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Abstract
A model that takes into account multi-mutation and drug resistance in a case of

simple immune system and immune-suppression caused by drug resistant tumor cells

is proposed. Since the methods for revising therapeutic approaches (immunotherapy

and chemotherapy) during cancer treatment are still being explored, we have analyzed

mathematically the corresponding tumor-immunotherapy model and its non tumor

states using nonstandard finite difference method to identify under which conditions

tumor can be eliminated. Numerical simulations of the tumor-immunotherapy model is

done with the aid of MATLAB software using ode45 function, in order to determine the

effectiveness of the immunotherapy. Through the mathematical analysis, the existence,

the uniqueness and the boundedness of solutions are shown. This study indicates that

tumor can be eliminated under certain conditions in the presence of the immunotherapy

drug and in the absence of the drug resistant tumor cells. Moreover, it provides an

understanding of the evolution of tumor cells and immune system cells for all types of

mutations, in the absence and in the presence of the immunotherapy drug. Effective

treatment strategies are proposed when the drug resistant tumor cells are absent and

when they are present.
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Abstract (French version)
Un modèle prenant en compte la multi-mutation et la résistance aux médicaments

dans un cas de système immunitaire simple et de suppression immunitaire provoquée

par des cellules tumorales résistantes aux médicaments est proposé. Comme les méthodes

de révision des approches thérapeutiques (immunothérapie et chimiothérapie) pendant

le traitement du cancer sont encore à l’étude, nous avons analysé mathématiquement le

modèle d’immunothérapie tumorale correspondant et ses états non-tumoraux en util-

isant une méthode des différences finies non-standard. Des simulations numériques du

modèle d’immunothérapie tumorale sont réalisées à l’aide du logiciel MATLAB en util-

isant la function ode45, afin de déterminer l’efficacité de l’immunothérapie. L’analyse

mathématique montre l’existence, l’unicité et la borne des solutions. Cette étude in-

dique que la tumeur ne peut être éliminée que sous certaines conditions en présence

du médicament d’immunothérapie et en absence des cellules tumorales résistantes aux

médicaments. De plus, il permet de comprendre l’évolution des cellules tumorales et

des cellules du système immunitaire pour tous les types de mutations, en absence et

en présence du médicaments d’immunothérapie. Des stratégies de traitement efficaces

sont proposées lorsque les cellules tumorales résistantes aux médicaments sont absentes

et présentes.
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Chapter 1

Introduction
Cancer is a disease characterized by the uncontrolled proliferation of cells, linked

to an escape from the regulation mechanisms that ensure the harmonious development

of our organism. By multiplying anarchically, they cause increasing tumors that de-

velop by invading and destroying the surrounding areas (organs). By destroying its

environment, cancer can become a real danger to the survival of the living being. It is

a multi-scale disease and its overwhelming complexity depends upon the multiple in-

terwind events occurring at both molecular and cellular levels, making it very difficult

for therapeutic advancements in cancer research. The resistance to cancer drugs is a

signifcant challenge faced by scientists nowadays. The roots of the problem reside not

only at the molecular level due to multiple type of mutations in a single tumor but

also at the cellular level of drug interactions with the tumor. The tumor heterogeneity

is the term used by the oncologists for the involvement of multiple mutations in the

development of a tumor at subcellular level. The mechanisms for tumor heterogeneity

are rigorously being explored as a reason for drug resistance in cancer patients. It is

important to observe cell interactions not only at intra-tumoral level but it is also es-

sential to study the drug and tumor cell interactions at cellular level to have a complete

picture of the underlying issue for the drug resistance (Sameen et al., 2014).

There are several types of cancer treatments: surgery, chemotherapy, targeted ther-

apies, radiotherapy and hormone-therapy. Surgery and radiotherapy are local treat-

ments while chemotherapy and hormone-therapy act throughout the body. Over the

decades, the most common therapeutic approach to reduce the population of cancer
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cells and control their progression is some combination of chemotherapy and of im-

munotherapy. However, on several occasions, the success of this treatment has failed

due to the lack of knowledge of the type of tumor cells that occur and the effects that

these tumors can have on the immune system (Holohan et al., 2013).

The proliferation of cancer cells depends on many factors including, but not limited

to, cell growth rate, mutual interaction of cancer cells with surrounding normal cells

and immune system response to cancer treatment strategies. This also depends on the

mutations that may occur during cell divisions, which result in the inapplicability of

chemotherapeutic treatments. Drug induced resistance is one of the main obstacles

that can lead to therapeutic failure during cancer treatment. Different genetic alter-

ations occur when the tumor cells divide. Among the new generations of tumor cells,

some can express an intrinsic resistance to a specific chemotherapeutic agent (Feizabadi

& Witten, 2015). In addition, some tumor cells may carry a gene that can develop

resistance induced by the chemotherapeutic drug (Feizabadi, 2017). The methods by

which therapeutic approaches need to be revised in the occurrence of drug induced

resistance are still being explored. Because of that, many researchers and mathemati-

cians such as Kirschner & Panetta (1998), Kirschner & Tsygvintsev (2009), Feizabadi

& Witten (2010), Feizabadi & Witten (2011), Feizabadi & Witten (2015), Feizabadi

(2017), introduced mathematical models to analyze the evolution of cells. Feizabadi

(2017) modeled multi-mutation and drug resistance and assessed the response of cell

populations as a function of time under different treatment strategies. The effects of a

simple immune system and of the immune-suppression caused by drug resistant tumor

cells are not yet considered in the model of Feizabadi (2017). Therefore the model

which will take into account these multi-mutation and their effects is required together

with an efficient treatment strategy that can overcome the mutation of tumor cells.
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1.1 Problem statement
The effects of a simple immune system and immunodeficiency studied by Feizabadi

& Witten (2011) on the dynamics of conjointly growing tumor and normal cells showed

that the interdependency of tumor-normal cells, together with choice of drug and the

nature of the immunodeficiency, leads to a variety of interesting patterns in the evolu-

tion of both the tumor and the normal cell populations. So to decide with regard to

impactful therapy, the state of the patients immune system plays an important role.

Different genetic alterations occur when tumor cells divide. Among new generations of

tumor cells, some may express intrinsic resistance to a specific chemotherapeutic agent,

see (Feizabadi & Witten, 2015). Also, some tumor cells may carry a gene that can de-

velop resistance induced by the therapeutic drug, see (Feizabadi, 2017). Currently, to

our best knowledge, the research done on this topic have not considered the effects of a

simple immune system and of an immune-suppression when the system expresses both

intrinsic and drug-induced resistance. Therefore, in this work we model and analyze

multi-mutation and drug resistance in occurrence of a simple immune system and of

an immune-suppression caused by drug resistant tumor cells.

1.2 Justification of the study
This study is worthy because methods for revising therapeutic approaches (im-

munotherapy and chemotherapy) during cancer treatment are still being explored. In

(Feizabadi, 2017), multi-mutation and drug resistance have been modeled and analyzed

for some case studies. The proposed study introduces the effects of a simple immune

system and of an immune-suppression in Feizabadi’s model. This is due to the fact that

the state of the patients immune system plays an important role in making decisions

with regard to impactful therapy. So building a model and analyzing the evolution of

the cells will give more information about how tumor, normal and immune cells evolve

and how therapies need to be revised in this case.
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1.3 Objectives of the study
The following are the objectives of our study:

1.3.1 General objective
To model and analyze multi-mutation and drug resistance of tumor cells in a case

of a simple immune system and of an immune-suppression.

1.3.2 Specific objectives
1. To construct a mathematical model which describes multi-mutation and drug

resistance in a case of a simple immune system and of an immune-suppression

caused by drug resistant tumor cells.

2. To analyze mathematically the corresponding tumor-immunotherapy model and

its non tumor states using a nonstandard fnite difference method, in order to

identify under which conditions tumor can be eliminated.

3. To simulate numerically with the aid of MATLAB software using ode45, the cor-

responding tumor-immunotherapy model in order to determine the effectiveness

of the immunotherapy and propose treatment strategies

1.4 Significance of the Study
The findings of this study will be of benefit to the society as cancer modeling plays

an important role in the prediction of percussive therapy in the treatment of cancer.

Repeated failure of the treatment, when the system expresses both intrinsic and drug-

induced resistance, motivates the need for more information on the behavior of the

tumor cells, the immune system cells and normal cells. This also motivates the need

for more information on how therapeutic approaches need to be revised. Thus, the

application of the approach that will be recommended from the results of this study

will give a better treatment strategy against cancer. The scientific world will be guided

on what needs to be underlined in order to improve the therapeutic approaches. For

researchers, the study will help them discover the areas of possible improvements in
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the cancer treatment process. Thus, a new theory on therapeutic approaches can be

reached.

1.5 Scope of the study
This study is limited to the construction, analysis of non-tumor states and numeri-

cal simulations of a model that takes into account multi-mutation and drug resistance

with immune-suppression caused by drug resistant tumor cells. Two variables are con-

sidered to be the main immune system components: the activated immune-system cells

(effector cells), denoted by E and the concentration of IL-2 (Interleukine-2), denoted

by I. The study assumes that all types of tumor cells grow under the logistic growth

law and the immune-suppression factors are the resistant tumor cells.

1.6 Organization of the study
The rest of this work is organized as follows:

Chapter 2 provides a quick review of the necessary literature related to our study.

Chapter 3 deals with the construction of a mathematical Model which describes multi-

mutation and drug resistance in a case of a simple immune system and of an immune-

suppression caused by drug resistant tumor cells.

In Chapter 4, a mathematical analysis of the corresponding tumor-immunotherapy

model and of its non-tumor states is done to identify under which conditions tumor can

be eliminated. We proved the global stability of non-tumor states using nonstandard

finite difference method.

In Chapter 5, numerical simulations of the tumor-immunotherapy model are performed

with the aid of MATLAB software using ode45 function, in order to determine the

effectiveness of the immunotherapy and to propose some treatment strategies.

Finally in Chapter 6,we draw a Conclusion and give possible ideas for the extension of

the study as future work and perspectives.
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1.7 Published material
The part of thesis related to tumor-immunotherapy model and to numerical simu-

lations has been published in (Togbenon et al., 2018), namely

Togbenon, H. A., Kimathi, M. E., & Degla, G. A. (2018). Modeling Multi-Mutation

And Drug Resistance: A Case of Immune-Suppression. Global Journal of Pure and

Applied Mathematics, 14(5), 689-709.

The complete study of the mathematical model for multi-mutation and drug resistance

with immune-suppression and both immunotherapy and chemotherapy was accepted

after per-review as a research article in the Journal of Mathematical theory and Mod-

eling. It will be published very soon.

In the next chapter, we are going to provide a quick review of the necessary literature

related to our study.
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Chapter 2

Literature Review

In this chapter, we present some recent studies related to our study. Thus this chapter

is primarily devoted to a brief literature review of the earlier investigations made on

cancer modeling.

The behavior of normal and tumor cells during the cancer disease plays a major role in

the choice of the therapy. In a conjoint setting, normal and tumor cells interact with

one another during their growth. This mutual interaction between normal and tumor

cells has been biologically detected and was initially modeled by Witten (1986) who

assumed that tumor and normal cells grow under the logistic growth law.

The state of the patient′s immune system plays an important roles in making deci-

sions with regard to impactful therapy. A number of lines of evidence suggest that

immunotherapy with the cytokine interleukin−2 (IL-2) may boost the immune system

to fight tumors. Thus Kirschner & Panetta (1998) modeled the immunotherapy of the

tumor-immune interaction and explored the effects of adoptive cellular immunotherapy

(ACI) on the model and then described under what circumstances the tumor can be

eliminated. They defined three populations: E(t), the activated Immune-system cells

(commonly called effector cells) such as cytotoxic T-cells, macrophages, and natural

killer cells that are cytotoxic to the tumor cells; T (t), the tumor cells; and IL(t), the

concentration of IL-2 in the single tumor-site compartment they were modeling. Effec-

tor cells are stimulated to grow based on the direct presence of the tumor and IL-2 that
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is produced by effector cells in both an autocrine and paracrine manner. However no

global analytical results were originally presented. So, Kirschner & Tsygvintsev (2009)

explored the global dynamics of the model in space by quasi-Lyapunov function tech-

niques and found that under specific conditions, we can define exactly what conditions

allow for tumor clearance.

d’Onofrio (2006) studied the influence of the proliferation response of effectors to tumor

burden, and of cooperation and/or competition between immune system effectors, by

means of three inter-related bi-dimensional meta-models. After studying their null-

clines, he obtained the location and the local stability of the equilibria. Then, he

investigated the existence and, in some cases, the uniqueness of stable limit cycles.

The condition for the global asymptotically stable eradication under constant or slightly

variable periodic immunotherapy was given. Finally, he discussed the implications of

strong saturation in the effectors ability to kill tumor cells.

Feizabadi & Witten (2010) improved the model of Witten (1986) by finding that tumor

cells can only be affected by the normal cells up to a certain point. After that, there is

a constant effect. To represent this behavior, they chose a simple saturation function

(Hill function of Hill coefficient 1). The tumor cell interaction with the normal cell

is chosen as a logistic growth function. Then, they extended to address the medical

scenario in which the conjoint cellular system interacts with a chemotherapeutic drug.

They assumed that the drug kills both tumor cells and normal cells. These cells die

due to drug toxicity. After that, they discussed the simulation of the evolution of both

normal and tumor cells for various interactions (untreated system evolution, treated

system by static drugs, treated system by dynamic drugs).

As suggested by Gardner (2000) and used in other studies (De Pillis & Radunskaya,

2003; de Pillis et al., 2006), the drug interaction may be structured as aφ(1− e−MC)φ

where φ is the cell population number. The parameter C is the concentration of the

drug at the tumor site at a specific time with the unit (mg.m−2). M is associated to
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the drug pharmacokinetics and known as the drug efficiency coefficient with the unit

of (m2.mg−1). M is considered to be 1. The coefficient aφ with the unit of (time−1)

expresses the rate of chemotherapy-induced death. The function F (C) = aφ(1−e−MC)

is the fraction cell killed for a given concentration of drug ′′C ′′.

Furthermore, Feizabadi & Witten (2011) modeled the effects of a simple immune sys-

tem and immunodeficiency on the dynamics of conjointly growing tumor and normal

cells. They first considered their core model for the interaction of tumor cells with sur-

rounding normal cells, made in 2010. They then added the effects of a simple immune

system, and both immune-suppression factors and immuno-chemotherapeutic agents

as well. Through a series of numerical simulations, they illustrated that the interde-

pendency of tumor-normal cells, together with choice of drug and the nature of the

immunodeficiency, leads to a variety of interesting patterns in the evolution of both

the tumor and the normal cell populations. They considered that the viruses are the

basis of the immunodeficiency. As explained in Kirschner & Panetta (1998) model,

they considered two variables to be the main immune system components: the first is

the activated immune-system cells (effector cells) including T-cells and the others are

the immune cells that are cytotoxic to tumor cells. The second immune system com-

ponent is the concentration of IL-2, which is the main cytokine responsible for T-cells

activation, growth and differentiation at the tumor site.

The viruses can infect the activated immune cells. As a result of this infection, the

population of activated cells decreases and this leads to a weakened immune system. In

such a case, the treatment can consist of immune boosting drugs such as Interleu-kin−2

(IL-2) (Kovacs et al., 1996). Kirschner & Webb (1998) mathematically characterized

the general interaction of the Human Immunodeficiency Virus and activated immune

cells. The presence of immune-suppression factors reduces the efficiency of the immune

system in battling tumor cells. Thus, Feizabadi & Witten (2011) added these same

mathematical terms to their model to explain a simple possible immune deficiency.

To control cancer progression, many approaches can be implemented, among them
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chemotherapy, immunotherapy or some combination of the two. The enhancement of

the immune system by immunotherapeutic agents that directly boost the number of

T-cells has a key role in the reduction of both the number of tumor cells and viruses.

Chemotherapeutic agents can kill the tumor population in a dose-dependent manner

(De Pillis & Radunskaya, 2003; Pazdur, 2004).

Chemotherapeutic agents are cytotoxic not only to tumor cells, but also to normal

and activated cells as well. Clinical evidence also indicates that some of the anticancer

agents can control the replication of viruses in a dose-dependent manner. Some data

supports and some discourage the use of anticancer agents for immunodeficient virus

treatment. On the one hand, some drugs have strong anti-activity virus effects, but

not the ability to kill rapidly proliferating tumor cells. On the other hand, some of the

anti-proliferating drugs may not have a positive effect on controlling viruses (Sadaie

et al., 2004). Consequently, it is obvious that therapeutic potential depends upon

the impact and the cross-toxicity of the drug on different components of the system.

Knowledge of these pharmacokinetic interactions are not considered in (Feizabadi &

Witten, 2011).

Feizabadi & Witten (2015) modified their core model of 2010 to include the resistance

that tumor cells may express against chemotherapeutic agents. To set this modification,

they first considered that the control of normal cells over the growth of tumor cells is

negligible as it is large tumor cells that mainly express resistance to the treatment. But

the population of the normal cells is controlled by the tumor cell population. They

then included a second group of tumor cells in the core model. They assumed that

this new group of tumor cells would be created during cell division (mutation) and

would carry a mutated gene that causes intrinsic resistance against a specific type of

chemotherapeutic agent. Also, they assumed that this group of tumor cells would also

grow under the logistic growth law. Finally, they analyzed this model in the presence

of a specific anti-cancer agent, where the population of drug-responsive tumor cells is

reduced as a result of the interaction with the drug.
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(Songolo & Ramadhani, 2017) constructed two nonstandard finite difference schemes

and used them to study a mathematical model of cancer therapy. Several recent studies

show various aspects of the immune response against the cancer. Their discrete models

emphasize the role of antibodies in any form of therapy by taking into account the de-

velopment of anticancer therapies (chemotherapy, immunotherapy, radiation therapy).

Nonstandard finite difference models have been implemented by using Matlab. Their

numerical simulations have shown the existence of a separation line between the basins

of attraction of cancerous cell-free and the highest equilibrium cancerous cell.

Multi-mutation and drug resistance have been modeled and analyzed for some case

studies. For instance, Feizabadi (2017) expanded the model of Feizabadi & Witten

(2015). The drug-sensitive tumor cells create a new generation of tumor cells as they

divide. Feizabadi (2017) assumed that the newly born tumor cells can be placed in one

of the following three groups. The first group includes those that are still responsive

to the administered drug, and are known as wild tumor cells, T . The second group is

those tumor cells that are still responsive to the drug, but carry a mutated gene that

causes drug resistance as they interact with the introduced drug. These tumor cells are

placed in the category of mutated tumor cells, TM . The tumor cells in the third group

are those that are not responsive to the drug and intrinsically resist the administered

drug. This group is identified by TR. He assumed that all of these tumor cells grow

under the logistic growth law. Then, he assessed the response of the cell population as

a function of time under different treatment strategies by simulating the model using

Mathematica V7.0. The outcome of his simulations clearly demonstrated that while

some therapeutic strategies can overcome or control the intrinsic drug resistance, they

may not be effective, and are even to some extent damaging, if the administered drug

creates resistance by itself.

Currently, to the best of our knowledge, the research done on this topic have not yet

considered the effects of a simple immune system and of an immune-suppression on
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the dynamic, when the system expresses both intrinsic and drug-induced resistance (ie

multi-mutation and drug resistance). Therefore, in this research thesis we model and

analyze multi-mutation and drug resistance in occurrence of a simple immune system

and of an immune-suppression caused by drug resistant tumor cells.

The next chapter focuses on the construction of a mathematical model which describes

multi-mutation and drug resistance in a case of a simple immune system and of an

immune-suppression caused by drug resistant tumor cells.
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Chapter 3

Model formulation.
3.1 Overview

In this chapter, we shall construct a mathematical model which describes multi-

mutation and drug resistance in a case of a simple immune system and of an immune-

suppression caused by drug resistant tumor cells. This construction is more based on

the three main last works on this topic namely: Kirschner & Panetta (1998); Feiz-

abadi & Witten (2011); Feizabadi (2017). Therefore, We first introduce the model of

Kirschner & Panetta (1998) that describes the dynamics between tumor cells, immune-

effector cells and the concentration of IL-2, the model of Feizabadi & Witten (2011)

that takes into account the effects of a simple immune system and immunodeficiency on

the dynamics of conjointly growing tumor and normal cells and the model of Feizabadi

(2017) that take into account multi-mutation and drug resistance.

3.2 Model of Kirschner and Panetta
Through a mathematical modeling, the dynamics between tumor cells, immune-

effector cells and the concentration of IL-2 have been illustrated by Kirschner & Panetta

(1998). They defined three populations: E, the activated immune-system cells (com-

monly called effector cells) such as cytotoxic T-cells, macrophages, and natural killer

cells that are cytotoxic to the tumor cells; T, the tumor cells and IL, the concentration

of IL-2 in the single tumor-site compartment. Their model describing the interaction

between the effector cells, tumor cells, and the concentration of IL-2 is as follows:
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

dT (t)
dt

= r2(1− bT )T − aET
g2+T ; T (0) = T0

dE(t)
dt

= cT − µ2E + p1EIL

g1+IL
+ s1; E(0) = E0

dIL(t)
dt

= p2ET
g3+T − µ3IL + s2; IL(0) = IL0

(3.2.1)

The first equation describes the rate of change of the tumor cells. This can be described

by the logistic growth function. The loss of tumor cells is represented by an immune-

effector cell interaction at rate a. This rate constant, a represents the strength of the

immune response and is modeled by Michaelis-Menten kinetics to indicate the limited

immune response to the tumor. The second equation describes the rate of change for

the effector-cell population. Effector cells are stimulated to grow based on two terms.

One is a recruitment term (term 1) due to the direct presence of the tumor, where

the parameter c models the antigenicity of the tumor. Antigenicity can be thought of

as a measure of how different the tumor is from ′self′. The other growth/source term

(term 3) is a proliferation term whereby effector cells are stimulated by IL-2 that is

produced by effector cells in both an autocrine and paracrine manner. This term is

of Michaelis-Menten form to indicate the saturated effects of the immune response.

Effector cells have a natural lifespan of an average 1
µ2

days. Lastly, s1 is a treatment

term that represents an external source of effector cells. The third equation gives the

rate of change for the concentration of IL-2. Its source is the effector cells that are

stimulated by interaction with the tumor and also has Michaelis-Menten kinetics to

account for the self-limiting production of IL-2. In the next term µ3IL, µ3 represents

loss/degraded rate of IL-2. Finally, s2 is a treatment term that represents an external

input of IL-2 into the system.

14



3.3 Model of Feizabadi and Witten
During their growth, normal and tumor cells interact with one another. This in-

teraction has been biologically detected and was initially modeled by Witten (1986).

Feizabadi & Witten (2011) added in this model the concept of the interaction of the im-

mune system established by Kirschner & Panetta (1998) and both immune-suppression

factors and immuno-chemotherapeutic agents as well. They considered that the viruses

are the basis of the immunodeficiency. Therefore, their model is as given below:



dT (t)
dt

= rTT
(

1− T
KT

)
− β

(
ρ0N
ρ1+N

)
− aET

g2+T − aT (1− e−ξMC)T ; T (0) = T0

dN(t)
dt

= rNN
(

1− N
KN

)
+ kT

(
1− T

T ∗

)
− aN(1− e−ξMC)N ; N(0) = N0

dE(t)
dt

= cT − µ2E + p1EI
g1+I − αV E − aE(1− e−ξMC)E + aEE(1− e−ξMi)E; E(0) = E0

dI(t)
dt

= p2ET
g3+T − µ3I; I(0) = I0

dV (t)
dt

= ηV
b+V − γV E − µ1V ; V (0) = V0

(3.3.1)

In the two first equation, the second term represent the interation between tumor

cells T (t) and normal cells N(t). Also tumor and normal cells growth under logistic law.

E(t) represents the effector cells. I(t) is the concentration of IL-2, which is the main

cytokine responsible for T-cells activation, growth and differentiation at the tumor

site. The loss of tumor cells, due to the immune-effector cells can be characterized

with a Michaelis-Menten interaction term, aET
g2+T . Here, a is the rate of clearance of

tumor cells as a result of these two populations and g2 is the half-saturation for cancer

clearance. Also, the activation happens because of the presence of IL-2 hormones

and is given by the term p1EI
g1+I . This is also a Michaelis-Menten term. Here p1 is the

proliferation rate of immune cells and g1 is the half-saturation for the proliferation

term. To express the natural death of effector cells, the term −µ2E is added. In this

term µ2 is the death rate of the immune cells. The change in concentration of IL-2 is
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expressed as: p2ET
g3+T which is the activation due to the presence of the tumor. In this

term, p2 is the production rate of the effector molecules and g3 is the half-saturation

of production. Finally, −µ3I, is the natural loss of IL-2 by the rate of µ3. The viruses

can infect the activated immune cells. As a result of this infection, the population

of activated cells decreases and this leads to a weakened immune system. In such

a case, the treatment can consist of immune boosting drugs such as Interleu-kin−2

(IL-2) (Kovacs et al., 1996). Kirschner & Webb (1998) mathematically characterized

the general interaction of the Human Immunodeficiency Virus and activated immune

cells. The presence of immune suppression factors reduces the efficiency of the immune

system in battling tumor cells. These same mathematical terms are, thus, added to

the model to explain a simple possible immune deficiency. Similar to the approach

of Kirschner & Webb (1998), the production source of virus, V (t), is expressed as
ηV
b+V where η is the production rate and b is the saturated term. −µ1V expresses

the natural death of viruses at rate of µ1. The interaction between effector cells and

viruses can reduce the size of both populations with different rates. This is expressed

as: −αV E and −γV E to illustrate the interaction between virus and effector cells.

As a result of this interaction, the immune effector cells decrease the population of

viruses at rate α. Additionally, viruses infect some of the effector cells and, therefore,

the population of uninfected effector cells decreases at the rate γ. As suggested by

Gardner (2000) and used in other studies (De Pillis & Radunskaya, 2003; de Pillis

et al., 2006), the drug interaction may be structured as aφ(1 − e−ξMC)φ where φ is

the cell population number. The parameter C is the concentration or amount of the

drug at the tumor site at a specific time with the unit (mg.m−2). ξM is associated to

the drug pharmacokinetics and known as the drug efficiency coefficient with the unit

of (m2.mg−1). ξM is considered to be 1. The coefficient aφ when φ = E,N, T with

the unit of (time−1) expresses the rate of chemotherapy-induced death. The function

F (C) = aφ(1 − e−ξMC) is the fraction cell killed for a given amount (concentration)

of drug ′′C ′′. Additionally, the immunotherapeutic agent is described by the term

aEE(1− e−ξMi) and it acts as an immune-boosting agent. aEE is the boosting rate and
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i is the concentration of immunotherapy drug.

3.4 Feizabadi′s Model for multi-mutation and drug

resistance
Different genetic alterations occur when the tumor cells divide. Feizabadi (2017)

assumed that the newly born tumor cells can be placed in one of the following three

groups. The first group includes those that are still responsive to the administered

drug, and are known as wild tumor cells, T . The second group is those tumor cells

that are still responsive to the drug, but carry a mutated gene that causes drug resis-

tance as they interact with the introduced drug. These tumor cells are placed in the

category of mutated tumor cells, TM . The third group of tumor cells is those that are

not responsive to the drug and intrinsically resist the administered drug. This group

is identified by TR. He assumed that all of these tumor cells grow under the logistic

law and the control of normal cells over the growth of tumor cells is negligible as it is

large tumor cells that mainly express resistance to the treatment. But the population

of the normal cells is controlled by the tumor cell population. The schematic view and

model taking into account these multi-mutation and drug resistance are:

17



Fig. 3.1: The schematic view of the system interactions.
The system includes 4 types of cells: normal cells (N) , wild tumor cells (T ), mutated
tumor cells (TM) , and drug resistant tumor cells (TR). The population of normal,
wild tumor and mutated tumor cells decreases as they interact with the drug. As the
wild tumor cells divide, they can create mutated tumor cells or resistant tumor cells.
As the mutated tumor cells interact with the drug, they can partially die and partially
be transformed to resistant cells induced by the utilized anti-cancer drug.



dT (t)
dt

= rTT
(

1− T+TR+TM

KT

)
− τ1T (t)− τ2T (t)− aT (1− e−MC)T ;

dTR(t)
dt

= rRTR

(
1− T+TR+TM

KR

)
+ τ1T (t) + τM→R(1− e−MC)TM ;

dTM (t)
dt

= rMTM

(
1− T+TR+TM

KM

)
+ τ2T (t)− aTM

(1− e−MC)TM − τM→R(1− e−MC)TM ;

dN(t)
dt

= rNN
(

1− N
KN

)
+ k(T + TR + TM)

(
1− T+TR+TM

T ∗

)
− aN(1− e−MC)N ;

T (0) = T0;TR(0) = TR0 ;TM(0) = TM0 ;N(0) = N0;

(3.4.1)

where N(t), T (t), TM(t) and TR(t) are respectively the total number of normal cells,

drug responsive tumor cells, mutated tumor cells and drug-resistant tumor cells with

the unit of cells. KN , KT , KM and KR are the carrying capacity of normal cells and

three types of tumor cells with the unit of cells. The per capita growth rate for the drug-

responsive tumor cells, mutated tumor cells, drug-resistant tumor cells, and normal cells
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are expressed by rT , rM , rR, rN with the unit of (time−1). The T ∗ is the critical size of

the collection of tumor cells with the unit of cells. The second term in the last equation

represents the interaction between tumor and normal cells. In this term k with the

units of (time−1) represents the tumor-normal cell interaction rate. The term τ1T (t)

in the two first equations expresses the transition from wild tumor cells (responsive

tumor cells) to intrinsically resistant tumor cells with a mutation rate of τ1(time−1).

The term τ2T (t) in the first and the third equations represents the transition from

wild tumor cells to mutated tumor cells with a mutation rate of τ2(time−1). Also,

the toxic effect of the administered drug, which leads to the reduction in populations

of cells, has been expressed by aT (1 − e−MC)T on wild tumor cells where aT is the

death rate induced by the administered chemotherapeutic drug. The interaction of the

drug with the mutated tumor cells partially kills them and partially turns them into

drug-resistant tumor cells. The toxic effect of the drug which leads to the reduction

of the population of mutated tumor cells has been expressed as aTM
(1 − e−MC)TM ,

where aTM
is the killing rate of mutated tumor cells induced by the drug. The term

that expresses the conversion from mutated tumor cells to drug-resistant tumor cells

in the second and the third equations has been expressed by τM→R(1 − e−MC)TM . In

this term τM→R with the unit of (time−1) expresses the conversion rate from mutated

tumor cells to resistant tumor cells due to the interaction with the drug.

3.5 The proposed ODE Model

Assumptions
• Two variables are considered to be the main immune system components: the

activated immune-system cells (effector cells), denoted by E and the concentration of

IL-2, denoted by I.

• The immune system can not distinguish between the responsive and the resistance

tumor cells, so it acts on all the tumor cells.

• The resistant tumor cells are not affected by the action of the effector cells. That

is the effector cells affect only the drug-sensitive tumor cells and the mutated tumor
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cells, but not the resistant tumor cells.

• The immune-suppression factors are the resistant tumor cells.

• All type of tumor cells grow under the logistic growth law.

In this section, we add the concept of the interaction of the immune system estab-

lished by Kirschner & Panetta (1998) and of the immune-suppression established by

Feizabadi & Witten (2011) to the model of Feizabadi (2017). As considered in Kirschner

& Panetta (1998) model, two variables are considered to be the main immune system

components: the activated immune-system cells (effector cells) including T-cells and

the immune cells that are cytotoxic to tumor cells, denoted by E; and the concentra-

tion of IL-2, which is the main cytokine responsible for T-cells activation, growth and

differentiation at the tumor site. This variable is denoted by I. While in Feizabadi &

Witten (2011) the immune-suppression factors was the viruses, in this study we assume

that the immune system cannot distinguish between the responsive and the resistance

tumor cells, so it acts on all the tumor cells. However the resistant tumor cells are

not affected by the action of the effector cells. That is the effector cells affect only

the wild tumor cells and the mutated tumor cells, but not the resistant tumor cells.

So the immune-suppression factors are assumed to be the resistant tumor cells. These

resistant tumor cells infect the activated immune cells. As a result of this infection,

the population of activated immune cells decrease and this leads to a weakened im-

mune system. In such a case, the treatment will consist of immune boosting drugs

(immunotherapy). Indeed, many approaches can be implemented to control cancer

progression, among them chemotherapy, immunotherapy or some combination of both.

The enhancement of the immune system by immunotherapeutic agents that directly

boost the number of effector cells has a key role in the reduction of the number of tu-

mor cells. Chemotherapeutic agents can kill the tumor population in a dose-dependent

manner (De Pillis & Radunskaya, 2003; Pazdur, 2004). Chemotherapeutic agents are

cytotoxic not only to responsive tumor cells, but also to normal and activated-effector

cells as well (Feizabadi & Witten, 2011). All of the tumor cells are assumed to grow
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under the logistic law. The schematic view of the system describing the interations

between the immune system cells (E) and (I), wild tumor cells (T ), mutated tumor

cells (TM), drug resistant tumor cells (TR) and normal cells (N) is expressed in Fig.

3.2.

Fig. 3.2: The schematic view of the new (Proposed) system interactions.
The system includes 5 types of cells: normal cells (N), wild tumor cells (T ), mutated
tumor cells (TM), drug resistant tumor cells (TR), and effector cells (E). (I) represents
the concentration of IL-2. The population of normal, wild tumor, mutated tumor
and effector cells decreases as they interact with the chemotherapy drug. As the
wild tumor cells divide, they can create mutated tumor cells and/or resistant tumor
cells. As the mutated tumor cells interact with the chemotherapy drug, they can
partially die and partially be transformed to resistant cells induced by the utilized
anti-cancer drug. The population of effector cells decreases as they interact with the
Resistant tumor cells. This leads to a weakened immune system and in such a case,
the treatment consists of immune boosting drugs (immunotherapy). The population
of wild tumor, mutated tumor cells decreases as they interact with the effector cells.
The effector cells are activated as they interact with the IL-2. Also IL-2 are activated
as the effector cells interact with the tumor cells. Naturally, some of immune system
cells die.
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The dymanic of the system (proposed ODE model) can be expressed as follow:



dT (t)
dt = rTT

(
1− T+TR+TM

KT

)
− (τ1 + τ2)T − a1ET

g2+T − aT (1− e−MC)T ;

dTR(t)
dt = rRTR

(
1− T+TR+TM

KR

)
+ τ1T + τM→R(1− e−MC)TM ;

dTM (t)
dt = rMTM

(
1− T+TR+TM

KM

)
+ τ2T − a2ETM

g4+TM
− aTM

(1− e−MC)TM − τM→R(1− e−MC)TM ;

dN(t)
dt = rNN

(
1− N

KN

)
+ k(T + TR + TM )

(
1− T+TR+TM

T ∗

)
− aN (1− e−MC)N ;

dE(t)
dt = c(T + TR + TM )− µ2E + p1EI

g1+I − αETR − aE(1− e−MC)E + aEE(1− e−Mi)E;

dI(t)
dt = p2E(T+TR+TM )

g3+(T+TR+TM ) − µ3I;

T (0) = T0, TR(0) = TR0 , TM (0) = TM0 , N(0) = N0, E(0) = E0, I(0) = I0.

(3.5.1)

where N(t), T (t), TM(t) and TR(t) are respectively at a time t the total number of

normal cells, wild tumor cells, mutated tumor cells and drug-resistant tumor cells with

the unit of cells. All of these tumor cells are assumed to grow under the logistic law.

Also, KN , KT , KM and KR are the carrying capacity of normal cells and the three types

of tumor cells with the unit of cells. The per capita growth rate for the drug-responsive

tumor cells, mutated tumor cells, drug-resistant tumor cells, and normal cells are ex-

pressed by rT , rM , rR, rN with the unit of (time−1). The T ∗ is the critical size of the

collection of tumor cells with the unit of cells. The second term in the fourth equation

represents the interaction between tumor and normal cells. This interaction is chosen

as a logistic growth function (Feizabadi & Witten, 2010). In this term k with the units
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of (time−1) represent the tumor-normal cell interaction rate. The term τ1T in the first

two equations expresses the transition from wild tumor cells (responsive tumor cells)

to intrinsically resistant tumor cells with a mutation rate of τ1(time−1). The term τ2T

in the first and the third equations represents the transition from wild tumor cells to

mutated tumor cells with a mutation rate of τ2(time−1). The effector cells are stimu-

lated to grow based on two terms: One is a recruitment term c(T + TR + TM) due to

the direct presence of the tumor, where the parameter c models the antigenicity of the

tumor. Antigenicity can be thought of as a measure of how different the tumor is from

’self’. The second is due to the presence of IL-2 hormones and is given by the term
p1EI
g1+I (Kirschner & Panetta, 1998). This is of Michaelis-Menten form to indicate the

saturated effects of immune reponse. p1 is the proliferation rate of immune cells and g1

is the half-saturation for the proliferation term. To express the natural death of effector

cells, the term −µ2E is added. In this term µ2 is the death rate of the immune cells.

The change in concentration of IL-2 is expressed as: p2E(T+TR+TM )
g3+(T+TR+TM ) , which is the acti-

vation due to the presence of the tumor. In this term, p2 is the production rate of the

effector molecules and g3 is the half-saturation of production. −µ3I, is the natural loss

of IL-2 by the rate of µ3. The infection of the effector cells by the resistant tumor cells

reduce the size of the populations of the effector cells. This is expressed as: −αETR

with α the infection rate. The loss of tumor cells, due to the immune-effector cells can

be characterized with the Michaelis-Menten interaction terms: a1ET
g2+T on wild tumor cells

(Feizabadi & Witten, 2011) and a2ETM

g4+TM
on mutated tumor cells . Here, ‘a1’ is the rate

of clearance of wild tumor cells as a result of these two populations and g2 is the half-

saturation for wild tumor cells clearance. ‘a2’ is the rate of clearance of mutated tumor

cells as a result of these two populations and g4 is the half-saturation for mutated tumor

cells clearance. The drug interaction may be structured as aφ(1 − e−MC)φ (Gardner,

2000) where φ is the cell population number. The parameter C is the concentration or

amount of the drug at the tumor site at a specific time with the unit (mg.m−2). M is

associated to the drug pharmacokinetics and known as the drug efficiency coefficient

with the unit of (m2.mg−1). The coefficient aφ when φ = N, T, TM and E with the unit
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of (time−1) expresses the death rate induced by the administered chemotherapeutic

drug. The function F (C) = aφ(1− e−MC) is the fraction cell killed for a given amount

(concentration) of drug ”C”. Thus the toxic effect of the administered drug, which

leads to the reduction in populations of cells, has been expressed by aT (1 − e−MC)T

on wild tumor cells, by aN(1 − e−MC)N on normal cells and by aE(1 − e−MC)E on

effector cells. The interaction of the drug with the mutated tumor cells partially kills

them and partially turns them into drug-resistant tumor cells. The toxic effect of the

drug on the mutated tumor cells has been expressed as aTM
(1− e−MC)TM . The term

that expresses the conversion of mutated tumor cells to drug-resistant tumor cells has

been expressed by τM→R(1 − e−MC)TM . In this term τM→R with the unit of (time−1)

expresses the conversion rate from mutated tumor cells to resistant tumor cells due to

interaction with the drug. Additionally, the immunotherapeutic agent is described by

the term aEE(1− e−Mi)E and it acts as an immune-boosting agent.
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Chapter 4

Analysis of the

tumor-immunotherapy model
4.1 Introduction and preliminaries on differential

systems
In this chapter, a mathematical analysis of the tumor-immunotherapy model is

done to identify under which conditions tumor can be eliminated. First, the existence,

the uniqueness and the boundedness of solutions are shown. Then, we study the local

stability of non-tumor states. There are no generally applicable method for finding

suitable Lyapunov functions. However, the failure of identifying a suitable Lyapunov

function candidate to satisfy the conditions for global stability does not mean that the

equilibrium is not globally stable. Thus, we prove the global stability of non tumor

states by constructing a nonstandard finite difference scheme of the tumor immunother-

apy ODE model.

4.1.1 The Existence and uniqueness theorem
Definition 4.1: (Hirsch et al., 2012)

A function F : Rn 7−→ Rn is said to be continuously differentiable at a ∈ Rn, if all

the partial dervatives of F exist and are continuous on a neighborhood of a. If F is

continuously differentiable at each point of its domain, then we say simply that 8 F is

continuously differentiable ′ (or is of class 8 C1 ′ for short).

• All the polynomial functions are of class C1 in their domain.
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• If f1 and f2 are of class C1 in U and ∀a ∈ U ; f2(a) 6= 0, then f1

f2
is of class C1 in U

Theorem 4.1: (Hirsch et al., 2012)

Consider the initial value problem dX
dt

= F (X);X(t0) = X0 where X0 ∈ Rn. Suppose

that F : Rn 7−→ Rn is of class C1. Then, first of all, there exists a solution of this

initial value problem and, secondly, this is the only such solution. More precisely, there

exists an η > 0 and an unique solution X : (t0 − η; t0 + η) 7−→ Rn of this differential

equation satisfying the initial condition X(t0) = X0.

4.1.2 Local Stability
A system may contain many equilibrium points or states and each of these equi-

librium points or states could be locally stable. By local stability we mean that if

we pertub the initial condition slightly, the system stays in the neighborhood of that

equilibrium point.

To determine the local stability of the equilibrium point, we find the eigenvalues of the

associated system (Campbell & Haberman, 2011).

The equilibrium point is

• Hyperbolic if none of the eigenvalues have zero real part.

• Stable if all eigenvalues have negative real part.

• Unstable if at least one eigenvalue has a positive real part.

• Saddle(unstable) if at least one eigenvalue has negative real part and one pos-

itive real part.

The stability of the equilibrium points of a system can be analyzed by

1. Nature of eigenvalues:

For a linear system, we find the eigenvalues of the system and establish sta-

bility based on the nature of the eigenvalues as explained above.

For nonlinear system, we first have to linearize the system by a process called
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linearization. This process use the Jacobian of the system. Then by the nature

of the eigenvalues of the linearized system we establish the stability of each equi-

librium point as explained above. The anticipation is that the behavior of the

resulting linearized system is a good approximation and representation of the

behavior of the original nonlinear system.

2. Phase portrait/Phase diagram: A phase portrait is a two dimensional repre-

sentation of the solution of a system of differential equations. The solution to the

differential equation is called its trajectories. The trajectories shows the behavior

of the solution near equilibrium points.

4.1.3 Nonstandard Finite difference Schemes
Introduced by Mickens around 1980, the nonstandard finite difference schemes are

powerful numerical methods that preserve significant properties of differential equa-

tions (Dimitrov & Kojouharov, 2007). At the beginning, the general rules for such

schemes are not precisely known (Mickens, 2000). However, Mickens proposed some

rules for constructing nonstandard finite difference schemes for differential equations

(Mickens, 2002). Used by many mathematicians such as Anguelov et al. (2011); Dim-

itrov & Kojouharov (2007); Gabbriellini (2012); Garba et al. (2011) and Songolo &

Ramadhani (2017), nonstandard finite difference (NSFD) schemes have also a poten-

tial to preserve qualitative properties of the original system they approximate and to

avoid ghost solutions (Mickens, 1994, 2005, 2007a,b; Mickens & Washington, 2012;

Songolo & Ramadhani, 2017). These qualitative properties are not always preserved

by the ordinary standard finite difference schemes (Yaghoubi & Najafi, 2015). This is

why nonstandard finite difference schemes are appropriate and used for the stability of

the differential systems they approximate.

A numerical scheme with a step size ∆t, that approximates the solution X(tk) of an

autonomous system dX

dt
= F (X); X(t0) = X0 where F is of class C1 can be written in

the form:
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D∆t(Xk) = F∆t(Xk) (4.1.1)

whereD∆t(Xk) '
dX(tk)
dt

; Xk ' X(tk); F∆t(Xk) ' F (Xk) and tk ' t0+k∆t (see,(Dimitrov

& Kojouharov, 2007)).

Definition 4.2(Dimitrov & Kojouharov, 2007): The scheme (4.1.1) is called a non-

standard finite difference scheme if at least one of the following conditions is satisfied:

1. D∆t(Xk) = Xk+1 − ψXk

ϕ(∆t) where ψ and ϕ are non negative functions de-

pending on the step-size ∆t and other parameters occurring in the dif-

ferential equation, and, in addition, satisfies the conditions: ψ(∆t) =

1 +O(∆t) and ϕ(∆t) = ∆t+O(∆t2).

2. F∆t(Xk) = g(Xk, Xk+1,∆t) where g is a nonlocal approximation of the

right-hand side of the system of the differential equation.

Definition 4.3(Dimitrov & Kojouharov, 2007): The nonstandard finite difference

scheme is called elementary stable, if, for any value of the step size, its only fixed points

are those of the original differential system, the linear stability properties of each fixed

points being the same for both the differential system and the discrete scheme.

Remark 4.1 (Mickens, 2002): The functions ψ and ϕ vary from one equation to

another and no clear a priori set of guidelines exist for determining them. How-

ever, In most applications, ψ is usually selected to be 1; and ϕ (called the “denom-

inator function”) is determined in our case as follows: ϕ(∆t) = 1− e−R∗∆t

R∗
where

R∗ = max{|Ri|i=1;2....} with Ri = ∂f

∂xi

∣∣∣∣∣
X=0

and 0 < ϕ(∆t) < 1
R∗

Note also that nonstandard finite difference (NSFD) scheme are topologically equiva-

lent to their original system that they approximate (for more details, see: (Anguelov

et al., 2011)).

Now, we present the rules for the construction of NSFD schemes as proposed by Mick-

ens (2002).
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Rule 1: The order of the discrete derivatives must be equal to the order

of the corresponding derivatives of the differential equations.

Rule 2: Denominator functions for the discrete derivatives must, in gen-

eral, be expressed in terms of more complicated functions of the step-sizes

than those conventionally used.

Rule 3: Nonlinear terms should, in general, be modeled nonlocally. How-

ever, sometimes more general forms may be required, such as: u2 = 2u2 −

u2 → 2u2
k − uk+1uk Rule 4: Special conditions that hold for the solutions

of the differential equations should also hold for the solutions of the finite

difference scheme.

Rule 5: The finite difference equations should not have solutions that dont

correspond exactly to solutions of the differential equations.

Definition 4.4(Mickens, 2002): A nonstandard finite difference scheme is any discrete

representation of a system of differential equations that is constructed according to the

above rules.

4.2 Mathematical analysis of tumor-immunotherapy

model
Taking the ODE model (3.5.1) without its fourth equation and without all the

chemotherapy terms as well as the third term of its second equation, we obtain the

corresponding tumor-immunotherapy model of as follows:
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

dT (t)
dt

= rTT
(

1− T+TR+TM

KT

)
− (τ1 + τ2)T − a1ET

g2+T ; T (0) = T0

dTR(t)
dt

= rRTR

(
1− T+TR+TM

KR

)
+ τ1T ; TR(0) = TR0

dTM (t)
dt

= rMTM

(
1− T+TR+TM

KM

)
+ τ2T − a2ETM

g4+TM
; TM(0) = TM0

dE(t)
dt

= c(T + TR + TM)− µ2E + p1EI
g1+I − αETR + aEE(1− e−Mi)E; E(0) = E0

dI(t)
dt

= p2E(T+TR+TM )
g3+(T+TR+TM ) − µ3I; I(0) = I0

(4.2.1)

4.2.1 Existence and uniqueness of solutions

A solution of (4.2.1) is a function X : t ∈ J ⊂ R 7−→ X(t) =



T (t)

TR(t)

TM(t)

E(t)

I(t)


∈ R5

Let F : X ∈ R5 7−→ F (X) ∈ R5 with

F (X) =



rTT
(

1− T+TR+TM

KT

)
− (τ1 + τ2)T − a1ET

g2+T

rRTR

(
1− T+TR+TM

KR

)
+ τ1T

rMTM

(
1− T+TR+TM

KM

)
+ τ2T − a2ETM

g4+TM

c(T + TR + TM)− µ2E + p1EI
g1+I − αETR + aEE(1− e−Mi)E

p2E(T+TR+TM )
g3+(T+TR+TM ) − µ3I

The system (4.2.1) becomes dX
dt

= F (X);X(0) = X0 =
(
T0;TR0 ;TM0 ;E0; I0

)T
.
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From the definition 4.1 and the theorem 4.1, F is of class C1 in its domain. Then,

first of all, there exists a solution of this initial value problem and ,secondly, this is the

only such solution. More precisely, there exists a unique solution of this differential

equation satisfying the initial condition X(0) = X0.

4.2.2 Positivity and boundedness of solutions
Let T0;TR0 ;TM0 ;E0 and I0 be non negative. Since T (t);TR(t);TM(t);E(t) and I(t)

are respectively the number of cells and the concentration of IL-2 at time t, then,

T (t);TR(t);

TM(t);E(t) and I(t) must be non negative for all t > 0.

Lemma 4.1: If T0;TR0 ;TM0 ;E0 and I0 are non negative, then, T (t);TR(t);TM(t);E(t)

and I(t) are non negative for all t > 0.

Proof of Lemma 4.1: Suppose that T0;TR0 ;TM0 ;E0 and I0 are non negative.

Let us consider the first equation of the system (4.2.1). We have:

dT (t)
dt

= rTT
(

1− T + TR + TM
KT

)
− (τ1 + τ2)T − a1ET

g2 + T

> −
(
τ1 + τ2 + a1E

g2 + T

)
T

> λ1T where λ1 = −
(
τ1 + τ2 + a1E

g2 + T

)

Up on integrating the inequality we obtain analytic solution as T (t) > T0e
∫
λ1dt for

any t > 0. Since T0 > 0, and the exponential function always positive, it is clear that

T (t) > 0 for any t > 0.
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Considering the second equation of the system (4.2.1),

dTR(t)
dt

= rRTR

(
1− T + TR + TM

KR

)
+ τ1T

> rRTR

(
1− T + TR + TM

KR

)
> λ2TR where λ2 = rR

(
1− T + TR + TM

KR

)

It follows that: ∀t > 0, TR(t) > TR0e
∫
λ2dt. Then, TR(t) > 0 for any t > 0

Similarly, we obtain from the last three equations of the system (4.2.1) the following:

∀t > 0, TM(t) > TM0e
∫
λ3dt where λ3 = −a2E

g4 + TM
∀t > 0, E(t) > E0e

∫
λ4dt where λ4 = −(µ2 + αTR)

∀t > 0, I(t) > I0e
−µ3t

Therefore, the solutions of the system (4.2.1) with non negative initial conditions re-

main non negative for all t > 0.

Lemma 4.2: Let K = max{KT ;KR;KM} and r = max{rT ; rR; rM}. All feasible

solutions of the system (4.2.1) are bounded and enter the region:

Ω =
{(
T ;TR;TM ;E; I

)
∈ R5

+ : E 6 3K;T+TR+TM+E+I 6 3K(r+c+2µ3+p1+p2+aEE−µ2)
µ3

}
Proof of Lemma 4.2: Let P (t) = T (t)+TR(t)+TM(t)+E(t)+I(t), K = max{KT ;KR;KM},

r = max{rT ; rR; rM} and
(
T (t);TR(t);TM(t);E(t); I(t)

)
∈ R5

+ be any solution with

positive initial condition.

• Taking the fourth equation of the model (4.2.1), we have:
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dE(t)
dt

= c(T + TR + TM)− µ2E + p1EI

g1 + I
− αETR

+aEE(1− e−Mi)E

6 c(KT +KR +KM) + p1E + aEEE

6 3cK + (p1 + aEE)E

6 3K + (p1 + aEE)E, since (0 < c < 1)

Integrating and applying the initial condition E(0) = E0, E(t) 6 3K − (3K −

E0)e(p1+aEE)t.

Since 3K − E0 > 0, E(t) 6 3K.

• Adding the five equations of the model (4.2.1), we have:

dP (t)
dt

= rTT
(

1− T + TR + TM
KT

)
+ rRTR

(
1− T + TR + TM

KR

)
+rMTM

(
1− T + TR + TM

KM

)
+ c(T + TR + TM) + p1EI

g1 + I
+ p2E(T + TR + TM)
g3 + (T + TR + TM)

+aEE(1− e−Mi)E −
(
a1ET

g2 + T
+ a2ETM
g4 + TM

+ µ2E + αETR + µ3I
)

6 rTT + rRTR + rMTM + c(T + TR + TM) + p1E + p2E + aEEE − (µ2E + µ3I)

= (r + c+ µ3)(T + TR + TM) + (p1 + p2 + aEE − µ2 + µ3)E − µ3P

6 3K(r + c+ 2µ3 + p1 + p2 + aEE − µ2)− µ3P (t)

It follows that

0 < P (t) 6 3K(r+c+2µ3+p1+p2+aEE−µ2)
µ3

+
(
P (0)− 3K(r+c+2µ3+p1+p2+aEE−µ2)

µ3

)
e−µ3t, where

P (0) reprensents initial value of the total population.

Thus 0 < P (t) 6 3K(r+c+2µ3+p1+p2+aEE−µ2)
µ3

as t −→∞.

Therefore all feasible solutions of system (4.2.1) enter the region
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Ω =
{(
T ;TR;TM ;E; I

)
∈ R5

+ : E 6 2K;T+TR+TM+E+I 6 3K(r+c+2µ3+p1+p2+aEE−µ2)
µ3

}
.

ie any trajectory of the system (4.2.1) starting from an initial state in Ω remains in

Ω. Also, existence, uniqueness and continuation results for system (4.2.1) hold in this

region.

�

4.3 Stability analysis of non-tumor states
aEE(1− e−Mi)E is a treatment term (immunotherapy) that represents an external

source of effector cells. For the stability analysis, assuming that the immunotherapy

drug is constant, we set aEE(1 − e−Mi)E = β with β a parameter. We present the

stability analysis of non-tumor states for two cases: no immunotherapy case (β =

0) and immunotherapy case (β > 0). The non-tumor state is the state where all

the populations of tumor cells are zero. Our aim here is to determine under which

conditions tumor can be eliminated for each type of mutation.

4.3.1 No immunotherapy case (β = 0)
• For this case, we have the trivial non-tumor states where all the populations are

zero. Evaluating the Jacobian matrix of (4.2.1) at the trivial non-tumor state

defined by S0 = (T ∗0 ;T ∗R0 ;T ∗M0 ;E∗0 ; I∗0 ) = (0; 0; 0; 0; 0) when the system expresses

both intrinsic resistance and drug induced resistance, we have:

JS0 =



rT − τ1 − τ2 0 0 0 0

τ1 rR 0 0 0

τ2 0 rM 0 0

c c c −µ2 0

0 0 0 0 −µ3


JS0 is a triangular matrix. So its eigenvalues are: rT − τ1− τ2; rR; rM ; −µ2; −µ3.

At least one eigenvalue has negative real part and one positive real part. There-

fore, S0 is always a unstable saddle point.

• We have the same result when the system expresses only intrinsic resistance
(
ie

presence of wild tumor cells (T ) and drug resistant tumor cells (TR)
)
; when
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the system expresses only drug induced resistance
(
i.e. presence of wild tumor

cells (T ) and mutated tumor cells (TM)
)

and when the system expresses neither

intrinsic nor drug induced resistance
(
ie presence of wild tumor cells (T ) only

)
.

4.3.2 Immunotherapy case (β > 0)

For the immunotherapy case (β > 0), we have the non-tumor states, where E] = β

µ2

and I] = 0. This implies that the tumor can be eliminated by effector cells if these

equilibrium points are stable.

The system expresses both intrinsic and drug-induced resistance

The Jacobian matrix of (4.2.1) evaluated at the state denoted by SE]
R;M

= (0; 0; 0;E]; 0)

when the system expresses both intrinsic and drug induced resistance is:

JS
E

]
R;M

=



rT − τ1 − τ2 −
βa1

µ2g2
0 0 0 0

τ1 rR 0 0 0

τ2 0 rM −
βa2

µ2g4
0 0

c
cµ2 − αβ

µ2
c −µ2

βp1

µ2g1
βp2

µ2g3

βp2

µ2g3

βp2

µ2g3
0 −µ3


The eigenvalues of JS

E
]
R;M

are: rT − τ1− τ2−
βa1

µ2g2
; rR; rM −

βa2

µ2g4
; −µ2; −µ3. From

analyzing the eigenvalues, at least one has negative real part and one positive real part.

Thus the state SE]
R;M

is unstable saddle. This implies that the immunotherapy drug

can not eliminate all the tumor cells when the system expresses both intrinsic and

drug-induced resistance
(
i.e. presence of wild tumor cells (T ), drug resistant tumor

cells (TR), and mutated tumor cells (TM)
)
.

The system expresses only intrinsic resistance

The immunotherapy drug can not also eliminate all the tumor cells in the case

where the system expresses only intrinsic resistance
(
i.e. Presence of wild tumor cells

(T ) and drug resistant tumor cells (TR)
)
.

Indeed, the eigenvalues of the Jacobian matrix evaluated at the non-tumor state de-

noted by SE]
R

= (0; 0;E]; 0) when the system expresses only intrinsic resistance are:
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rT − τ1 −
βa1

µ2g2
; rR;−µ2;−µ3. Thus the state SE]

R
is unstable saddle

The system expresses only drug-induced resistance

When the system expresses only drug-induced resistance (ie Presence of wild tu-

mor cells (T ) and mutated tumor cells (TM)
)
, the eigenvalues of the Jacobian ma-

trix evaluated at the non-tumor state denoted by SE]
M

= (0; 0;E]; 0) are: rT − τ2 −
βa1

µ2g2
; rM−

βa2

µ2g4
; −µ2; −µ3. From analyzing, this state is locally asymptotically stable

(that is the immunotherapy drug can eliminate all tumor cells) if β >
µ2g2(rT − τ2)

a1

and β >
rMµ2g4

a2
. If one of those conditions is not satisfied, SE]

M
is unstable.

Theorem 4.2: When the system expresses only drug-induced resistance, the non-

tumor state SE]
M

is globally asymptotically stable if β >
µ2g2(rT − τ2)

a1
and β >

rMµ2g4

a2
.

Proof of Theorem 4.2:

The proof is done by induction by constructing a Nonstandard Finite Difference (NSFD)

scheme of the tumor-immunotherapy model.

When the system expresses only drug-induced resistance, we have the following model:



dT (t)
dt

= rTT
(

1− T+TM

KT

)
− τ2T − a1ET

g2+T ;

dTM (t)
dt

= rMTM

(
1− T+TM

KM

)
+ τ2T − a2ETM

g4+TM
;

dE(t)
dt

= c(T + TM)− µ2E + p1EI
g1+I + β;

dI(t)
dt

= p2E(T+TM )
g3+(T+TM ) − µ3I;

T (0) = T0, TM(0) = TM0 , E(0) = E0, I(0) = I0.

(4.3.1)
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Based on the definition of NSFD scheme and rules for its construction, the NSFD

scheme of (4.3.1) is given by:



Tn+1−Tn

ϕ1(∆t) = rTT
n+1

(
1− Tn+Tn

M

KT

)
− τ2T

n+1 − a1EnTn+1

g2+Tn ; ϕ1(∆t) = 1− e−(rT−τ2)∆t

rT − τ2

Tn+1
M −Tn

M

ϕ2(∆t) = rMT
n+1
M

(
1− Tn+Tn

M

KM

)
+ τ2T

n+1 − a2EnTn+1
M

g4+Tn
M

; ϕ2(∆t) = 1− e−rM ∆t

rM

En+1−En

ϕ3(∆t) = c(T n + T nM)− µ2E
n+1 + p1EnIn

g1+In + β; ϕ3(∆t) = 1− e−c∆t
c

In+1−In

ϕ4(∆t) = p2En(Tn+Tn
M )

g3+(Tn+Tn
M ) − µ3I

n+1; ϕ4(∆t) = 1− e−µ3∆t

µ3

(4.3.2)

In explicit form, we have:

37





T n+1 = T n

1 + (τ2 − rT )ϕ1(∆t) + rT

(
T n + T nM
KT

)
ϕ1(∆t) + a1E

nϕ1(∆t)
g2 + T n

; ϕ1(∆t) = 1− e−(rT−τ2)∆t

rT − τ2

T n+1
M = T nM + τ2T

n+1ϕ2(∆t)

1 + rM

(
T n + T nM
KM

)
ϕ2(∆t) + a2E

nϕ2(∆t)
g4 + T n

− rMϕ2(∆t)
; ϕ2(∆t) = 1− e−rM ∆t

rM

En+1 =
c(T n + T nM)ϕ3(∆t) + p1E

nInϕ3(∆t)
g1 + In

+ βϕ3(∆t) + En

1 + µ2ϕ3(∆t) ; ϕ3(∆t) = 1− e−c∆t
c

In+1 =
p2En(Tn+Tn

M )
g3+(Tn+Tn

M ) ϕ4(∆t) + In

1 + µ3ϕ4(∆t) ; ϕ4(∆t) = 1− e−µ3∆t

µ3

(4.3.3)

With given initial conditions T (0) = T0, TM(0) = TM0 , E(0) = E0, I(0) = I0.

It is clear that the non tumor state of the system of the differential equations (4.3.1)

is exactly the non tumor state of its corresponding NSFD scheme (4.3.3).

We must show that the sequence (T n, T nM , En, In) converge to SE]
M

= (0, 0, E], 0) for

any positive initial conditions when β > µ2g2(rT − τ2)
a1

and β > rMµ2g4

a2
for every value

of ∆t.

The state SE]
M

= (0, 0, E], 0) is locally stable when β > µ2g2(rT − τ2)
a1

and β > rMµ2g4

a2
.

Now suppose that for a certain k > 0, (T k, T kM , Ek, Ik) converge to SE]
M

= (0, 0, E], 0)

and show that (T k+1, T k+1
M , Ek+1, Ik+1) converge also to SE]

M
= (0, 0, E], 0).

(i) For T k+1,
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T k+1 = T k

1 + (τ2 − rT )ϕ1(∆t) + rT

(
T k + T kM
KT

)
ϕ1(∆t) + a1E

kϕ1(∆t)
g2 + T k

Then T k+1 −→ 0 when k −→∞.

(ii) For T k+1
M ,

T k+1
M = T kM + τ2T

k+1ϕ2(∆t)

1 + rM

(
T k + T kM
KM

)
ϕ2(∆t) + a2E

kϕ2(∆t)
g4 + T k

− rMϕ2(∆t)

Then T k+1
M −→ 0 when k −→∞.

(iii) For Ek+1,

Ek+1 =
c(T k + T kM)ϕ3(∆t) + p1E

kIkϕ3(∆t)
g1 + Ik

+ βϕ3(∆t) + Ek

1 + µ2ϕ3(∆t)

Then Ek+1 −→ E] = β

µ2
when k −→∞.

(iv) For Ik+1

Ik+1 =
p2Ek(Tk+Tk

M )
g3+(Tk+Tk

M ) ϕ4(∆t) + Ik

1 + µ3ϕ4(∆t)

Then Ik+1 −→ 0 when k −→∞.

Hence, the non-tumor state SE]
M

= (0, 0, E], 0) is globally stable when β > µ2g2(rT − τ2)
a1

and β >
rMµ2g4

a2
for every value of ∆t.

�

The system expresses neither intrinsic nor drug-induced resistance

When the system expresses neither intrinsic nor drug-induced resistance (ie Pres-

ence of wild tumor cells (T ) only), the eigenvalues of the Jacobian matrix evaluated

at the non-tumor state denoted by SE] = (0;E]; 0) are: rT −
βa1

µ2g2
; −µ2; −µ3. From
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analyzing these eigenvalues, it is clear that this state is locally asymptotically stable

(that is the immunotherapy drug can eliminate the tumor) if β > rTµ2g2

a1
and unstable

if β < rTµ2g2

a1

Theorem 4.3: When the system expresses neither intrinsic nor drug-induced resis-

tance, the non-tumor state SE] is globally stable if β > rTµ2g2

a1
.

Proof of Theorem 4.3:When the system expresses neither intrinsic nor drug-induced

resistance, we have the following model:



dT (t)
dt

= rTT
(

1− T+TM

KT

)
− a1ET

g2+T ;

dE(t)
dt

= cT − µ2E + p1EI
g1+I + β;

dI(t)
dt

= p2ET
g3+T − µ3I;

T (0) = T0, TM(0) = TM0 , E(0) = E0, I(0) = I0.

(4.3.4)

The explicit form of NSFD scheme of (4.3.4) is:
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

T n+1 = T n

1 + rT
T n

KT

ϕ1(∆t) + a1E
nϕ1(∆t)

g2 + T n
− rTϕ1(∆t)

; ϕ1(∆t) = 1− e−rT ∆t

rT

En+1 =
cT nϕ2(∆t) + p1E

nInϕ2(∆t)
g1 + In

+ βϕ2(∆t) + En

1 + µ2ϕ2(∆t) ; ϕ2(∆t) = 1− e−c∆t
c

In+1 =
p2EnTn

g3+Tn ϕ3(∆t) + In

1 + µ3ϕ3(∆t) ; ϕ3(∆t) = 1− e−µ3∆t

µ3

(4.3.5)

With given initial conditions T (0) = T0, E(0) = E0, I(0) = I0.

We must show that the sequence (T n, En, In) converge to SE] = (0, E], 0) for any pos-

itive initial conditions when β >
rTµ2g2

a1
for every value of ∆t.

The state SE] = (0, E], 0) is locally stable when β >
rTµ2g2

a1
. Now suppose that for a

certain k > 0, (T k, Ek, Ik) converge to SE] = (0, E], 0) and show that (T k+1, Ek+1, Ik+1)

converge also to SE] = (0, E], 0).

(i) For T k+1,

T k+1 = T k

1 + rT
T k

KT

ϕ1(∆t) + a1E
kϕ1(∆t)

g2 + T k
− rTϕ1(∆t)

Then T k+1 −→ 0 when k −→∞.

(ii) For Ek+1,

Ek+1 =
cT kϕ2(∆t) + p1E

kIkϕ2(∆t)
g1 + Ik

+ βϕ2(∆t) + Ek

1 + µ2ϕ2(∆t)

Then Ek+1 −→ E] = β

µ2
when k −→∞.
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(iii) For Ik+1,

Ik+1 =
p2EkTk

g3+Tk ϕ3(∆t) + Ik

1 + µ3ϕ3(∆t)

Then Ik+1 −→ 0 when k −→∞.

Hence, the non tumor state SE] = (0, E], 0) is globally stable when β >
rTµ2g2

a1
for

every value of ∆t.

�
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Chapter 5

Numerical simulations of the

tumor-immunotherapy model
Since our aim here is to see whether the immunotherapy drug is effective, we present

the numerical simulations results of the model (4.2.1) in the absence of immunotherapy

to show how resistant tumor cells are weakening the immune system. Then we present

the numerical simulations results of tumor-immunotherapy model (ie model (4.2.1) in

the presence of immunotherapy). These Numerical Simulations are performed for each

type of mutation and are done in MATLAB using ode45 function. Data supporting

this model come from recently published articles and has been duly cited in table 5.1.

Parameter values extracted from published articles are cited at appropriate places in

table 5.1 as references.

Table 5.1: Description of simulation parameters of the model (4.2.1)

Parameters Units Description Estimated value Reference Source

rT Day−1 Growth rate for wild tumor cells 0.15 Assumed
rR Day−1 Growth rate for resistant tumor cells 0.015 Assumed
rM Day−1 Growth rate for mutated tumor cells 0.1515 Assumed

KT ;KR;KM Cells Carrying capacity of cells 106 Feizabadi (2017)
τ1 Day−1 Mutation rate 10−4 Feizabadi (2017)
τ2 Day−1 Mutation rate 10−5 Assumed
a1 Day−1 rate of clearance of wild tumor cells 1.5 Assumed
g2 Cells Half-saturation for wild tumor cells clearance 105 Feizabadi & Witten (2011)
a2 Day−1 rate of clearance of mutated tumor cells 1.5 Assumed
g4 Cells Half-saturation for mutated tumor cells clearance 105 Assumed
c Day−1 Antigenicity 0.5 Assumed
µ2 Day−1 Death rate of immune cells 0.003 Assumed
µ3 Day−1 Death rate of IL-2 10 Feizabadi & Witten (2011)
p1 Day−1 Proliferation rate of immune cells 0.1245 Feizabadi & Witten (2011)
g1 Cells Half-saturation for the proliferation 2× 107 Feizabadi & Witten (2011)
p2 Day−1 Production rate of IL-2 5 Feizabadi & Witten (2011)
g3 Cells Half-saturation of production 30 Feizabadi & Witten (2011)
α Day−1 Effector-Resistant tumor cells interation rate 3× 10−4 Assumed
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5.1 When the system expresses both intrinsic and

drug-induced resistance

Fig. 5.1: The behavior of tumor cells and immune system cells in the absence of
immunotherapy.

Fig. 5.2: A zoom of (5.1)for 0 ≤ t ≤ 375.
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Fig. 5.3: The behavior of immune system cells and resistant tumor cells in the absence
of immunotherapy.

Fig. 5.4: The behavior of Mutated tumor cells and of effector cells in the absence of
immunotherapy.

The outcome of the simulation expressed in (5.1) and (5.4) shows that the population

of mutated tumor cells (TM) have been successfully controled by the immune system

in the time frame of simulation (t = 700days). The wild tumor cells (T ) and the drug
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resistant tumor cells (TR) have started to grow as well. Around (t = 580days) the wild

tumor cells can be detectable. It can be seen through the figure (5.3) that when the

drug resistant tumor cells have started to grow, the immune system cells have started

to decrease from 600th day. This is due to the effects of the drug resistance tumor cells

on the effector cells to make the immune system weak. The figure (5.2) shows that as

the tumor cells started to grow, the immune system cells started to grow as well and

this happened from the begining of simulation time up to 350th day. It can be seen

that between 50 days and 200 days the wild tumor cells and the mutated tumor cells

have been controlled by the immune system. Note that the drug resistant tumor cells

have started to grow well from 250th day.

Fig. 5.5: The behavior of tumor cells and immune system cells in the presence of
immunotherapy.
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Fig. 5.6: The behavior of immune system cells and resistant tumor cells in the presence
of immunotherapy.

Fig. 5.7: The behavior of tumor cells T and TM in the presence of immunotherapy.
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Fig. 5.8: The behavior of tumor cells and immune system cells in the presence of
immunotherapy (introduced at t = 200days).

Fig. 5.9: The behavior of tumor cells T in the presence of immunotherapy (introduced
at t =200days).
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Fig. 5.10: The behavior of tumor cells TM in the presence of immunotherapy (intro-
duced at t = 200days).

The effectiveness of the immunotherapy can be seen through the figures (5.5) and (5.7).

Unlike the figures (5.1)and (5.3), here the wild tumor cells and the mutated tumor cells

started to die out from the date that the immunotherapy drug is introduced. But it can

be seen that in the end of the simulation time, those two populations started to grow

again. Thus a periodic immunotherapy can eliminate the responsive tumor cells. Of

course, through the figure (5.6) the immune system cells started to decrease when the

resistant tumor cells started to grow. We can conclude that a periodic immunotherapy

and a specific chemotherapy drug on the resistant tumor cells can clear the tumor. So

far, it can be seen that the state (0, T ]R1 , 0, E
]
1, I

]
1) is stable when the immunotherapy

drug is introduced at the early stage (t = 200days) (see figures (5.8), (5.9), (5.10)).

Two treatment strategies can be proposed in this case: Periodic and constant im-

munotherapy drug starting around t = 500days and a specific chemotherapy drug on

the resistant tumor cells, or constant immunotherapy drug at the early stage (around

t = 200days) and a specific chemotherapy drug on the resistant tumor cells.
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5.2 When the system expresses only intrinsic resis-

tance

Fig. 5.11: The behavior of tumor cells and immune system cells in the absence of
immunotherapy.

Fig. 5.12: A zoom of (5.11)for 0 ≤ t ≤ 375.
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Fig. 5.13: The behavior of immune system cells and resistant tumor cells in the absence
of immunotherapy.

The figures (5.11) and (5.12) show that as the wild tumor cells started to grow, the

effector cells started to grow also and this happened up to 285th day. It can be seen

that the wild tumor cells are controlled by the effector cells between 75th day and

185th day. From 150th day the drug resistant tumor cells started to grow (see figure

(5.13)). This has started to reduce the population of the effector cells. This reduction

of effector cells allowed the wild tumor cells to grow logistically from 285th day up to

the end of the simulation time (t = 700days). They become detectable around t =

543days. Due to the high mortality rate of IL-2, the concentration of IL-2 is negligible.
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Fig. 5.14: The behavior of tumor cells and immune system cells in the presence of
immunotherapy.

Fig. 5.15: The behavior of tumor cells T in the presence of immunotherapy.
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Fig. 5.16: The behavior of tumor cells and immune system cells in the presence of
immunotherapy (introduced at t = 200days).

Fig. 5.17: The behavior of tumor cells T in the presence of immunotherapy (introduced
at t = 200days).

The effectiveness of the immunotherapy can be seen through the figures (5.14) and

(5.15). The wild tumor cells started to die out from the date that the immunotherapy

drug is introduced and started to grow again in the end of the simulation time. Thus,
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here also a periodic immunotherapy can eliminate the responsive tumor cells. Of

course, through the figure (5.14) the immune system cells started to decrease when

the resistant tumor cells started to grow. We can conclude here also that a periodic

immunotherapy and a specificchemotherapy drug on the resistant tumor cells can clear

all the tumor. So far, the figures (5.16) and (5.17) show that the state (0;T ]R2 , E
]
2, I

]
2)

is stable when the immunotherapy drug is introduced at the early stage (t = 200days).

So the two treatment strategies proposed in the case where the system expresses both

intrinsic and drug-induced resistance are also proposed here.

5.3 When the system expresses only drug-induced

resistance

Fig. 5.18: The behavior of tumor cells and immune system cells in the absence of
immunotherapy.
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Fig. 5.19: A zoom of (5.18) into the behavior of tumor cells T and TM in the absence
of immunotherapy.

Fig. 5.20: The Phase diagram relating T and E in the absence of immunotherapy.
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Fig. 5.21: Phase diagram relating TM and E in the absence of immunotherapy.

Fig. 5.22: Zoom into the behavior of tumor cells T after the simulation time in the
absence of immunotherapy,.
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Fig. 5.23: Zoom into the behavior of tumor cells TM after the simulation time in the
absence of immunotherapy.

In the figure (5.18) and (5.19) it can be seen that the wild tumor cells and the mutated

tumor cells have been controlled by the immune system. This happened because of

the absence of resistant tumor cells which suppress the immune system. Through the

figures (5.20), (5.21), (5.22),(5.23) the state (T ∗1 , T ∗M1 , E
∗
1 , I
∗
1 ) for coexistence is stable

with

1.5× 10−12 ≤ T ∗1 ≤ 2× 10−12, 60 ≤ T ∗M1 ≤ 61, 104 ≤ E∗1 ≤ 1.2× 104.
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Fig. 5.24: The behavior of tumor cells and immune system cells in the presence of
immunotherapy.

Fig. 5.25: The behavior of tumor cells T and TM in the presence of immunotherapy.

The figures (5.24) and (5.25) show and support the stability of the state SE]
M

=

(0; 0;E]; 0) for β >
µ2g2(rT − τ2)

a1
and β >

rMµ2g4

a2
, since all the tumor cells are

eliminated by the immunotherapy drug from 100th day. We can conclude that the
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introduction of the immunotherapy drug at the begining of the desease can save the

patients when the system expresses only drug induced resistance.

5.4 When the system expresses neither intrinsic

nor drug-induced resistance

Fig. 5.26: The behavior of tumor cells and immune system cells in the absence of
immunotherapy.
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Fig. 5.27: The behavior of tumor cells T in the absence of immunotherapy.

Fig. 5.28: Phase diagramm relating T and E in the absence of immunotherapy.
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Fig. 5.29: Zoom into the behavior of tumor cells T after the simulation time in the
absence of immunotherapy.

The wild tumor cells have been controlled by the immune system through the figures

(5.26) and (5.27). Moreover the state (T ∗2 , E∗2 , I∗2 ) for coexixtence is stable with 60 <

T ∗2 < 61, 104 < E∗2 < 1.2× 104 (see figures (5.28) and (5.29)).

Fig. 5.30: The behavior of tumor cells and immune system cells in the presence of
immunotherapy.
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Fig. 5.31: The behavior of tumor cells T in the presence of immunotherapy.

Here also, all the tumor cells are eliminated by the immunotherapy drug from 100th

day
(
see the figures (5.30) and (5.31)

)
. So these figures show and support the global

stability of the state SE] = (0;E]; 0) for β > rTµ2g2

a1
. This implies that the introduction

of the immunotherapy drug at the begining of the desease can save the patients when

the system expresses neither intrinsic nor drug-induced resistance.
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Chapter 6

Conclusion and Recommendations
In this study, a model that take into account multi-mutation and drug resistance

in a case of simple immune system and immuno-suppression caused by drug resistant

tumor cells was proposed to understand the dynamic of wild tumor cells (T ), drug resis-

tant tumor cells (TR), mutated tumor cells (TM), normal cells (N) and immune system

cells (E) and (I). A mathematical analysis of the corresponding tumor-immunotherapy

model was carried out to show the exitence, the uniqueness, and the boundedness of

solutions. Also the stability of the non-tumor states, when the dynamical system ex-

presses both intrinsic and drug induced resistance, only intrinsic resistance, only drug

induced resistance, and neither intrinsic nor drug induced resistance was discussed in

the absence and in the presence of the immunotherapy drug. Global stabilities are

shown using nonstandard finite difference method. Then a detailed numerical analysis

of the corresponding tumor-immunotherapy model was done to identify an effective

treatment strategies in each case.

The fndings of this study indicates that tumor cells can be eliminated under certain

conditions (see, theorem 4.2 and theorem 4.3) in the presence of the immunotherapy,

when the dynamical system expresses only drug induced resistance, and when it ex-

presses neither intrinsic nor drug induced resistance.

Two treatment strategies were proposed when the dynamical system expresses both

intrinsic and drug induced resistance
(

presence of wild tumor cells (T ), drug resistant

tumor cells (TR) and mutated tumor cells (TM)
)
, or only intrinsic resistance

(
presence

of wild tumor cells (T ) and drug resistant tumor cells (TR)
)
: Periodic and constant
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immunotherapy drug starting around t = 500days and a specific chemotherapy drug on

the resistant tumor cells, or constant immunotherapy drug at the early stage (around

t = 200days) and a specific chemotherapy drug on the resistant tumor cells.

In the case where the dynamical system expresses only drug induced resistance
(

pres-

ence of wild tumor cells (T ) and mutated tumor cells (TM)
)
or neither intrinsic nor

drug induced resistance
(

presence of wild tumor cells (T ) only
)
, the introduction of

the immunotherapy drug at the begining of the desease was observed to be effective

in treating the cancer. Due to the high mortality rate of IL-2, we observed in the

simulation results that the concentration of IL-2 is negligible.

Some open concerns include whether mutations occur at a constant rate or whether the

rate may be affected by the immunotherapy drug. Also, one can study the behavior of

each population of the above model, in the presence of only chemotherapy and/or in

the presence of both immunotherapy and chemotherapy.

We recommend our mathematical model to bio-mathematicians because it plays an

important role in predicting effective therapies. The treatment strategies we proposed

are of importance in fight against cancer because they take into account multiple mu-

tations of cancer cells, drug resistance and the state of the immune system. Finally, we

recommend the nonstandard finite difference schemes we have constructed to analyze

the stability of the endemic state of the model because there is no way and it is almost

impossible to find the appropriate Lyapunov function for the global stability of the

model.
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Appendix

MATLAB Code for simulations
The system of ODE (4.2.1) is simulated in the following computer programme code

developed using MATLAB sofware.

A.1 When the dyanamical system expresses both

intrinsic and drug-induced resistance

A.1.1 Absence of immunotherapy
function SEBID() clear all; clc;

global rT kT t2 a1 g2 rR kR t1 rM kM a2 g4 c u2 p1 g1 a b p2 g3 u3

rT=0.15; kT=1000000; t1=0.0001; t2=0.00001;a1=1.5; g2=100000; rR=0.015;kR=1000000;

rM=0.1515;kM=1000000;a2=1.5;g4=100000;c=0.5;u2=0.003;p1=0.1245;g1=20000000;a=0.0003;

p2=5;g3=30;u3=10;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4 1e-4]);

[T,X]= ode45(@odesys,[0 700],[10 4 5 10 5],options);

figure(1)

plot(T,X(:,1),’b’,T,X(:,2),’r’,T,X(:,3),’k’,T,X(:,4),’g’,T,X(:,5),’c’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Absence of Immunotherapy’)

legend(’T’,’T−R’,’T−M’,’E’,’I’)

figure(2)

plot(T(1:floor(0.5*length(T))),X(1:floor(0.5*length(T)),1),’b’,T(1:floor(0.5*length(T))),

X(1:floor(0.5*length(T)),2),’r’,T(1:floor(0.5*length(T))),X(1:floor(0.5*length(T)),3),’k’,
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T(1:floor(0.5*length(T))),X(1:floor(0.5*length(T)),4),’g’,T(1:floor(0.5*length(T))),

X(1:floor(0.5*length(T)),5),’c’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Absence of Immunotherapy’)

legend(’T’,’T−R’,’T−M’,’E’,’I’)

figure(3)

plot(T,X(:,2),’r’,T,X(:,4),’g’,T,X(:,5),’c’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’immune system cells and resistant tumor cells’)

title(’Absence of Immunotherapy’)

legend(’T−R’,’E’,’I’)

figure(4)

plot(T,X(:,3),’k’,T,X(:,4),’g’,T,X(:,5),’c’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’immune system cells and mutated tumor cells’)

title(’Absence of Immunotherapy’)

legend(’T−M’,’E’,’I’)

figure(5)

plot(T,X(:,1),’b’,T,X(:,3),’k’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’Tumor cells T and T−M’)

title(’Absence of Immunotherapy’)

legend(’T’,’T−M’)

figure(6)

plot3(X(:,4),X(:,1),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T’)

figure(7)
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plot3(X(1:floor(0.5*length(T)),4),X(1:floor(0.5*length(T)),3),T(1:floor(0.5*length(T))),

’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T−M’)

figure(8)

plot3(X(:,4),X(:,2),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T−R’)

function dx=odesys(t,x)

dx=zeros(5,1);

boost1=find(t>=200);b=zeros(length(t));b(boost1)=000;

dx(1)=rT*x(1)*(1-(x(1)+x(2)+x(3))/kT)-(t1+t2)*x(1)-a1*x(4)*x(1)/(g2+x(1));

dx(2)=rR*x(2)*(1-(x(1)+x(2)+x(3))/kR)+t1*x(1);

dx(3)=rM*x(3)*(1-(x(1)+x(2)+x(3))/kM)+t2*x(1)-a2*x(4)*x(3)/(g4+x(3));

dx(4)=c*(x(1)+x(2)+x(3))-u2*x(4)+p1*x(4)*x(5)/(g1+x(5))-a*x(2)*x(4)+b;

dx(5)=p2*x(4)*((x(1)+x(2)+x(3))/(g3+x(1)+x(2)+x(3)))-u3*x(5);

end

end

A.1.2 Immunotherapy introduced at t ≥ 500days
function SEBID() clear all; clc;

global rT kT t2 a1 g2 rR kR t1 rM kM a2 g4 c u2 p1 g1 a b p2 g3 u3

rT=0.15; kT=1000000; t1=0.0001; t2=0.00001;a1=1.5; g2=100000; rR=0.015;kR=1000000;

rM=0.1515;kM=1000000;a2=1.5;g4=100000;c=0.5;u2=0.003;p1=0.1245;g1=20000000;a=0.0003;

p2=5;g3=30;u3=10;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4 1e-4]);

[T,X]= ode45(@odesys,[0 700],[10 4 5 10 5],options);

figure(1)
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plot(T,X(:,1),’b’,T,X(:,2),’r’,T,X(:,3),’k’,T,X(:,4),’g’,T,X(:,5),’c’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Immunotherapy introduced at t>=500days’)

legend(’T’,’T−R’,’T−M’,’E’,’I’)

figure(2)

plot(T(1:floor(0.5*length(T))),X(1:floor(0.5*length(T)),1),’b’,T(1:floor(0.5*length(T))),

X(1:floor(0.5*length(T)),2),’r’,T(1:floor(0.5*length(T))),X(1:floor(0.5*length(T)),3),’k’,

T(1:floor(0.5*length(T))),X(1:floor(0.5*length(T)),4),’g’,T(1:floor(0.5*length(T))),

X(1:floor(0.5*length(T)),5),’c’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Immunotherapy introduced at t>=500days’) legend(’T’,’T−R’,’T−M’,’E’,’I’)

figure(3)

plot(T,X(:,2),’r’,T,X(:,4),’g’,T,X(:,5),’c’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’immune system cells and resistant tumor cells’)

title(’Immunotherapy introduced at t>=500days’) legend(’T−R’,’E’,’I’)

figure(4)

plot(T,X(:,3),’k’,T,X(:,4),’g’,T,X(:,5),’c’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’immune system cells and mutated tumor cells’)

title(’Immunotherapy introduced at t>=500days’) legend(’T−M’,’E’,’I’)

figure(5)

plot(T,X(:,1),’b’,T,X(:,3),’k’,’linewidth’,2)

xlabel(’Time (days)’)

ylabel(’Tumor cells T and T−M’)

title(’Fig 1d:Immunotherapy introduced at t>=200days’) legend(’T’,’T−M’)

figure(6)
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plot3(X(:,4),X(:,1),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T’)

figure(7)

plot3(X(1:floor(0.5*length(T)),4),X(1:floor(0.5*length(T)),3),T(1:floor(0.5*length(T))),

’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T−M’)

figure(8)

plot3(X(:,4),X(:,2),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T−R’)

function dx=odesys(t,x)

dx=zeros(5,1);

boost1=find(t>=500);b=zeros(length(t));b(boost1)=75000;

dx(1)=rT*x(1)*(1-(x(1)+x(2)+x(3))/kT)-(t1+t2)*x(1)-a1*x(4)*x(1)/(g2+x(1));

dx(2)=rR*x(2)*(1-(x(1)+x(2)+x(3))/kR)+t1*x(1);

dx(3)=rM*x(3)*(1-(x(1)+x(2)+x(3))/kM)+t2*x(1)-a2*x(4)*x(3)/(g4+x(3));

dx(4)=c*(x(1)+x(2)+x(3))-u2*x(4)+p1*x(4)*x(5)/(g1+x(5))-a*x(2)*x(4)+b;

dx(5)=p2*x(4)*((x(1)+x(2)+x(3))/(g3+x(1)+x(2)+x(3)))-u3*x(5);

end

end
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A.2 When the dyanamical system expresses only

intrinsic resistance

A.2.1 Absence of immunotherapy
function SEOI()

clear all; clc;

global rT kT a1 g2 rR kR t1 c u2 p1 g1 a b p2 g3 u3

rT=0.15;kT=1000000;t1=0.0001;a1=1.5;g2=100000;rR=0.015;kR=1000000;c=0.5;

u2=0.003;p1=0.1245;g1=20000000;a=0.0003;p2=5;g3=30;u3=10;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T,X]= ode45(@odesys,[0 10000],[10 5 10 5],options);

figure(1)

plot(T,X(:,1),’b’,T,X(:,2),’r’,T,X(:,3),’g’,T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Absence of Immunotherapy’)

legend(’T’,’T−R’,’E’,’I’)

figure(2)

plot(T(1:floor(0.4*length(T))),X(1:floor(0.4*length(T)),1),’b’,T(1:floor(0.4*length(T))),

X(1:floor(0.4*length(T)),2),’r’,T(1:floor(0.4*length(T))),X(1:floor(0.4*length(T)),3),

’g’,T(1:floor(0.4*length(T))),X(1:floor(0.4*length(T)),4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Absence of Immunotherapy’)

legend(’T’,’T−R’,’E’,’I’)

figure(3)

plot(T,X(:,2),’r’,T,X(:,3),’g’,T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)
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ylabel(’immune system cells and resistant tumor cells’)

title(’Absence of Immunotherapy’)

legend(’T−R’,’E’,’I’)

figure(4)

plot(T,X(:,1),’b’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T’)

title(’Absence of immunotherapy’)

legend(’T’)

figure(5)

plot3(X(:,3),X(:,1),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

title(’Absence of immunotherapy’)

ylabel(’Tumor cells T’)

figure(6)

plot3(X(:,3),X(:,2),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T−R’)

function dx=odesys(t,x)

dx=zeros(4,1);

boost1=find(t>=200);b=zeros(length(t));b(boost1)=0000;

dx(1)=rT*x(1)*(1-(x(1)+x(2))/kT)-t1*x(1)-a1*x(3)*x(1)/(g2+x(1));

dx(2)=rR*x(2)*(1-(x(1)+x(2))/kR)+t1*x(1);

dx(3)=c*(x(1)+x(2))-u2*x(3)+p1*x(3)*x(4)/(g1+x(4))-a*x(2)*x(3)+b;

dx(4)=p2*x(4)*(x(1)+x(2))/(g3+x(1)+x(2))-u3*x(4);

end

end

75



A.2.2 Immunotherapy introduced at t ≥ 500days
function SEOI()

clear all; clc;

global rT kT a1 g2 rR kR t1 c u2 p1 g1 a b p2 g3 u3

rT=0.15;kT=1000000;t1=0.0001;a1=1.5;g2=100000;rR=0.015;kR=1000000;c=0.5;

u2=0.003;p1=0.1245;g1=20000000;a=0.0003;p2=5;g3=30;u3=10;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T,X]= ode45(@odesys,[0 10000],[10 5 10 5],options);

figure(1)

plot(T,X(:,1),’b’,T,X(:,2),’r’,T,X(:,3),’g’,T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Immunotherapy introduced at t>=500days’)

legend(’T’,’T−R’,’E’,’I’)

figure(2)

plot(T(1:floor(0.4*length(T))),X(1:floor(0.4*length(T)),1),’b’,T(1:floor(0.4*length(T))),

X(1:floor(0.4*length(T)),2),’r’,T(1:floor(0.4*length(T))),X(1:floor(0.4*length(T)),3),

’g’,T(1:floor(0.4*length(T))),X(1:floor(0.4*length(T)),4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Immunotherapy introduced at t>=500days’)

legend(’T’,’T−R’,’E’,’I’)

figure(3)

plot(T,X(:,2),’r’,T,X(:,3),’g’,T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’immune system cells and resistant tumor cells’)

title(’Immunotherapy introduced at t>=500days’)
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legend(’T−R’,’E’,’I’)

figure(4)

plot(T,X(:,1),’b’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T’)

title(’Immunotherapy introduced at t>=200days’)

legend(’T’)

figure(5)

plot3(X(:,3),X(:,1),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T’)

figure(6)

plot3(X(:,3),X(:,2),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

ylabel(’Tumor cells T−R’)

function dx=odesys(t,x)

dx=zeros(4,1);

boost1=find(t>=500);b=zeros(length(t));b(boost1)=60000;

dx(1)=rT*x(1)*(1-(x(1)+x(2))/kT)-t1*x(1)-a1*x(3)*x(1)/(g2+x(1));

dx(2)=rR*x(2)*(1-(x(1)+x(2))/kR)+t1*x(1);

dx(3)=c*(x(1)+x(2))-u2*x(3)+p1*x(3)*x(4)/(g1+x(4))-a*x(2)*x(3)+b;

dx(4)=p2*x(4)*(x(1)+x(2))/(g3+x(1)+x(2))-u3*x(4);

end

end
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A.3 When the dyanamical system expresses only

drug-induced resistance

A.3.1 Absence of immunotherapy
function SEOD()

clear all; clc;

global rT kT t2 a1 g2 rM kM a2 g4 c u2 p1 g1 b p2 g3 u3

rT=0.15;kT=1000000;t2=0.00001;a1=1.5;g2=100000;rM=0.1515;kM=1000000;

a2=1.5;g4=100000;c=0.5;u2=0.003;p1=0.1245;g1=20000000;p2=5;g3=30;u3=10;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T,X]= ode45(@odesys,[0 10000],[10 5 10 5],options);

figure(1)

plot(T,X(:,1),’b’,T,X(:,2),’k’,T,X(:,3),’g’,T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Absence of immunotherapy’)

legend(’T’,’T−M ’,’E’,’I’)

figure(2)

plot(T,X(:,3),’g’,T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’immune system cells’)

title(’Absence of immunotherapy’)

legend(’E’,’I’)

figure(3)

plot(T,X(:,1),’b’,T,X(:,2),’k’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T and T−M’)

title(’Absence of immunotherapy’)
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legend(’T’,’T−M’)

figure(4)

plot3(X(:,3),X(:,1),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

title(’Absence of Immunotherapy’)

ylabel(’Tumor cells T’)

figure(5)

plot3(X(:,3),X(:,2),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

title(’Absence of Immunotherapy’)

ylabel(’Tumor cells T−M’)

figure(6)

plot(T,X(:,1),’b’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T’)

title(’Absence of Immunotherapy’)

legend(’T’)

figure(7)

plot(T,X(:,2),’k’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T−M’)

title(’Absence of Immunotherapy’)

legend(’T−M’)

figure(8)

plot(T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’concentration of IL-2’)

legend(’I’)

figure(9)

79



plot3(X(:,3),X(:,4),T,’linewidth’,2)

xlabel(’effector cells E’)

ylabel(’IL-2’)

function dx=odesys(t,x)

dx=zeros(4,1);

boost1=find(t>=0);b=zeros(length(t));b(boost1)=0;

dx(1)=rT*x(1)*(1-(x(1)+x(2))/kT)-t2*x(1)-a1*x(3)*x(1)/(g2+x(1));

dx(2)=rM*x(2)*(1-(x(1)+x(2))/kM)+t2*x(1)-a2*x(3)*x(2)/(g4+x(2));

dx(3)=c*(x(1)+x(2))-u2*x(3)+p1*x(3)*x(4)/(g1+x(4))+b;

dx(4)=p2*x(4)*(x(1)+x(2))/(g3+x(1)+x(2))-u3*x(4);

end

end

A.3.2 Immunotherapy introduced at t ≥ 0days
function SEOD()

clear all; clc;

global rT kT t2 a1 g2 rM kM a2 g4 c u2 p1 g1 b p2 g3 u3

rT=0.15;kT=1000000;t2=0.00001;a1=1.5;g2=100000;rM=0.1515;kM=1000000;

a2=1.5;g4=100000;c=0.5;u2=0.003;p1=0.1245;g1=20000000;p2=5;g3=30;u3=10;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4]);

[T,X]= ode45(@odesys,[0 10000],[10 5 10 5],options);

X(:,1)

figure(1)

plot(T,X(:,1),’b’,T,X(:,2),’k’,T,X(:,3),’g’,T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells and immune system cells’)
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title(’Immunotherapy introduced at t>=0day’)

legend(’T’,’T−M’,’E’,’I’)

figure(2)

plot(T,X(:,3),’g’,T,X(:,4),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’immune system cells’)

title(’Immunotherapy introduced at t>=0day’)

legend(’E’,’I’)

figure(3)

plot(T,X(:,1),’b’,T,X(:,2),’k’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T and T−M’)

title(’Immunotherapy introduced at t>=0day’)

legend(’T’,’T−M’)

figure(4)

plot3(X(:,3),X(:,1),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

title(’Immunotherapy introduced at t>=0day’)

ylabel(’Tumor cells T’)

figure(5)

plot3(X(:,3),X(:,2),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

title(’Immunotherapy introduced at t>=0day’)

ylabel(’Tumor cells T−M ’)

figure(6)

plot(T,X(:,1),’b’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T’)

title(’Immunotherapy introduced at t>=0day’)
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legend(’T’)

figure(7)

plot(T,X(:,2),’k’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T−M ’)

title(’Immunotherapy introduced at t>=0day’)

legend(’T−M ’)

function dx=odesys(t,x)

dx=zeros(4,1);

boost1=find(t>=0);b=zeros(length(t));b(boost1)=31;

dx(1)=rT*x(1)*(1-(x(1)+x(2))/kT)-t2*x(1)-a1*x(3)*x(1)/(g2+x(1));

dx(2)=rM*x(2)*(1-(x(1)+x(2))/kM)+t2*x(1)-a2*x(3)*x(2)/(g4+x(2));

dx(3)=c*(x(1)+x(2))-u2*x(3)+p1*x(3)*x(4)/(g1+x(4))+b;

dx(4)=p2*x(4)*(x(1)+x(2))/(g3+x(1)+x(2))-u3*x(4);

end

end

A.4 When the dyanamical system expresses neither

intrinsic nor drug-induced resistance

A.4.1 Absence of immunotherapy
function Sno()

clear all; clc;

global rT kT a1 g2 c u2 p1 g1 b p2 g3 u3

rT=0.15;kT=1000000;a1=1.5;g2=100000;c=0.5;u2=0.003;p1=0.1245;g1=20000000;p2=5;g3=30;

u3=10;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4]);

[T,X]= ode45(@odesys,[0 700],[10 10 4],options);
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figure (1)

plot(T,X(:,1),’b’,T,X(:,2),’g’,T,X(:,3),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Absence of Immunotherapy’)

legend(’T’,’E’,’I’)

figure(2)

plot(T,X(:,2),’g’,T,X(:,3),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’immune system cells’)

title(’Absence of Immunotherapy’)

legend(’E’,’I’)

figure(3)

plot(T,X(:,1),’b’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T’)

title(’Absence of Immunotherapy’)

legend(’T’)

figure(4)

plot3(X(:,2),X(:,1),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

title(’Absence of Immunotherapy’)

ylabel(’Tumor cells T’)

function dx=odesys(t,x)

dx=zeros(3,1);

boost1=find(t>=0);b=zeros(length(t));b(boost1)=0;

dx(1)=rT*x(1)*(1-(x(1))/kT)-a1*x(2)*x(1)/(g2+x(1));

dx(2)=c*x(1)-u2*x(2)+p1*x(2)*x(3)/(g1+x(3))+b;
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dx(3)=p2*x(3)*x(1)/(g3+x(1))-u3*x(3);

end

end

A.4.2 Immunotherapy introduced at t ≥ 0days
function Sno()

clear all; clc;

global rT kT a1 g2 c u2 p1 g1 b p2 g3 u3

rT=0.15;kT=1000000;a1=1.5;g2=100000;c=0.5;u2=0.003;p1=0.1245;g1=20000000;p2=5;g3=30;

u3=10;

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4]);

[T,X]= ode45(@odesys,[0 700],[10 10 4],options);

figure (1)

plot(T,X(:,1),’b’,T,X(:,2),’g’,T,X(:,3),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells and immune system cells’)

title(’Immunotherapy introduced at t>=0day’)

legend(’T’,’E’,’I’)

figure(2)

plot(T,X(:,2),’g’,T,X(:,3),’c’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’immune system cells’)

title(’Immunotherapy introduced at t>=0day’)

legend(’E’,’I’)

figure(3)

plot(T,X(:,1),’b’,’linewidth’,2)

xlabel(’Time(days)’)

ylabel(’Tumor cells T’)

title(’Immunotherapy introduced at t>=day’)
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legend(’T’)

figure(4)

plot3(X(:,2),X(:,1),T,’linewidth’,2);view(2)

xlabel(’effector cells E’)

title(’Immunotherapy introduced at t>=0day’)

ylabel(’Tumor cells T’)

function dx=odesys(t,x)

dx=zeros(3,1);

boost1=find(t>=0);b=zeros(length(t));b(boost1)=31;

dx(1)=rT*x(1)*(1-(x(1))/kT)-a1*x(2)*x(1)/(g2+x(1));

dx(2)=c*x(1)-u2*x(2)+p1*x(2)*x(3)/(g1+x(3))+b;

dx(3)=p2*x(3)*x(1)/(g3+x(1))-u3*x(3);

end

end
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