Least Square Regression (PLSR) 

The spectrum contains information relating to sample molecular structure and chemical 

elements. This information cannot be obtained directly by visualization of the spectrum. 

Therefore, a bridge has to be created between spectral information and chemical attributes 

through multivariate modeling (Ncama et al., 2017; Amuah et al., 2019). The PLSR 

algorithm was used to build linear regression models to predict BFP quality parameters 

from a set of spectral data (Coury and Dillner, 2008). The NIR spectral readings were used 

as independent variables and the standard values as dependent variables to construct the 

PLSR models. To calibrate, validate (internal validation), and predict (external 

validation), the dataset (both spectral and wet chemistry/reference values) was randomly 

divided into two subsets; calibration and validation (75%) and prediction (25%).  

Random cross-validation with 20 segments was used for the construction and validation 

of the calibration models. Specifically, the dataset used for training the model was divided 

into 20 groups in which all of them except one group were used for training the model.  

The remaining group was set aside for validating the model (internal validation). The same 

procedure of training the model leaving out one group of samples was repeated until all 

groups had been left once. The values for the samples that were not used for modeling 

were predicted and the prediction errors were computed. Later, an external set (prediction 

set) of samples was used to evaluate the performance of the constructed models. The 

performance of calibration models was evaluated based on the root mean square error of 

calibration (RMSEC) (equation 3.3) and R squared/correlation coefficient (R2) (equation 

3.4) (Amuah et al., 2019). The prediction models were validated by root mean square error 

of prediction (RMSEP) (equation 3.5) bias (equation 3.6), R squared (R2) (equation 3.7), 

residual predictive deviation (RPD)(equation 3.8) (Liu et al., 2010) and limits of detection 

(LODs) (equation 3.9) (Allegrini and Olivieri, 2014).  

𝑅𝑀𝑆𝐸𝐶 =  √∑(𝑦𝑐𝑎𝑙 − 𝑦𝑎𝑐𝑡)2 /𝑛, Equation 3.3 
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𝑅2  = 1 − 
∑(𝑦𝑐𝑎𝑙 −  𝑦𝑎𝑐𝑡)2

∑(𝑦𝑐𝑎𝑙 − 𝑦𝑚𝑒𝑎𝑛)2
, Equation 3.4 

 

𝑅𝑀𝑆𝐸𝑃 =
√∑(𝑦𝑝𝑟𝑒𝑑  −  𝑦𝑐𝑎𝑙)

2

𝑛
, 

Equation 3.5 

 

𝐵𝑖𝑎𝑠 =  
1

𝑛
 √∑(𝑦𝑝𝑟𝑒𝑑 −  𝑦𝑎𝑐𝑡)2, Equation 3.6 

 

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸𝑃 
, Equation 3.7 

 

𝐿𝑂𝐷 =  
3×𝜎𝜎

𝑆
, Equation 3.8 

Where 𝑛 is the total number of samples, 𝑦𝑐𝑎𝑙is the predicted values, 𝑦𝑎𝑐𝑡  is the reference 

value from wet chemistry, 𝑦𝑚𝑒𝑎𝑛 is the mean of predicted values, and 𝑦𝑝𝑟𝑒𝑑 is the 

predicted value of the fruit parameter, SD is the standard deviation of the reference data, 

𝜎𝜎 is the standard deviation of the Y-residuals and S is the slope of the calibration curve. 

3.8.2 Partial Least Square Discriminant Analysis (PLS-DA) 

The PLS-DA is a multivariate technique that is used for the identification of patterns and 

grouping of the multi-dimensional dataset into different classes or groups. In this study, 

the discrimination of pure and impure BFP samples as well as the classification of 

different types of adulterants was done using PLS-DA. Models were constructed using 

transformed spectra and evaluated based on sensitivity (equation 3.9), specificity 

(equation 3.10), and error (equation 3.11) (Oliveira et al., 2020).  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, Equation 3.9 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, Equation 3.10 

 

𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, Equation 3.11 

where 𝑇𝑃 is the true positive (i.e., the number of samples that belongs to class X that are 

classified as truly belonging to class X), 𝐹𝑁 is the false negative (i.e., the number of 

samples that belongs to class X, but not classified as belonging to class X), 𝑇𝑁 is the true 

negative (i.e., the number of samples not belonging to class X and truly classified as not 

belonging to class X), and 𝐹𝑃 is the false positive (i.e., the number of samples that do not 

belong to class X and are classified as not belonging to class X).   
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 The application of a portable near-infrared (NIR) spectrometer in non-

destructive testing of baobab quality attributes 

4.1.1 Quality Attributes of Baobab Fruit Pulp (BFP) 

To create predictive models for BFP quality attributes, reference measurements were 

obtained through standard wet-chemistry analyses. Quality parameters of BFP including 

total titratable acidity (TTA), total soluble solids (TSS), vitamin C, and moisture content 

were determined. These reference measurements from wet-chemistry analyses enabled the 

development of multivariate calibration models correlating spectral data from the portable 

near-infrared (NIR) spectrometer to the laboratory-based quality parameters. The 

reference measurements served as the known dependent variables that were predicted by 

the spectral data (independent variables) using chemometrics techniques like partial least 

squares regression (PLSR). This allowed predictive models to be constructed that could 

estimate BFP quality parameters rapidly and non-destructively using only NIR spectral 

data as input. The reference wet-chemistry analyses provided the target values necessary 

to train and validate predictive models for quality analysis of BFP using a portable NIR 

spectrometer. 

4.1.2 Total Titratable Acidity (TTA) 

The TTA is a measure of the concentration of acid and is typically expressed as a 

percentage of the weight of the sample. The acidity of BFP is largely due to the presence 

of organic acids such as citric acid, malic acid, tartaric acid (Tembo et al., 2017), succinic 

acid, and vitamin C (Chepngeno, 2018). The predominant organic acid contained in 

baobab fruits is citric acid (Ahmed, 2020; Chepngeno, 2018). The mean TTA of 240 BFP 

samples expressed as a percentage citric acid was 11.8±1.6% with a minimum of 7.3% 

and a maximum of 18.8% (Table 4.1). The variation in TTA was due to tree-to-tree 

variability, geographical location, and maturity stage of the fruit (Assogbadjo et al., 2012; 
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Tembo et al., 2017). The results of this study were close to 9.85-13.92% citric acid 

reported by Chepngeno. (2018) and 6.7-14.9% citric acid obtained by Stadlmayr et al. 

(2020). Also, the average TTA obtained by this study (11.8±1.6%) was not far from the 

14.05% citric acid reported by Dandago. (2016). However, the TTA content of BFP was 

high compared to 0.175 to 0.427% reported by Ahmed. (2020) and 0.62% citric acid 

reported by Adedokun et al. (2021). This variation was due to geographical location, the 

maturity stage of the fruit, and the tree variety (Muthai et al., 2017).  

4.1.3 Total Soluble Solids (TSS) 

The TSS content is currently the most important quality parameter that indicates the 

sweetness of fruits and is used by the industry to determine marketing standards (Nordey 

et al., 2019). The TSS is a measure of dissolved sugars (hexoses and sucrose), organic 

acids, vitamins, and trace elements in a food matrix. This current study reported an average 

TSS of 1.6 ±0.3 °Brix with the lowest and highest values of 0.7 and 2.4 °Brix, respectively 

(Table 4.1). These results were consistent with 1.8-2.0 °Brix reported by Chepngeno et al. 

(2018) and varied from 79.3% reported by Nour et al. (1980), 4.83 °Brix by Adedokun et 

al. (2021), and 13-15 °Brix by Ahmed. (2020). The differences in TSS reported by these 

authors may be due to variations in geographical location, maturity stage of fruits during 

harvesting, soil composition, genetic variation, and method of analysis (Chadare et al., 

2010). 

4.1.4 Vitamin C Content 

Vitamin C is a very crucial nutrient and is considered a major selling point for BFP. 

Vitamin C of BFP was highly fluctuating with an average of 160.2±19.3 mg/100g. The 

lowest vitamin C content was 100.0 mg/100g and the highest was 205.9 mg/100g (Table 

4.1). Chepngeno. (2018) reported an average vitamin C content of 113.1 mg/100g and 

181.6 mg/100g for baobab fruit from Kitui and Kilifi counties in Kenya, respectively. 

Several published articles have reported a wide range of vitamin C content between 60.0 

to 567.0±8.1 mg/100g of BFP (Dandago, 2016; Eldoom et al., 2014; Chadare et al., 2009; 

Ibrahima et al., 2013). As an example, Chadare et al. (2009) reported a range of 150 – 500 
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mg/100 g pulp and attributed this to tree variability. Several factors such as species, 

climatic conditions, the stage of ripeness at harvest, postharvest management, storage 

conditions, and analytical techniques used are responsible for the variations in the 

composition of plant foods (Aron and Kennedy, 2008; Chadare, 2010; Tembo et al., 2017; 

Chepngeno, 2018).  

4.1.5 Moisture Content  

Moisture content is a vital component of BFP as it influences the texture and storability. 

For the purpose of training the model for moisture content prediction, samples were spiked 

to create variation within the samples. Spiking is the deliberate addition of analyte 

(moisture for this study) to increase the range of moisture content within the set of samples 

used for modeling. This was done because the natural moisture content of dried BFP 

powders does not vary substantially on its own. By artificially adding differing amounts 

of water to individual BFP samples, a wider moisture range could be achieved. This would 

improve the accuracy and precision of the model because the NIR spectrometer capitalizes 

on sample variation (Guy et al., 2015). The average moisture content of BFP in this study 

was 19.5%. The moisture content ranged from a minimum of 9.8% to a maximum of 

34.6%, as shown in Table 4.1. Sufficiently dried BFP contains a very low moisture content 

of between 6.5-13.7% (Eldoom et al., 2014; Osman, 2004; Tembo et al., 2017).   

Table 4.1: Measured values for baobab quality attributes obtained through wet 

chemistry. 

Parameter No. of samples Average Range Std 

TTA (%citric 

acid) 

240 11.8 7.3-18.8 1.6 

TSS (°Brix) 240 1.6 0.7-2.4 0.3 

Vitamin C 

(mg/100g) 

240 160.2 100.0-205.9 19.3 

% Moisture 130 19.5 9.8-34.6 5.8 

TTA; total titratable acidity, TSS; total soluble solids, std; standard deviation. 
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4.2 Characterization of NIR Spectrum of BFP 

Figure 4.1 shows the raw mean (unprocessed) NIR spectrum in the wavelength range of 

950-1650 nm. Moreover, Appendix 2 shows various pre-processed spectra: (A) raw 

spectra, (B) pre-processed with Savitzky Golay (SG) smoothing, (C) transformed with 

multiplicative scatter correction (MSC) and mean-centered (MC) (D) treated with 

standard normal variate (SNV). 

 

Figure 4.1: Raw mean spectrum for BFP 

In all the spectra, the characteristic NIR peaks were observed at wavelengths around 950 

nm, 1200 nm, and 1500 nm. The major peak at around 1300-1400 nm is a combination 

band. These wavelengths were due to the vibrational modes of O-H, N-H, and C-H 

chemical bonds (Nicolaï et al., 2022). These functional groups represented water, 

carbohydrates, and proteins in BFP (Cen and He, 2007; Stadlmayr et al., 2020). The 

predominant band of the NIR fingerprint was at 1450 nm which was dominated by water 

absorption bands due to the first overtone O-H stretch (Barbin et al., 2014). In this study, 

it was possible to observe the two characteristic water absorption bands at 950 nm and 

1450 nm related to the second and first overtone O-H stretch respectively.  

The absorption band centralized at 1200 nm corresponded to the second overtone C-H 

group and was associated with the presence of carbohydrates (Guthrie et al., 2005). The 
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absorption bands of starch and sugars are normally located near strong water absorption 

regions, therefore, hindering their visualization (Delwiche et al., 2008). Organic acids 

normally show bands corresponding to the O-H group at about 1445 nm and 1000 nm for 

the first and second overtone, respectively (Workman and Weyer, 2007). These bands also 

overlapped with the main water bands. Signals at around 1000 nm, 1210 nm, 1360 nm, 

and 1580 nm have been reported to correlate with the concentration of vitamin C (Yang 

and Irudayaraj, 2010). Moisture, TSS, TTA, and vitamin C are organic compounds that 

contain C-H and O-H that produce signals at different wavelengths and NIR could be used 

for rapid and non-destructive prediction of these compounds. 

It is difficult to estimate the concentration of the analyte by visual inspection of the spectra 

due to associated spectral interferences, overtones, and combination of absorption bands. 

Therefore, pre-processing raw spectra before modeling was carried out to get rid of 

unwanted variation and technical artifacts. Pre-processing of the spectra is an integral part 

of multivariate modeling to get rid of background information and noise from the spectra 

and retain useful signals that reflect the chemical properties of the samples. It brought out 

slight spectral variations not evident in raw spectra and made the data more linear. It also 

allowed models to focus on the most relevant information contained in the data, thus 

improving prediction performance. As a common practice in NIR spectrometers, different 

pre-treatment techniques, both singly and in combination, were evaluated before the 

construction of the models, to determine the method(s) that could lead to better calibration 

and prediction models. The choice of the pre-treatment method(s) was based on the results 

of RMSECV, R2, and RMSEP. The best pre-treatment method (s) that resulted in the 

lowest RMSECV and RMSEP and the highest R2 were picked. 

4.3 Predictive Models  

4.3.1 Total Titratable Acidity 

The best model achieved for TTA had the optimum number of seven factors (latent 

variables), R -squared (R2) of 0.81, and a calibration error (RMSE) of 0.77% citric acid 

(Table 4.2). Upon validation with the prediction set of samples, the model returned an R2 
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value of 0.82, a prediction error (RMSE) of 0.70% citric acid, a bias of 0.085, and an RPD 

of 2.29 (Table 4.2). Appendix 3 shows results for different pre-processing methods. This 

model was achieved after pre-processing near-infrared spectra with standard normal 

variate (SNV) to remove spectral scattering. The number of factors in a model was used 

to determine if the model was underfitted or overfitted.  Too many factors result in an 

overfitted model because the model is closely fitted to the training data, captured noisy 

and irrelevant information, and therefore cannot accurately predict new samples. 

Underfitting happens when a model is overly straightforward and fails to recognize 

significant patterns and relationships in the data, therefore resulting in poor performance 

on both calibration and prediction sets (Sisouane et al., 2017). During the training of the 

models, the software (The Unscrambler X version 10.4) was able to suggest a model with 

an optimum number of factors.  

The calibration and prediction errors (0.77 and 0.70% citric acid respectively) were low 

considering a wide range of TTA reported through the wet chemistry (7.3-18.8%). The 

model also presented a low bias of 0.085 and RPD of 2.29 indicating that this model could 

be reliable in predicting the total acidity of BFP in terms of % citric acid. The data points 

for predicted and measured TTA (Figure 4.2) were distributed so close to and along the 

regression line, meaning NIR could be used for non-destructive and rapid quantification 

of TTA in the form of percentage citric acid contained by baobab fruits.  
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Figure 4.2: Partial Least Square Regression (PLSR) score plots for the quantification 

of titratable acidity in baobab fruit pulp. (A) Calibration model and (B) Prediction 

model. 

 A similar observation was also reported by Borba et al. (2021a) and Ncama et al. (2017). 

In addition, the results of this model were close to those obtained by Liu et al. (2010), Xie 

et al. (2011), and Arruda de Brito et al. (2022) using portable near-infrared spectrometer 

for non-destructive determination of TTA in different samples. Munawar et al. (2021) 

used a portable near-infrared spectrometer and constructed a four-factor PLSR model for 

the estimation of TTA in mangoes and reported R2 of 0.92, RMSEC of 35.73, and RPD 

of 4.28. 

The main absorption bands responsible for the construction of the PLSR model, obtained 

through spectral loading weight, were 1150-1170 nm, 1350-1360 nm, 1440 nm, 1450 nm, 

and 1600 nm (Appendix 5). These wavelengths are associated with O-H and C-H stretch 

as indicated by Workman and Weyer. (2007). Citric acid is an organic carboxylic 

compound containing C-H and O-H in its chemical structure suggesting that a portable 

NIR scanner coupled with chemometrics of PLSR could potentially be used to predict the 

concentration of citric acid contained by BFP.   
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 4.3.2 Total Soluble Solids 

The PLSR model for TSS was developed after pre-processing the raw spectra (950-1650 

nm) with SG smoothing to remove background noise and other unwanted variations from 

the spectra, and to improve the accuracy and precision of the data. The model resulted in 

an optimum of four factors with R2 and RMSE of 0.62 and 0.15°Brix respectively. The 

model was also evaluated with an external prediction set and it resulted in R2, RMSEP, 

bias, and RPD of 0.63, 0.15°Brix, 0.086, and 2.00 respectively (Table 4.2). A linear trend 

was observed between predicted and measured TSS (Figure 4.3). 

 

Figure 4.3: Partial Least Square Regression (PLSR) score plots for the quantification 

of total soluble solids in baobab fruit pulp. (A) Calibration model and (B) Prediction 

model. 

 Appendix 3 shows results for different pre-processing methods. A low RMSE of 

0.15°Brix from both internal and external validation was ideal in respect of the 0.7-

2.4°Brix range contained by samples used for the training and validation of the models. 

Despite low R-squared (R2) for both calibration and prediction set, the model 

demonstrated high accuracy and reliability in the prediction of TSS in BFP with an RPD 

of 2.00. A model with residual predictive deviation (RPD) of above 2.00 is considered 

robust and excellent and therefore could be relied on (Davey et al., 2009; Bellon-Maurel 

et al., 2010).  
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The statistical results of this model were comparable to the report by Liu et al. (2010) 

even though the RPD of this study was much better (2.00) than the 1.43 reported by the 

authors. Ferrara et al. (2022) used a SCiOTM scanner (wavelength 740-1070 nm) to predict 

TSS in different cultivars of grapes and reported RMSE of below 0.83°Brix and RPD of 

7.13.  Agulheiro-Santos et al. (2022) used the first derivative (FD) to pre-process NIR 

signals and constructed a seven-factor PLSR model for predicting TSS in strawberries. 

The model gave R2 of 0.67 and RMSECV of 0.6°Brix. The characteristic wavelengths 

responsible for TSS prediction were 950 nm, 1440 nm, 1450-1550 nm, and 1650 nm 

(Appendix 5). These wavelengths are related to the second overtone O-H stretch, first 

overtone O-H stretch, and first overtone C-H stretch (Liu et al., 2015). TSS is an organic 

compound that contains C-H and O-H chemical groups (Amuah et al., 2019), and could 

be possible to predict TSS using a portable NIR spectrometer. 

4.3.3 Vitamin C Content 

The PLSR model was trained for the prediction of vitamin C content in BFP. Raw spectra 

were transformed using multiplicative scatter correction (MSC) to correct variations in 

the intensity of the spectra due to scattering or absorption of light, and then mean centered 

for resolution enhancement.  The resulting model had an optimum of six factors, R2 of 

0.72, and RMSE of 9.29 mg/100g for the calibration set (Table 4.2). Appendix XXX 

shows results for different pre-processing methods. Upon evaluation with an external set 

of data, the model resulted in an R2 of 0.74 and RMSE of 9.67 mg/100g (Table 4.2). It 

also presented a bias of 2.115 and an RPD of 2.00 (Table 4.2). These results were not far 

from R2, RMSEC, and RPD of 0.80, 0.63, and 2.68, respectively reported by Munawar et 

al.(2021) for the determination of vitamin C of intact mangoes using a portable NIR 

spectrometer. Despite a high bias of 2.115, the model managed to accurately predict 

vitamin C with an error of less than 10% and an excellent RPD of 2.00.  This shows that 

the model could be used reliably to quantify the vitamin C content of baobab fruit pulp.  

The scatter plots for predicted and conventionally measured vitamin C content of BFP are 

shown in Figure 4.4. Most of the data points were distributed along the regression line 
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indicating the possibility of using the technique for rapid and non-invasive analysis of 

vitamin C content in BFP. 

 

Figure 4.4: Partial Least Square Regression (PLSR) score plots for the quantification 

of vitamin C content in baobab fruit pulp. (A) Calibration model and (B) Prediction 

model. 

The absorption signals that contributed the most to the construction of the model were 

1000 nm,1100-1222 nm, 1300-1400 nm, 1450-1490 nm, and 1600 nm (Appendix 5). 

These wavelengths represented C-H and O-H stretch (Liu et al., 2015).  The C-H and O-

H are the major bonds in the structure of vitamin C. Since the NIR spectrum provides a 

lot of information concerning the hydroxyl (O–H), and C–H absorption, the NIR technique 

could be a very powerful tool for the study of ascorbic acid (Liu et al., 2006). Pissard et 

al. (2013) constructed a PLSR model for the prediction of vitamin C content in apples and 

obtained very good calibration models with a prediction error of less than 5% (3.4 mg/100 

g) and an RPD of more than 3.0. An RPD value of above 2.0 indicates that the model is 

excellent and could be predicted with high accuracy (Davey et al., 2009; Bellon-Maurel 

et al., 2010).  

4.3.4 Moisture Content  

The PLSR model for moisture content estimation was also constructed using near-infrared 

spectra pre-processed with multiplicative scatter correction (MSC) and Mean centering 
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(MC). The best model had an optimum of four factors with R2 and RMSE of 0.94 and 

1.40%, respectively for the calibration set and R2, RMSE, bias, and RPD of, 0.95, 1.31%, 

0.383, and 4.43, respectively for the prediction set (Table 4.2).  Appendix XXX shows 

results for different pre-processing methods. The model had an excellent performance in 

the prediction of the moisture content in BFP with a prediction error of less than 1.5% 

moisture content and an RPD of more than 4.0. These results indicated that this technique 

could be used for accurate and rapid screening of moisture content contained in BFP. As 

seen in scatter plots (Figure 4.5), the data points for predicted moisture content were close 

to conventional measurements. This also indicated the potential of the device to predict 

the moisture content in BFP.  

 

Figure 4.5: Partial Least Square Regression (PLSR) score plots for the quantification 

of moisture content in baobab fruit pulp. (A) Calibration model and (B) Prediction 

model. 

The absorption bands responsible for moisture content determination were 1100-1250 nm, 

1450 nm, and 1570-1600 nm (Appendix 5). All these wavelengths represent the O-H 

absorption bands that relate to the water molecule in the sample (Liu et al., 2015). The 

near-infrared spectrometer has been extensively evaluated for its potential in non-

destructive prediction of moisture content in different samples. Most of these studies have 
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reported promising results on the applicability of this technology for quick, reliable, and 

accurate measurement of water content in different samples with low prediction errors. 

The authors (Z. Liu et al., 202 2; Maduro Dias et al., 2021; Tugnolo et al., 2021; and Pan 

et al., 2015) used a portable near-infrared spectrometer to predict the moisture content of 

different samples and reported prediction errors of 0.049%, 2.18%, 0.15%, and 0.85%, 

respectively. Results from this current study were close to those obtained by the 

aforementioned authors, especially the associated prediction errors.  

Table 4.2: Summary of calibration and prediction results for PLSR models for TTA, 

TSS, vitamin C, and moisture content. 

Calibration model Prediction model 

Parameter Pre-

processing 

Factors R2 RMSE R2 RMSE RPD  Bias 

%TTA 

(Citric 

Acid) 

SNV 7 0.81 0.77 0.82 0.70 2.29 0.085 

TSS (°Brix) Smoothing 4 0.62 0.15 0.63 0.15 2.00 0.086 

Vitamin C 

(mg/100g) 

MSC+MC 6 0.72 9.29 0.74 9.67 2.00 2.115 

%Moisture MSC+MC 4 0.94 1.40 0.95 1.31 4.43 0.383 

R2; Correlation coefficient, RMSE; Root mean square error, RPD; Residual predictive 

deviation, TTA; Total titratable acidity, TSS; Total soluble solids, SNV; Standard 

normal variate, MSC; Multiplicative scatter correction, MC; Mean centering. 

4.4 The use of a portable NIR spectrometer to monitor changes in baobab quality 

parameters during storage 

To accurately monitor changes in quality attributes of stored BFP samples, acquired 

spectral data were pre-processed using the optimal techniques determined during initial 

model development. Specifically, spectra were transformed with standard normal variate 

(SNV) for TTA prediction, Savitzky-Golay (SG) smoothing for TSS, multiplicative 

scatter correction, and mean centering (MSC+MC) for vitamin C and moisture content 

prediction. The pre-treated spectral data were then loaded into the previously constructed 

and validated partial least squares regression (PLSR) models to predict TTA, TSS, vitamin 

C, and moisture content levels of the stored BFP samples in a non-destructive manner. 
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The microbial load (total aerobic counts and total yeast and mould counts) of stored 

samples was determined separately using standard laboratory procedures.  

4.4.1 Effects of storage conditions and packaging on baobab quality parameters 

The ANOVA results (Table 4.3) indicated that baobab quality parameters (TSS, vitamin 

C, moisture content, and TAC) were significantly affected by the storage duration. The 

TSS, vitamin C, and moisture content were greatly influenced by the storage conditions. 

The packaging material affected only the moisture content. However, changes in TTA and 

TYMC with storage time were not statistically significant. Additionally, TTA and TYMC 

were not affected by both main factors and their interactions. All quality parameters of 

BFP, except TSS, were not significantly affected by the interaction between the storage 

duration and condition used. The TSS and moisture content of the stored baobab samples 

were greatly affected by both interactions between storage duration and packaging. The 

TSS, vitamin C, and moisture content of the pulp were significantly affected by the 

interaction between the storage condition and the packaging material used. However, the 

interaction between the storage duration, storage condition, and packaging did not 

significantly affect the quality attributes of BFP except for TSS only.  
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Table 4.3: ANOVA P-values for main and interaction effects of storage duration, 

condition, and packaging on physicochemical and microbiological properties of 

stored baobab fruit pulp 

Term TTA  TSS  Vit. C  Moisture 

Content  

TAC  TYMC  

A 0.2268 0.0000 0.0000 0.0000 0.0000 0.0628 

B 0.1777 0.0009 0.0106 0.0002 0.7189 0.0628 

C 0.7846 0.4262 0.2062 0.0237 0.4998 0.0628 

A*B 0.8992 0.0000 0.8998 0.1692 0.7189 0.0628 

A*C 0.9879 0.0002 0.9190 0.0231 0.4998 0.0628 

B*C 0.7500 0.0000 0.0367 0.0039 0.1475 0.0628 

A*B*C 0.8713 0.0000 0.3427 0.2950 0.2132 0.0628 

P<0.05 was considered a significant difference. A- storage duration, B-storage 

conditions, and C- Packaging material, *, Interaction, TTA-total titratable acidity, TSS-

total soluble solids, Vit. C- vitamin C, TAC-total aerobic content, TYMC-total yeast, 

and mould counts 

4.4.2 Total Titratable Acidity 

The TTA values of stored BFP are presented in Figure 4.6. The TTA for all samples 

decreased slightly over time (P>0.05). For UbKP-packaged samples, the TTA decreased 

from the initial 15.39 to 14.48% citric acid (P=0.3239) and 15.02 to 14.14% citric acid 

(P=0.2675) for those stored at 25°C/75%RH and 35°C/83%RH, respectively.  For those 

samples packaged in LDPE bags, the TTA also reduced insignificantly from the initial 

15.53 to 14.72% citric acid (P=0.1438) for those samples stored at 25°C/75%RH and from 

15.06 to 14.06% citric acid (P=0.1721) for those kept at 35°C/83%RH. In addition, the 

differences in TTA contents for all samples regardless of packaging and storage conditions 

used were minimal.   
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Figure 4.6: Changes in TTA over six months storage period in BFP samples 

packaged in UbKP and LDPE bags and kept at 25°C/75%RH and 35°C/83%RH 

storage conditions. 

The progressive decrease in the amounts of TTA could be due to the decomposition 

process through both hydrolysis and oxidation. These processes led to a metabolic 

conversion of organic acids into other by-products such as carbon dioxide and water 

(Ferreira et al., 2015).  This finding was consistent with what was reported by Ferreira et 

al. (2015) who reported that fruit and vegetable residue flour subjected to storage 

experiment exhibited a significant decrease in TTA. Those authors also attributed the 

decline in TTA to the metabolic breakdown of organic acids during storage.  

The results of this current study were also similar to what was reported by Dandago. 

(2016) study which evaluated the effects of different storage temperatures and packaging 

on the proximate and ascorbic acid content of BFP. The author reported a progressive 

decrease in TTA during storage. Eldoom et al. (2014) also reported a similar trend with a 

significant decrease in TTA of BFP regardless of the storage conditions and the packaging 

material used. Those authors attributed the decline in TTA to the esterification of organic 

acid by degradative enzymes and microorganisms such as bacteria and yeasts. Baobab 

samples in LDPE bags stored at 35°C/83% RH exhibited slightly more loss of TTA 
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(6.64%) at the end of storage compared to the rest of the samples. This was due to 

accelerated oxidation reactions due to slightly elevated temperatures and an increase in 

metabolisms through enzymatic and microbial activities. 

4.4.3 Total Soluble Solids (TSS) 

As shown in Figure 4.7, the TSS of stored BFP samples decreased significantly (P<0.05) 

with storage time. The UbKP-packaged samples had a decline in TSS from the initial 2.0 

to 0.9 °Brix (P=0.0001) and 2.0 to 1.4 °Brix (P=0.0001) for those kept at 25°C/75%RH 

and 35°C/83%RH, respectively. For LDPE-packaged samples, TSS dropped from 1.9 to 

1.3 °Brix (P=0.0000) and 1.8 to 1.3 °Brix (P=0.0000) for those stored at 25°C/75%RH 

and 35°C/83%RH, respectively. The highest loss in TSS (55.0%) was observed in 

UbKP-packaged samples that were stored at 25°C/75%RH.  

 

Figure 4.7: Changes in TSS over six months storage period in BFP samples packaged 

in UbKP and LDPE bags and kept at 25°C/75%RH and 35°C/83%RH storage 

conditions. 

All samples exhibited a massive drop in TSS content despite the effect of packaging 

material and storage conditions. The decrease in TSS was due to the utilization of 

carbohydrates by microorganisms, particularly bacteria and fungi, oxidation of organic 
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acids and dissolved vitamins, and isomerization of phenolic compounds (Eldoom et al., 

2014; Mgaya‐Kilima et al., 2014; Tembo et al., 2017). The decrease in TSS of stored 

baobab samples reported by this current study was consistent with what Eldoom et al. 

(2014) reported. The mentioned authors studied the effect of wrapping and packaging type 

on the quality of BFP during storage. Those authors reported a significant decrease in TSS 

after storing the pulp for twelve months. However, Eldoom et al. (2014) reported the 

highest loss of TSS by BFP samples packaged in polythene bags (28.6%) compared to 

those in jute (0.00%), basket (9.09%) and in the market (8.62%) in twelve months.  This 

was contrary to the highest loss (55.0%) in UbKP-packed baobab samples stored at 

25°C/75%RH reported by this study. The porous nature of the UbKP packaging allowed 

greater permeation of environmental oxygen and absorption of moisture compared to 

LDPE packaging. This created favorable conditions for oxidative degradation and 

hydrolytic breakdown of soluble components like vitamins and phenolic compounds in 

BFP (Tembo et al. 2017). Additionally, the excess moisture enabled proliferation of 

microorganisms which further utilized available carbohydrates as substrates for growth 

(Tembo et al., 2017). 

4.4.4 Vitamin C Content  

This study revealed that the vitamin C content of BFP samples dropped significantly 

(P<0.05) as the storage period advanced. The degradation of ascorbic acid occurred 

regardless of the influence of packaging material and storage conditions utilized in this 

study. The reduction in ascorbic acid concentration commenced promptly following the 

introduction of the samples into storage conditions. For UbKP-packaged samples, vitamin 

C declined from 183.18 to 115.53 mg/100g (P=0.0002) and 176.18 to 117.55 mg/100g 

(P=0.0078) for those kept at 25°C/75%RH and 35°C/83%RH, respectively (Figure 4.8). 

For LDPE-packaged baobab samples, vitamin C content reduced from 183.53 to 123.02 

mg/100g (P= 0.001) and 165.94 to 98.50 mg/100g (P=0.0007) for samples kept at 

25°C/75%RH and 35°C/83%RH, respectively (Figure 4.8).  
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Figure 4.8: Changes in vitamin C over six months storage period in BFP samples 

packaged in UbKP and LDPE bags and kept at 25°C/75%RH and 35°C/83%RH 

storage conditions. 

The reason for the drastic decrease in vitamin C content during storage was the interaction 

between the samples and the atmospheric oxygen. That resulted in the oxidation process 

that led to the degradation of vitamin C content (Odriozola et al., 2009; Sandhya, 2010; 

Tembo et al., 2017). This was contributed by the packaging materials which permitted the 

interaction of the samples with the external environmental factors (Eldoom et al., 2014). 

Those results were also consistent with what was reported by Dandago. (2016) study 

which assessed the effect of storage conditions on the proximate and ascorbic acid content 

of baobab pulp stored for 8 weeks. That author attributed the gradual decline in vitamin C 

content to the oxidation of vitamin C contained in the samples. 

LDPE-packaged samples stored under 35°C/83%RH storage conditions had the highest 

loss of vitamin C of 40.64%. The changes in vitamin C and TTA levels both displayed 

similar downward trajectories across the storage intervals measured. The parallel 

decreasing trends observed for these two quality parameters suggested a possible 

correlation between loss of acidity and degradation of vitamin C in the stored BFP samples 

(Rop et al., 2012; Mgaya‐Kilima et al., 2014). The highest loss of vitamin C content 
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(40.64%) was reported in LDPE-packed baobab samples stored at 35°C/83%RH. This was 

attributed to the high moisture content in the atmosphere, elevated temperatures, and the 

lights permitted by the LDPE bag. High temperature raises the mobility of water inside 

the powder particle favoring oxidative reactions (Rodríguez et al., 2014). This was 

contrary to what was reported by Eldoom et al. (2014) who studied the effect of packaging 

on the quality of stored baobab fruit. Those authors reported the least change in ascorbic 

content of baobab fruits stored in black polythene bags.  

4.4.5 Moisture Content 

Regardless of the packaging material and storage conditions, the moisture content of all 

samples exhibited a significant increase after the storage period (Figure 4.9). The initial 

moisture content of UbKP-packaged samples increased from 6.55 to 10.18% (P=0.0058) 

and 8.23 to 13.37% (P=0.0009) for those kept at 25°C/75%RH and 35°C/83%RH, 

respectively. For LDPE-packaged samples, moisture content increased from 7.24 to 

10.02% (P=0.0148) and 7.55 to 10.55% (P=0.0019) for those stored at 25°C/75%RH and 

35°C/83%RH, respectively. 

Moisture levels can impact the product’s quality and shelf life (Li et al., 2017). The 

increase in moisture content of the pulp was majorly due to the water penetration through 

the packaging materials, high relative humidity, and the hygroscopic nature of the samples 

(Muthai et al., 2017; Tembo et al., 2017). Kraft paper bag is permeable to moisture content 

and oxygen since it is made up of adsorptive and porous material (SOBRAL, 2000). LDPE 

bag on the other hand is not entirely water resistant (Bastarrachea et al., 2011). The 

samples packaged in paper bags and maintained at 35°C/83% RH demonstrated the 

maximum moisture content (13.37%) at the end of storage duration compared to the rest 

of the samples. That outcome was attributed to the inferior moisture barrier properties of 

paper packaging materials. 
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Figure 4.9: Changes in moisture content over six months storage period in BFP 

samples packaged in UbKP and LDPE bags and kept at 25°C/75%RH and 

35°C/83%RH storage conditions. 

Unlike LDPE bags, which resisted and retarded moisture content transmission, paper bags 

permitted the relatively unimpeded passage of moisture content (Ferreira et al., 2015).The 

high temperature and humidity environmental conditions further promoted moisture 

migration into the paper packaging (Yan et al., 2022). Consequently, the combination of 

the permeable paper bags and the warm, humid storage setting enabled absorption of 

appreciable moisture by the samples, culminating in the pronounced elevation in moisture 

content observed for this experimental treatment (Rahman, 2009). The inferior moisture 

content barrier functionality of the paper packaging, coupled with the high relative 

humidity storage ambience, collectively account for the substantial moisture content 

increase detected in these samples (Vartiainen et al., 2014).  

Despite an increase in moisture content, the moisture levels of all samples remained below 

the upper limit of 14% for edible pulp powders stipulated in the Kenya Bureau of 

Standards (KEBS) (KEBS., 2018). 
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4.5 Microbial Load  

In addition to the non-destructive monitoring of quality attributes in stored baobab 

samples, microbial safety was also assessed through standard laboratory protocols. This 

was meant to provide additional information concerning the microbial safety of stored 

samples. Specifically, total aerobic counts (TAC) and total yeasts and mould counts 

(TYMC) were determined. Figure 4.10 and 4.11 shows the changes in TAC and TYMC, 

respectively, during storage. This study found that there was a significant increase in TAC 

with storage duration (P<0.0002). For UbKP-packaged samples, TAC rose to Log10 2.63 

and Log10 2.86 cfu/g for baobab samples kept at 25°C/75%RH and 35°C/83%RH, 

respectively. For LDPE-packaged samples, TAC multiplied to Log10 2.36 and Log10 2.48 

cfu/g for samples kept at 25°C/75%RH and 35°C/83%RH, respectively. In addition, yeast 

and moulds remained undetected throughout the storage experiment for LDPE-packaged 

samples. For UbKP-packaged samples, yeast and moulds were detected starting from the 

third month of storage. 
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Figure 4.10: Changes in TAC over six months storage period in BFP samples 

packaged in UbKP and LDPE bags and kept at 25°C/75%RH and 35°C/83%RH 

storage conditions 

 

Figure 4.11: Changes in TYMC over six months storage period in BFP samples 

packaged in UbKP and LDPE bags and kept at 25°C/75%RH and 35°C/83%RH 

storage conditions 
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The growth of microorganisms could be linked to the relative permeability of the 

packaging materials to atmospheric factors such as oxygen, carbon dioxide, and moisture 

content (Ferreira et al., 2015). Also, this was probably due to available nutrients and 

storage conditions employed in this study that were favourable for microbial growth 

(Akhtar et al., 2008; Hemery et al., 2020). Microorganisms require oxygen, carbon 

dioxide, source of carbon, and moisture to carry out their metabolic processes (Jay et al., 

2005). The low moisture content of BFP likely inhibited the reproduction and growth of 

many microorganisms. However, some mesophilic bacteria are still capable of 

multiplying despite low moisture environments (Jeon and Kim, 2016). The increase in 

TAC among stored samples was consistent with what was reported by Adebowale et 

al.(2017) who subjected yam flour to different storage conditions. Catunescu et al. (2014) 

and Yim et al. (2019) also reported a significant increase in TAC in different samples as 

the storage period advanced.  

Yeasts and moulds were not detected in samples kept in LDPE bags until the end of 

storage. However, yeast and moulds were detected from the third and fourth months of 

storage for UbKP-packaged samples stored at 35°C/83%RH and 25°C/75%RH, 

respectively. The LDPE packages provided superior protection against the absorption of 

moisture and oxygen compared to UbKP packaging. Moisture and oxygen availability 

have been shown to promote the growth of yeasts and moulds in stored food products 

(Petriccione et al., 2015). Therefore, the LDPE packaging likely restricted moisture and 

oxygen levels, creating a less favorable environment for yeast and mold growth in the 

stored BFP compared to UbKP packaging.  

Despite an increase in the microbial load during storage, the levels remained within 

acceptable limits of log10 4 cfu/g for both TAC and TYMC (KEBS, 2018).  
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4.6 The application of a portable NIR spectrometer for rapid and non-destructive 

detection and quantification of BFP adulteration  

4.6.1 Sample Particle Size Distribution  

The particle size distribution of BFP samples and potential adulterants including maize, 

wheat, and rice flours was characterized before using a portable NIR spectrometer for 

adulteration detection. Determining particle size distributions served to provide insights 

regarding sample homogeneity and the potential impacts on spectral absorption 

intensities. Figure 4.12 also shows curves for both particle size distribution and cumulative 

particle sizes for all samples. For each sample, there are two curves, the one ending at the 

bottom right corner is for particle size distribution and the one touching the top right corner 

is for cumulative particle sizes. Unimodal particle size distribution was observed in maize 

flour. The rest of the samples displayed bimodal curves.  

 

Figure 4.12: Particle size distribution curves for BFP, rice, wheat, and maize flours. 

Maize flour (MF) had an extremely large particle size (425.68±0.12μm) compared to other 

samples (168.45±0.39, 113.79±0.47 and 145.59±0.41μm, for RF, WF and BFP, 

respectively). Despite (MF) having the highest particle size, it presented an unimodal 

particle size distribution curve,  suggesting sample size homogeneity (Cristiano et al., 

2019). On the other hand, bimodal distribution curves were seen in BFP, RF, and WF 
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samples. This meant that there were two clusters of samples, a cluster of small samples 

and a cluster of large samples. This information on sample particle sizes was critical in 

the characterization of NIR spectra. Samples with high particle sizes are known to result 

in spectra with high absorption intensities while those with small particle size produces 

spectra with low absorption intensities (Ramalho et al., 2019). This is because large 

particle sizes have a greater surface area and free electrons, which leads to a stronger 

interaction with incident radiation and therefore results in higher absorption intensity. On 

the other hand, the positioning and trends of absorption bands in the NIR spectrum remain 

consistent despite the effects of sample particle size. This is because the absorption bands 

are typically determined by the molecular structure (chemical bonds and functional 

groups) of a sample (Ramalho et al., 2019).  

4.6.2 Characterization of NIR Spectra 

Absorption peaks characteristic of NIR spectra were seen around 1000 nm, 1200 nm, and 

1450 nm in all the samples (Figure 4.13).  Spectral variations were similar in the 

wavelength around 900 nm to 1140 nm and significant differences were seen from 1140 

nm onwards (in all the samples). The similarity in the trend of all spectra for the entire 

wavelength could be due to the resembling composition of the samples since they are 

mostly composed of C-H, O-H, and N-H-containing compounds that produce peaks at 

certain specific wavelengths. The spectrum for BFP was different from the adulterants in 

terms of absorption intensities. The differences were brought by low intensities of C-H, 

N-H, and O-H absorption bands. On the other hand, the mean spectrum of maize flour had 

the highest absorption intensities followed by rice flour and then wheat flour. The 

differences in particle sizes for all the samples might have played a critical role in the 

variation of absorption intensities seen in the sample spectrum. Maize flour had the highest 

particle size of 425.68±0.12μm followed by rice flour with 168.45±0.39μm.  On the other, 

BFP and wheat flour had the least particle sizes of 145.59±0.41μm and 113.79±0.47μm, 

respectively. 
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Figure 4.13: Average spectra (950-1650nm) for baobab fruit pulp powder, maize 

flour, rice flour, and wheat flour. 

These differences in mean spectra also reflected important chemical properties of BFP 

and adulterants. The C-H, N-H, and O-H chemical bonds are major components of 

carbohydrates, proteins, and water molecules contained in organic materials. Among the 

adulterants used in this study, maize flour and rice flour were reported to contain the 

highest amount of total carbohydrates (approximately 78.74% and 82.45%, respectively) 

followed by BFP and wheat flour (approximately 74.74% and 72.72%, respectively) 

(Qamar et al., 2017; Vunain et al., 2020; Muthai et al., 2017; Ocheme et al., 2018 ). 

Absorption bands at around 1000 nm and 1200 nm were induced by the third and second 

overtone C-H stretch, respectively, while a broad band at 1450 nm was brought by the 

first overtone C-H and O-H stretch (Liu et al., 2015). These are major components related 

to total carbohydrates.  

The percentage moisture and protein content of the adulterants and BFP also vary. Maize 

flour, rice flour, and wheat flour were reported to have moisture and protein content of 

approximately 9.0-15.0% and 7.82-12.02%, 9.35-10.42% and 5.43-7.03%, and 5.46-

7.08% and 8.13-9.50%, respectively (Qamar et al., 2017; Vunain et al., 2020; Jamal et al., 

2016). BFP was reported to have moisture and protein content of 8.82-9.94% and 1.58-

2.65%, respectively (Muthai et al., 2017). The major peaks at around 1450 nm are 

combination bands attributed to the first overtone of the O-H,  C-H, and N-H groups 
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(Workman and Weyer, 2007). The differences in the mean spectrum for BFP, maize flour, 

rice flour, and wheat flour were also possibly due to the varying amounts of carbohydrates, 

proteins, and moisture.  

The spectral fingerprint for BFP significantly deviated from the rest of the adulterants at 

1200 nm and it resembled that of wheat flour at about 1250 nm to 1450 nm. The two 

spectra had a similar shape and were highly overlapping. This wavelength range was 

possibly responsible for masking the chemical differences between BFP and wheat flour. 

However, it was quite difficult to classify the different adulterants by mere visualization 

of the spectra. This was due to the overlapping absorption bands and hidden information 

contained by the spectra (Ozaki et al., 2006). Therefore, spectral transformation 

techniques were necessary to extract features from the spectra for pattern recognition and 

to make the detection of adulterants possible.  

4.6.3 Detection of adulterants using partial least square discriminant analysis 

models. 

4.6.3.1 Two-class PLS-DA Models  

Partial least square discriminant analysis (PLDA) was adopted to distinguish between pure 

and adulterated BFPP samples. Individual PLS-DA models of two classes were 

constructed using pre-processed NIR spectra of adulterated samples. The two-class 

models were trained using different levels of adulteration ranging from 0-60%. Several 

pre-treatment techniques were applied to minimize background noise associated with the 

acquired spectra. These methods were used both singly and in combination and the best 

pre-processing techniques were adopted based on the improvement in model statistics, 

i.e., the sensitivity, specificity, and error rate. In principle, two-class PLS-DA models were 

constructed for each adulteration to discriminate between pure and impure BFPP samples.  

Raw spectra (950-1650 nm) were transformed with mean centering (MC) for model A, 

multiplicative scatter correction (MSC) and mean centering (MC) for model B, and mean 

centering (MC) for model C. Figures 4.14, 4.15, and 4.16 show scatter plots for the 

1a 1b 3a 
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constructed two-class models for the discrimination of pure and BFP samples adulterated 

with rice, wheat, and maize flours, respectively. The first 4 latent variables (LVs) 

explained 99.82%, 99.52%, and 99.86% of the total explained variance in Model A, Model 

B, and Model C, respectively. All models were able to discriminate between pure baobab 

and those that were adulterated with RF, WF, and MF. Since all samples were correctly 

assigned, model A and B resulted in sensitivity, specificity, and classification error of 

1.000, 1.000, and 0.000, respectively (Table 4.4). This indicated that all pure and 

adulterated samples were correctly classified by the models, with no false positives or 

false negatives. Model C on the other hand resulted in a sensitivity and specificity of above 

0.982 and an error of 0.009 for both calibration and prediction models (Table 4.5). This 

also represents a very low misclassification rate. 

 

Figure 4.14. Two-class PLSDA classification scatter plot for detection of rice flour 

adulterants in baobab fruit pulp powder. (A) Calibration model and (B) Prediction 

model 
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Figure 4.15: Two-class PLSDA classification scatter plot for detection of wheat flour 

adulterants in baobab fruit pulp powder. (A) Calibration model and (B) Prediction 

model. 

 

Figure 4.16: Two-class PLSDA classification scatter plot for detection of wheat flour 

adulterants in baobab fruit pulp powder. (A) Calibration model and (B) Prediction 

model. 

According to Jakubíková et al. (2016), sensitivity and specificity above 0.900 indicate 

excellent discrimination performance for classification models. These results indicated 

that two-class PLS-DA models had exemplary performance in the identification of pure 

and adulterated samples and could effectively and accurately classify baobab adulteration. 
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These results were consistent with other studies that have applied portable NIR 

spectrometers and chemometrics for adulterant detection. For example, Orequent et al. 

(2022) achieved 100% sensitivity and specificity in discriminating between pure honey 

and honey adulterated with sugar syrups using PLS-DA modeling of NIR spectra acquired 

with a portable spectrometer. 

Table 4.4: Statistical parameters for PLS-DA models for discrimination of pure and 

adulterated BFP using pre-processed spectra. 

Model Model A (Rice 

flour) 

Model B (Wheat 

flour) 

 Model C (Maize 

flour) 

Pre-processing MC MSC + MC MC 

LVs 4 4 4 

Class Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

Sensitivity 

(Cal) 

1.000 1.000 1.000 1.000 1.000 0.982 

Sensitivity 

(Pred) 

1.000 1.000 1.000 1.000 1.000 0.982 

Specificity 

(Cal) 

1.000 1.000 1.000 1.000 0.982 1.000 

Specificity 

(Pred) 

1.000 1.000 1.000 1.000 0.982 1.000 

Error (Cal) 0.000 0.000 0.000 0.000 0.009 0.009 

Error (Pred) 0.000 0.000 0.000 0.000 0.009 0.009 

LVs: Number of latent variables, Cal: Calibration set, Pred: Prediction set.  Model A: 

Pure baobab (class 1) and baobab plus rice flour (class 2). Model B: pure baobab (class 

1) and baobab plus wheat flour (class 2). Model C: pure baobab (class 1) and baobab 

plus maize flour (class 2). 

4.6.3.2 Four-class PLS-DA Models 

PLS-DA was also extensively used to identify the type of adulterant present in baobab 

fruit pulp samples. A four-class PLSDA model was constructed using 0-60% adulteration 

levels to discriminate and identify the type of adulterant present in BFP. Before modeling, 

raw spectra (950-1650 nm) were treated with multiplicative scatter correction (MSC). This 

corrected light scattering due to varying sample particle sizes. The spectra were then 

mean-centered (MC) to improve the resolution of the data. The model had an optimum of 

3 latent variables (LVs) which explained 98.89% of the total spectral variance. The score 
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plots (Figure 4.17) revealed substantial class overlap, with several samples from different 

adulterant types clustering together. 

 

 

Figure 4.17: Four-class PLSDA classification scatter plot for detection of maize flour 

adulterants in baobab fruit pulp powder. (A) Calibration model and (B) Prediction 

model. 

This indicated that the four-class model struggled to discriminate between adulterants, 

likely contributing to the moderate sensitivity (0.778-0.909), specificity (0.678-0.982), 

and higher error rates (0.055-0.272) for the prediction set (Table 4.5). The inability to 

reliably separate the adulterant classes supported the poor performance of the four-class 

model.  
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Table 4.5: PLS-DA classification parameters for discrimination of pure baobab and 

baobab samples individually adulterated with different types of adulterants, 

constructed using pre-processed spectra. 

 Model D (All Adulterants) 

Pre-processing MSC+MC                                            LVs 3 

Class Class 1 Class 2 Class 3 Class 4 

Sensitivity (Cal) 1.000 0.964 0.778 0.852 

Sensitivity (Pred) 0.909 0.964 0.778 0.833 

Specificity (Cal) 0.982 0.824 0.669 0.851 

Specificity (Pred) 0.982 0.832 0.678 0.843 

Error (Cal) 0.009 0.106 0.276 0.148 

Error (Pred) 0.055 0.102 0.272 0.162 

LVs; Number of latent variables, Cal; Calibration set, Pred: Prediction set, Model D; 

Pure baobab (class 1), baobab plus rice flour (class 2), baobab plus wheat flour (class 

3), and baobab plus maize flour (class 4). 

Chemical similarities between the adulterants made it difficult for the model to 

differentiate the adulterants based on the NIR spectra. The chemical composition of BFP 

and the cereal flours used as adulterants have some similarities that lead to overlapping 

signals in their NIR spectra. All these samples contained varying proportions of 

carbohydrates, proteins, lipids, moisture, etc., which have C-H, O-H, and N-H bonds. That 

leads to overlapping NIR absorption bands making discrimination difficult (Liu et al., 

2015; Wilcock and Boys, 2014). For example, baobab and wheat flour have similar 

carbohydrate content of around 74% and 73% respectively (Muthai et al., 2017; Ocheme 

et al., 2018). This could lead to similar C-H absorption intensities. 

Some of the wavelengths that contributed to the discrimination achieved in both two and 

four-class models were; 907-932 nm, 1106-1212 nm, 1350, 1440-1506 nm, 1630-1678 

nm, 1630-1680 nm. Wavelengths 907-932 nm are related to the third overtone C-H stretch 

(Liu et al., 2015) while 1106-1212 nm corresponded to the second overtone C-H stretch 

(Pedro and Ferreira, 2007). Combined C-H stretching was represented by absorption at 

1350 nm while the first overtone O-H and N-H stretching were due to absorption signals 

at 1440-1506 nm (Liu et al., 2015). Absorption bands at 1630-1678 nm resulted from the 

first overtone C-H stretch (Workman and Weyer, 2007). The C-H, O-H, and N-H chemical 
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bonds are major components of starch, water molecules, and proteins contained by BFP 

and adulterants. This indicated that the differences in the levels of these components 

between BFP and adulterants facilitated the discrimination achieved by the models. 

4.6.3.3 Quantification of adulterants using partial least square regression (PLSR) 

PLSR with cross-validation was adopted for the construction of multivariate calibration 

models for the quantification of adulterants present in BFP. Individual PLSR model for 

each adulteration was constructed using pre-processed spectra. Raw spectra were 

transformed with first derivative (FD) and mean centering (MC) for model 1, first 

derivative (FD), autoscaling (AS) for model 2, and first derivative (FD) and mean 

centering (MC) for model 3. The first four factors in model 1 explained 95.4%; the first 3 

in model 2 explained 63.8%; and the first five factors explained 95.9% of the total spectral 

variance explained. The R2 and RMSECV achieved by Model 1, Model 2, and Model 3 

were 0.94 and 4.57%, 0.93 and 5.07%, 0.85 and 6, and 0.95%, respectively (Table 4.6).  

Constructed models performed better with the prediction set and resulted in the R2 and 

RMSE of 0.98 and 2.74%, 0.94 and 4.86%, and 0.88 and 6.20% for model 1, model 2, and 

model 3, respectively (Table 4.6). This suggested that the prediction models were likely 

more reliable for estimating the level of RF, WF, and RF adulterants in new samples. 

Table 4.6: PLSR results for the individual model for quantifying the concentration 

of the adulterants. 

Calibration set 

N=136 

Prediction set 

N=44 

Model Adultera

nts 

Pre-

processin

g 

Facto

rs 

R2 RMSE R2 RMS

E 

LOD 

(%) 

Model 1 Rice 1D+MC 4 0.94 4.57 0.98 2.74 8.79 

Model 2 Wheat 1D+AS 3 0.93 5.07 0.94 4.86 11.01 

Model 3 Maize 1D+MC 5 0.85 6.95 0.88 6.20 13.79 

N; Number of samples, R2; Correlation coefficient, RMSE: Root mean square error, 

LOD; Limit of detection, 1D; First derivative, MC; Mean Centering, AS; Autoscaling.  
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Figures 4.18, 4.19, and 4.20 show scatter plots for PLSR models. The correlations between 

the measured spectra and the level of adulteration for rice flour, wheat flour, and maize 

flour were good with many points distributed along the regression lines. This indicated 

that a portable NIR spectrometer could be used to accurately measure the quantities of 

rice flour, wheat flour, and maize flour adulterants in BFP. Limits of detection (LODs) for 

each PLSR model were also computed to assess the sensitivity and ability of the models 

to detect the lowest level of adulterants present in BFP. Models 1, 2, and 3 resulted in 

8.79%, 11.01%, and 13.79% LODs (Table 4.7). 

Table 4.7: PLSR results for the individual model for quantifying the concentration 

of the adulterants. 

Calibration set 

N=136 

Prediction set 

N=44 

Model Adulterant

s 

(Flour) 

Pre-

processing 

Factors R2 RMSE R2 RMSE LOD 

(%) 

Model 1 Rice 1D+MC 4 0.94 4.57 0.98 2.74 8.79 

Model 2 Wheat 1D+AS 3 0.93 5.07 0.94 4.86 11.01 

Model 3 Maize 1D+MC 5 0.85 6.95 0.88 6.20 13.79 

N; Number of samples, R2; Correlation coefficient, RMSE: Root mean square error, 

LOD; Limit of detection, 1D; First derivative, MC; Mean Centering, AS; Autoscaling 

Those results suggested that a portable NIR spectrometer could estimate the level of MF, 

RF, and WF adulterants in BFP from as low as 8.79%. In general, the PLSR models for 

RF, WF, and MF indicated the high potential of a portable NIR spectrometer in predicting 

the level of RF, WF, and MF in BFP adulteration. The results of this study correlated well 

with those found by studies contacted by Ndlovu et al. (2021), Oliveira et al. (2020), Wang 

et al. (2022), and Da Costa Filho et al. (2022) involving the quantification of adulterants 

present in different samples using a spectrometer.  



78 

 

Figure 4.18: PLSR classification score plot for quantification of rice flour adulterants 

in baobab fruit pulp powder. (A) Calibration model (B) Prediction model 

 

Figure 4.19: PLSR classification score plot for quantification of wheat flour 

adulterants in baobab fruit pulp powder. (A) Calibration model (B) Prediction 

model 
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Figure 4.20: PLSR classification score plot for quantification of maize flour 

adulterants in baobab fruit pulp powder. (A) Calibration model (B) Prediction 

model. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

In this study, the ability of a portable near-infrared (NIR) spectrometer to determine the 

quality of baobab fruit pulp (BFP) was evaluated. To realize this, a portable NIR 

spectrometer was evaluated for its ability to rapidly and non-destructively determine 

quality attributes, monitor the deterioration of quality parameters during storage, and 

detect and quantify adulterants present in BFP. 

5.1.1 Applicability of NIR spectrometer in non-destructive testing of baobab 

quality 

This study proved that a portable NIR spectrometer coupled with chemometrics of partial 

least square regression (PLSR) was capable of rapid, non-invasive, and accurate 

prediction of total titratable acidity (TTA), total soluble solids (TSS), vitamin C, and 

moisture content of BFP. Trained models performed exemplary in the prediction of TTA, 

TSS, vitamin C, and moisture content with prediction R2 of above 0.63 and RPD of above 

2.00.  

5.1.2 The use of a portable NIR spectrometer to monitor changes in baobab quality 

parameters during storage 

A portable NIR spectrometer was used to monitor changes in baobab quality parameters 

during storage. This study revealed that baobab quality attributes were affected during 

storage. The TTA, TSS, and vitamin C content deteriorated over time during storage. 

However, the intensity of deterioration varied depending on the parameters. The TTA 

declined during storage, but the changes were not significant. However, TSS and vitamin 

C greatly deteriorated during storage.  

Moisture content on the other hand increased considerably over time despite the protection 

offered by the packaging materials. An unbleached kraft paper (UbKP) bag was not ideal 

for sample protection against the entrance of moisture content. The UbKP packaging 
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material permitted moisture content into the samples which promoted the growth of 

aerobic bacteria and yeast and moulds.  Low-density polyethylene (LDPE) bags had better 

protection against the entry of moisture content. However, despite the absorption of 

moisture content by samples, the moisture levels remained below safe limits.  

This study also revealed that the counts of aerobic bacteria and fungi rose during storage. 

In addition, samples packaged in LDPE bags had lower microbial load compared to those 

packaged in UbKP bags. However, despite the rise in microbial load, the levels of both 

aerobic bacteria and fungi were still below the acceptable limits.  

5.1.3 Applicability of NIR spectrometer for rapid and non-destructive detection 

and quantification of BFP adulteration 

The ability of a portable NIR spectrometer to detect and quantify adulteration of BFP was 

also investigated. Trained partial least square discriminant analysis (PLSDA) models 

proved to be efficient in the detection of pure and BFP adulterated with rice, wheat, and 

maize flours. Specifically, two-class models were the best in discriminating between pure 

and adulterated samples with specificity and sensitivity of above 0.982, and an error of 

below 0.009.  

Finally, PLSR models were also constructed to predict the amount of adulterants present 

in BFP. The models performed exemplary with prediction R2 of above 0.88 and error 

(RMSEP) of below 6.20%. A portable NIR spectrometer could accurately detect and 

quantify rice, wheat, and maize flours adulterants from as low as 8.79%. 

In summary, a portable NIR spectrometer (wavelength 900-1700 nm) coupled with 

chemometrics of partial least square regression analysis and partial least square 

discriminant analysis could be a tool of choice for rapid, non-invasive, and precise 

prediction of baobab quality attributes, monitoring the degradation of baobab fruit pulp, 

and assessment of baobab authenticity.  
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5.2 Recommendation  

5.2.1 Recommendation for Further Research  

Similar research was recommended to compare the accuracy of Tellspec NIR (wavelength 

900-1700 nm) and SCIOTM (wavelength 700-1100 nm) spectrometers. Both of them are 

ultraportable NIR scanners but have different wavelength ranges, which dictates the 

penetration depth of the NIR radiation. Tellspec is ideal for probing bulk material which 

requires deeper penetration while SCIOTM is suited for assessing materials that require 

shallow penetration. This study will provide information on the most accurate scanner for 

rapid assessment of BFP quality.  

A research on the potential of portable NIR spectrometer to quantify other baobab quality 

parameters (e.g. dry matter, fiber, color, phenolic content, and aflatoxin level), the 

geographical origin, and the tree variety. In addition to the main attributes characterizing 

the quality of BFP, knowledge of the dry matter, fiber, color, phenolic content, and 

aflatoxin level is also very crucial for baobab quality.  Traceability in terms of place of 

origin and tree variety is a key aspect of quality control of BFP. Therefore, this study 

recommends the use of an NIR spectrometer to determine other quality attributes as well 

as identify the origin and the variety of BFP.   

5.2.2 Recommendation for the Policy 

Due to a rising demand for BFP, farmers tend to harvest their fruits immaturely. This 

compromises the quality, leads to spoilage, and ruins the reputation of the baobab dealers. 

This study recommends the use of portable NIR spectrometers (Tellspec NIR scanner 900-

1700 nm) by government agencies i.e. KEBS while carrying out the inspection, control, 

and standardization services on BFP products. This will enhance the use of new 

technologies that are more accurate, and faster and reduce the incidence of recall due to 

bad quality products.  
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5.2.3 Recommendation for Baobab Value Chain Actors 

The demand for BFP is expanding massively both locally and abroad. Quality control is 

crucial for ensuring safety, customer satisfaction, and compliance with the set standards. 

Therefore, quality checks should be imposed at every stage along baobab value chains to 

guarantee the quality of BFP. For this purpose, this study recommends the use of a portable 

NIR spectrometer (Tellspec NIR scanner 900-1700 nm) for a non-invasive, rapid, onsite, 

reliable, and cheap method of analysing the quality of BFP.   
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APPENDICES 

Appendix I: Set-up for the storage experiment. 
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Appendix II: NIR spectra pre-processed with (A) Raw (Unprocessed), (B) Smoothed 

with SG, (C) Multiplicative scatter correction and mean-centered (MSC+MC), 

(D)Standard Normal Variate (SNV). 
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Appendix III: Summary of statistical results for models predicting baobab quality 

attributes developed using different pre-processing methods. 

 Calibration Set Prediction Set 

Parameter/Mode

l 

Pre-

processing 

Fa

cto

rs 

R2 RMS

E 

R2 RMS

E 

Bias 

TTA Raw 5 0.34 1.53 N/A 1.80 -1.11 

 Smoothing+

BO 

10 0.42 1.43 0.38 1.80 -1.11 

 Smoothing+

AN 

10 0.42 1.43 0.07 1.38 -0.80 

 SNV 7 0.81 0.77 0.82 0.70 0.09 

 SNV+MC 7 0.79 0.89 0.77 0.88 0.10 

 SNV+AS 6 0.83 0.81 N/A 0.98 0.03 

 MSC 4 0.45 0.98 0.51 0.87 -0.65 

 FD+MC 7 0.53 1.28 0.52 1.28 -0.87 

 MSC 7 0.39 1.47 N/A 1.57 -0.85 

 FD+BO 7 0.54 1.27 0.46 10.76 -10.66 

TSS Raw 1 0.30 0.25 0.14 0.21 -0.01 

 MSC+AS 3 0.08 0.21 0.14 0.21 -0.01 

 MSC+MC 3 0.09 0.21 0.13 0.19 -0.01 

 MSC+BO 3 0.08 0.25 0.14 0.21 -0.01 

 MSC+FD 1 0.25 0.27 0.34 0.22 -0.02 

 Smoothing 4 0.62 0.15 0.63 0.16 0.09 

 AN 4 0.54 0.17 0.40 0.22 0.10 

 Detrend  6 0.48 0.27 0.49 0.20 -0.02 

 SNV 5 0.46 0.17 N/A 0.22 -0.09 

 SNV+MS 5 0.47 0.17 N/A 0.22 -0.08 

 OSC 4 0.56 0.17 O.57 0.17 0.10 

Vitamin C Raw 5 0.49 12.16 0.48 12.02 3.34 

 MSC 6 0.54 13.45 0.56 14.56 2.68 

 MSC+MC 6 0.72 9.29 0.74 9.67 2.115 

 SNV 4 0.54 11.45 0.47 14.68 3.67 

 SNV+AS 3 0.55 11.01 0.51 18.99 4.46 

 SNV+MC 4 0.53 12.98 0.50 16.77 4.44 

 AN 4 0.34 21.34 N/A 17.86 1.86 

 Detrend 6 0.64 15.33 N/A 14.23 3.01 

 OSC 7 0.55 16.77 0.50 17.98 -1.14 

 SGS+BO 7 0.67 34.55 N/A 37.68 2.78 

Moisture Raw 4 0.94 1.38 0.94 1.88 0.53 

 MSC 4 0.94 1.40 0.93 2.73 0.38 

 MSC+MC 4 0.94 1.40 0.95 1.31 0.38 
 MSC+AS 3 0.87 1.56 0.90 1.56 0.40 
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 Detrend 2 0.67 1.89 0.65 1.95 -1.34 

 OSC 5 0.88 1.37 N/A 1.37 -1.62 

 SNV 4 0.94 1.40 0.79 6.08 -1.48 

 SNV+AS 4 0.94 1.41 0.04 6.08 -1.48 

 AN 3 0.90 1.76 0.81 2.67 -0.11 

 SGS+BO 3 0.92 1.55 0.91 1.87 0.55 

R2-R-squared/Correlation coefficient  

RMSE-Root means square error  

TTA-Total titratable acidity 

TSS-Total soluble solids 

Raw- (Unprocessed spectra) 

MSC-Multiplicative scatter correction  

MC- Mean Centering  

SNV- Standard normal variate 

  

AS- Autoscalling  

AN-Area normalization 

SGS-Savitzky Golay smoothing  

BO-Baseline offset 

FD-First derivative 

SD- Second derivative 

OSC- Orthorgonal signal correction  

N/A- Not applicable  
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Appendix IV: Summary of statistical results for models predicting the amounts of 

adulterants trained after pre-processing raw spectra using different methods. 

 Calibration Set Prediction Set 

Parameter/ 

Model 

Pre-

processing 

Factors R2 RMSE R2 RMSE Bias 

RF Raw 7 0.86 7.34 0.80 8.57 -3.95 

 Smoothing + 

BO 

4 0.84 7.68 0.84 7.26 -2.39 

 Smoothing + 

AN 

2 0.83 7.87 0.84 7.53 -1.16 

 SNV 4 0.86 7.19 0.81 8.20 -4.43 

 SNV+MC 2 0.84 7.83 0.86 7.16 0.00 

 SNV+AS 2 0.84 7.66 0.84 7.57 -1.98 

 MSC 4 0.86 7.27 0.81 8.20 -4.44 

 MSC+MC 4 0.86 7.26 0.81 8.21 -4.44 

 FD+BO 5 0.86 7.35 N/A 24.09 9.56 

 FD+MC 4 0.94 4.57 0.98 2.74 1.11 

 FD+AS 5 0.94 3.85 0.94 4.63 -2.52 

MF Raw 7 0.65 11.61 0.70 10.36 0.41 

 MSC 7 0.74 9.91 0.70 10.44 1.19 

 MSC+MC 7 0.75 9.84 0.70 10.45 1.19 

 SNV 7 074 9.93 0.70 10.45 1.20 

 SNV+MC 7 0.74 10.00 0.74 9.53 1.32 

 SNV+AS 7 0.75 9.78 0.75 9.53 1.32 

 AN 4 0.14 18.12 N/A 20.18 2.01 

 Smoothing + 

BO 

3 0.61 12.33 0.57 12.41 3.17 

 FD+MC 5 0.85 6.95 0.88 6.20 2.41 

 FD+AS 5 0.83 7.34 0.80 7.35 2.40 

 SD 3 0.65 11.55 N/A 60.01 56.27 

 Detrend 6 0.81 8.24 0.73 9.73 0.26 

WF Raw 6 0.91 5.81 0.91 5.78 0.51 

 MSC 2 0.91 5.86 0.91 5.60 0.33 

 MSC+MC 6 0.91 5.93 0.92 5.00 1.34 

 MSC+AS 6 0.91 5.93 0.91 5.65 0.81 

 SNV 2 0.91 5.83 0.91 5.60 0.33 

 SNV+MC 2 0.91 5.88 0.91 5.60 0.33 

 SNV+AS 2 0.90 6.14 0.90 5.98 -0.17 

 FD+MC 3 0.89 6.76 0.87 6.74 0.42 

 FD+AS 3 0.93 5.07 0.94 4.86 0.30 
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R2-R-squared/Correlation coefficient  

RMSE-Root means square error  

MF-Maize flour 

RF-Rice flour 

WF-Wheat flour 

Raw- (Unprocessed spectra) 

MSC-Multiplicative scatter correction  

MC- Mean centering  

  

SNV- Standard normal variate 

AS- Autoscalling  

AN-Area normalization 

BO-Baseline offset 

FD-First derivative 

SD- Second derivative 

OSC- Orthorgonal signal correction  

N/A- Not applicable  
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Appendix V: X-loading weight plots of the optimal models for (a) TTA prediction, 

(b) TSS prediction, (c) Vitamin C prediction, and (d) moisture content prediction 
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Appendix VI: RMSECV against LVs plot for baobab fruit pulp adulterated with; 

(A) rice flour, (B) wheat flour, (C) maize flour, and (D) all adulterants. 

 


