
A FUZZY HYPERCUBE MODEL FOR CLASSIFICATION
PROBLEMS

GEOFFREY ONKUNDI BARINI
MC400-0002/2015

A THESIS SUBMITTED TO PAN AFRICAN UNIVERSITY
INSTITUTE FOR BASIC SCIENCES, TECHNOLOGY AND

INNOVATION IN PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY IN MATHEMATICS
(COMPUTATIONAL OPTION)

2018



DECLARATION

This research is my original work and has not been presented for a degree in any other
University.

Signature........................................ Date.........................................
Geoffrey Onkundi Barini

This thesis has been submitted for examination with our approval as University Super-
visors.

Signature........................................ Date.........................................

Professor Livingstone M. Ngoo
Multimedia University of Kenya, Kenya

Signature........................................ Date.........................................

Professor Ronald M. Waweru
Jomo Kenyatta University of Agriculture and Technology, Kenya.

ii



DEDICATION

This thesis is dedicated to my dear mother, Esther, for her constant encouragement and

prayers.

iii



ACKNOWLEDGMENT

Admittedly, undertaking this PhD has been a truly life-changing experience for me and

it would not have been possible to do without the support and guidance that I received

from many people.

Special mention goes to my enthusiastic supervisors, Prof. Livingstone Ngoo and

Prof Ronald Waweru for the tremendous academic support and encouragement they

gave me. Without their guidance and constant feedback this PhD would not have been

achievable.

I thank Prof. George Orwa, and Prof. Mathew Kinyanjui wholeheartedly, not only

for their persistent mentorship, but also for their constant faith in my research ability.

Similar profound gratitude goes to mum and my siblings for almost unbelievable

support. They are the most important people in my world.

Finally I thank my God, my good Father, for letting me through all the difficulties.

I have experienced Your guidance day by day. You are the one who let me finish my

degree. I will keep on trusting You for my future. Thank you, Lord.

iv



TABLE OF CONTENTS

DECLARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Geometry of Fuzzy Sets . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Operations on Fuzzy Sets . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Subsethood Measure . . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 Fuzzy Distance Measure . . . . . . . . . . . . . . . . . . . . 10

1.2.6 Fuzzy Similarity . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Measures of Fuzzy Uncertainty . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Fuzziness and fuzzy entropy . . . . . . . . . . . . . . . . . . 13

1.3.2 Measures of Specificity . . . . . . . . . . . . . . . . . . . . . 15

1.4 Classfification Problems . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.2 Specific Objective . . . . . . . . . . . . . . . . . . . . . . . . 19

v



CHAPTER 2: LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . 20

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Application of Fuzzy Sets in Classification Problems . . . . . . . . . 20

2.3 Fuzzy Feature Selection Based Techniques . . . . . . . . . . . . . . . 22

CHAPTER 3: Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Fuzzy Similarity Classifier . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Uncertainty in Class Assignment . . . . . . . . . . . . . . . . . . . . 31

3.4 Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Characteristics of Datasets . . . . . . . . . . . . . . . . . . . 33

CHAPTER 4: Results and Discussion . . . . . . . . . . . . . . . . . . . . . 36

4.1 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Geometrical Measure of Specificity . . . . . . . . . . . . . . 36

4.1.2 Estimation of Uncertainty in Classification Problems Using Speci-

ficity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Uncertainty in Class Assignment . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS . . . . . . . 60

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



LIST OF FIGURES

Figure 1.2.1: Trapezoidal membership function . . . . . . . . . . . . . . 4
Figure 1.2.2: Triangular membership function . . . . . . . . . . . . . . . 4
Figure 1.2.3: Fuzzy hypercubes of dimensions n=1,2 and 3 respectively . 5

Figure 3.2.1: Attribute Space . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 3.2.2: Space for Classes . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.1.1: Principal diagonal . . . . . . . . . . . . . . . . . . . . . . 36
Figure 4.2.1: Dermatology classification using similarity classifier with-

out feature selection . . . . . . . . . . . . . . . . . . . . . 42
Figure 4.2.2: Dermatology classification using similarity classifier with 28

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 4.2.3: Dermatology classification using similarity classifier with 24

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 4.2.4: Classification of PIMA-Indian diabetes data with 8 features 47
Figure 4.2.5: Classification of PIMA-Indian diabetes data with 3 features 47
Figure 4.2.6: Classification of PIMA-Indian diabetes data with 1 feature . 48
Figure 4.2.7: Classification of Parkinsons data with 22 features . . . . . . 49
Figure 4.2.8: Classification of Parkinsons data with 3 features . . . . . . 50
Figure 4.2.9: Classification of Parkinsons data with 1 feature . . . . . . . 51
Figure 4.2.10: Classification of Thyroid data with all features . . . . . . . 52
Figure 4.2.11: Classification of Thyroid data with 4 features . . . . . . . . 53

vii



List of Tables

Table 3.1: Artificial data . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 3.2: Validation data and properties . . . . . . . . . . . . . . . . . 33

Table 4.1: Classification rate with dermatology data . . . . . . . . . . . 41
Table 4.2: Specificity and sensitivity with dermatology data . . . . . . . 41
Table 4.3: Classification rate with Pima Diabetes data . . . . . . . . . . 45
Table 4.4: Specificity and sensitivity Pima Diabetes data . . . . . . . . 46
Table 4.5: Classification results with Parkinsons data . . . . . . . . . . 49
Table 4.6: Specificity and sensitivity for parkinsons data . . . . . . . . 50
Table 4.7: Classification rate with thyroid data . . . . . . . . . . . . . . 51
Table 4.8: Specificity and sensitivity with thyroid data . . . . . . . . . . 52
Table 4.9: Feature Selection Comparison for Dermatology . . . . . . . 54
Table 4.10: Feature Selection Comparison for PIMA . . . . . . . . . . . 54
Table 4.11: Feature Selection Comparison for Parkinsons . . . . . . . . . 54
Table 4.12: Feature Selection Comparison for Thyroid . . . . . . . . . . 55
Table 4.13: Uncertainty for dermatology with 34 features . . . . . . . . . 56
Table 4.14: Uncertainty for dermatology with 28 features . . . . . . . . . 56
Table 4.15: Uncertainty for dermatology with 24 features . . . . . . . . . 56
Table 4.16: Uncertainty with 8 features . . . . . . . . . . . . . . . . . . 57
Table 4.17: Uncertainty for PIMA with 3 features . . . . . . . . . . . . . 57
Table 4.18: Uncertainty for PIMA with 1 feature . . . . . . . . . . . . . 57
Table 4.19: Uncertainty for Parkinsons with 22 features . . . . . . . . . 58
Table 4.20: Uncertainty for Parkinsons with 3 features . . . . . . . . . . 58
Table 4.21: Uncertainty for Parkinsons with 1 feature . . . . . . . . . . . 58
Table 4.22: Uncertainty for thyroid with 5 features . . . . . . . . . . . . 59
Table 4.23: Uncertainty for Thyroid with 4 features . . . . . . . . . . . . 59

viii



ABSTRACT

Classification problems are naturally characterized by uncertainty, subjectivity, im-

precision and ambiguity. Thus, in designing classification models, mathematical meth-

ods that are able to satisfactorily deal with uncertainty, ambiguity and subjectivity are

essential. Although fuzzy set theory is a very convenient mathematical tool for treat-

ing vagueness and ambiguity due to redundant and irrelevant features, and poor class

definition, the existing fuzzy entropy based techniques can not effectively deal with

ambiguity. This thesis presents a geometrical fuzzy similarity classifier which allows

us not only reduce complexity of classification problems by removing redundant and

irrelevant features, but also estimate ambiguity in class assignment using measures of

fuzzy specificity. The model was tested using 4 benchmark datasets from University

of California Irvine (UCI) machine learning repository yielding very attractive results.

With Dermatology data set, a mean classification accuracy of 98.21% was obtained

with only 24 features as compared with 97.82% with 34 features. Uncertainty asso-

ciated with class assignment is also reported. Miss-classified samples display high

average uncertainty as compared to those correctly classified.

ix



CHAPTER ONE

INTRODUCTION

1.1 Overview

Unlike crisp sets where an element can be either a member of a set or not, fuzzy sets

allow partial membership (Zedeh, 1965). The theory of fuzzy sets was first introduced

by Zedeh (1965) as a generalization of the traditional logic. Since then, it has pro-

vided a fertile ground for useful researches in a number of fields. In particular, fuzzy

mathematics has continued to play a leading role in modeling systems possessing non-

statistical uncertainty (Zimmermann, 2011). Fuzzy mathematic has been successfully

applied in areas such as: artificial intelligence, industrial control, expert systems, deci-

sion analysis, economics, medicine and many others (Zimmermann, 2011).

Classification problems lies at the heart of decision analysis (Duda et al., 2012).

Basically, classification problems involve assigning entities to classes defined by es-

sential features shared by these entities (Duda et al., 2012). In practical settings, these

classes are characterized by vagueness due to lack of clear cut boundaries and thus

can not be meaningfully represented using methods based on crisp logic. Fuzzy meth-

ods provide a convenient alternative mathematical framework for modeling problems

characterized by this kind of uncertainty (Pedrycz, 1991).

In this chapter the basic concepts of the theory of fuzzy sets are discussed. To-

wards the end of the chapter, the statement of the research problem, objectives and

justification are precisely stated.

1.2 Theoretical Background

Definition 1.2.1. (Zedeh, 1965). Let ζ represent a universe of discourse (finite or

infinite). A fuzzy set A in ζ is a set that is characterized by a membership function,

1



mA : ζ → [0,1] (1.2.1)

which associates each xi ∈ ζ the degree of membership mA (xi) = ai (i = 1,2, . . . ,n) in

A. Fuzzy sets allow partial membership as opposed to crisp sets whose membership

values take 0 or 1. A constant fuzzy set A denoted [a] is such mA (xi) = a∀x ∈ ζ .

Observe that the universe ζ is always a crisp set. For a finite universe ζ , A is

expressed as,

A =
mA (x1)

x1
+

mA (x2)

x2
+ · · ·+ mA (xn)

xn
=

n

∑
i=1

mA (xi)

xi
(1.2.2)

If the universe is an inifinite set, then fuzzy set A on ζ is expressed as

A =
∫

A

mA (x)
x

(1.2.3)

The empty set /0 is such that m /0 (x) = 0 for all x in ζ . Clearly for any x ∈ ζ we have

mζ (x) = 1. The sets of all crisp and fuzzy sets of ζ will be denoted by 2ζ and F
(

2ζ

)
respectively.

Definition 1.2.2. (Zimmermann, 2011). The support of a fuzzy set A constitute all

elements of the universe ζ that have membership greater than zero in A

Support (A) = {x ∈ ζ |mA (x)> 0} (1.2.4)

Definition 1.2.3. (Zimmermann, 2011). The crisp set

Support (A) = {x ∈ ζ |mA (x)≥ α} ,α ∈ [0,1] (1.2.5)

is called an alpha cut of A, denoted Aα .

Definition 1.2.4. (Zimmermann, 2011).The core of a fuzzy set A constitute all ele-

2



ments of the universe ζ that have full membership in A

Core(A) = {x ∈ ζ |mA (x) = 1} (1.2.6)

Definition 1.2.5. (Zimmermann, 2011).The height of a fuzzy set A, h(A) is the largest

membership grade in A. If h(A) = 1, then A is said to normal.

Membership functions assigns to every element of ζ , membership values to fuzzy

set A. Membership functions for fuzzy sets can be defined in any number of ways

as long as they follow the rules of the definition of a fuzzy set. The shape of the

membership function used defines the fuzzy set and so the decision on which type to

use is dependant on the purpose. The membership function choice is the subjective

aspect of fuzzy sets, it allows the desired values to be interpereted appropriately. The

most common membership functions include triangular, trapezoidal, sigmoidal and

gaussian functions. The following figures show examples of trapezoidal and triangular

membership functions

mA (x) =



0, if x < 0

x
3 , if 0≤ x≤ 3

1, if 3≤ x≤ 9

12−x
3 , if 9≤ x≤ 12

0, if x > 12

(1.2.7)

3



Figure 1.2.1: Trapezoidal membership function

mA (x) =



0, if x < 0

x
4 , if 0≤ x≤ 4

8−x
4 , if 4≤ x≤ 8

0, if x > 8

(1.2.8)

Figure 1.2.2: Triangular membership function

1.2.1 Geometry of Fuzzy Sets

Kosko (1990), introduced a very useful geometrical representation of fuzzy sets. He

viewed a fuzzy set A=((mA (x1) ,a1) ,(mA (x2) ,a2) , . . . ,(mA (xn) ,an)) as a point (a1,a2, . . . ,an)
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or fit vector in an n-dimensional fuzzy unit hypercube [0,1]× [0,1]×·· ·× [0,1] = In.

The fit value mA (xi) = ai of A corresponds to the membership value in th ith dimen-

sion. Vertices of In are the non-fuzzy sets. Thus all the 2n crisp sets is the power set

2ζ . On the other hand, all fuzzy sets occupy the surface and interior of In. Hypercubes

of dimensions 1,2 and 3 are shown in figure (1.2.3) below

Figure 1.2.3: Fuzzy hypercubes of dimensions n=1,2 and 3 respectively

The centre of the hypercube is the constant fuzzy set
[1

2

]
. The origin (0,0,0, . . . ,0)

and the point (1,1,1, . . . ,1) correspond respectively, to the empty set /0 and the univer-

sal set ζ .

1.2.2 Operations on Fuzzy Sets

The operations on fuzzy sets are extension of the most commonly used operations

on crisp sets. This extension imposes a prime condition that all the fuzzy operations

which are extensions of crisp concepts must reduce to their usual meaning when the

fuzzy sets reduce themselves to ordinary sets, that is, when they have only 0 and 1 as

membership values (Zimmermann, 2011).

Definition 1.2.6. (Zedeh, 1965). The complement A of A is fuzzy set with membership

function

mA (x) = 1−mA (x) (1.2.9)

Example 1.2.1. If A = (0.4,1,0.7,0.5), then A = (0.6,0,0.3,0.5)

5



Definition 1.2.7. (Zedeh, 1965). The membership function of the intersection of fuzzy

sets A and B is given by:

mA∩B (x) = Min(mA (x) ,mB (x))∀x ∈ ζ (1.2.10)

Definition 1.2.8. (Zedeh, 1965). The membership function of the union of fuzzy sets

A and B is given by:

mA∪B (x) = Max(mA (x) ,mB (x))∀x ∈ ζ (1.2.11)

Example 1.2.2. If A=(0.4,1,0.7,0.5) and B=(0.1,0,1,0.9), then A∩B=(0.1,0,0.7,0.5)

and A∪B = (0.4,1,1,0.9)

Definition 1.2.9. (Zedeh, 1965). Two fuzzy sets A and B are said to be equal if and

only if

mA (x) = mB (x)∀x ∈ ζ

Definition 1.2.10. (Zedeh, 1965). The cardinality of A is a non-negative real scalar

c(A) =
n

∑
i=1

mA (xi) (1.2.12)

In example(1.2.1) we have c(A) = 0.4+1+0.7+0.5 = 2.6

Definition 1.2.11. (Weber, 1983). A T-norm is a bivalent function

T : [0,1]× [0,1]→ [0,1] (1.2.13)

satisfying the following ∀x,y,z,w ∈ [0,1]:

i. T (0,0) = 0

ii. T (x,1) = x

6



iii. T (x,y) = T (y,x)

iv. T (x,y)≤ T (w,z) if x≤ w and y≤ z

v. T (x,T (y,z)) = T (T (x,y) ,z)

This definition allows to combine two membership functions to find the member-

ship function of A∩B. For the union A∪B, we have correspondingly the definition of

the T-conorm of S-norm as

Definition 1.2.12. (Weber, 1983). A Tc-conorm is a bivalent function

Tc : [0,1]× [0,1]→ [0,1] (1.2.14)

satisfying the following ∀x,y,z,w ∈ [0,1]:

i. Tc (1,1) = 1

ii. Tc (x,0) = x

iii. Tc (x,y) = Tc (y,x)

iv. Tc (x,y)≤ Tc (w,z) if x≤ w and y≤ z

v. Tc (x,Tc (y,z)) = Tc (Tc (x,y) ,z)

From these definitions we have:

mA∩B (x) = T (mA (x) ,mB (x)) (1.2.15)

and

mA∪B (x) = Tc (mA (x) ,mB (x)) (1.2.16)

Definition 1.2.13. (Zedeh, 1965). Fuzzy set A is said to be a subset of fuzzy set B if

and only if mA (x)≤ mB (x)∀x ∈ ζ .

7



Definition 1.2.14. (Boicescu et al., 1991). Lukasiewicz t-norm or conjunction has the

form

x� y = max{x+ y−1,0} (1.2.17)

Definition 1.2.15. (Boicescu et al., 1991). The normal Lukasiewicz structure is defined

by

x� y = max{x+ y−1,0} ,x→ y = max{1,1− x+ y} (1.2.18)

Definition 1.2.16. (Boicescu et al., 1991; Klement et al., 2003). In the normal Lukasiewicz

structure the equivalence relation x↔ y is defined as

x↔ y = 1−|x− y| (1.2.19)

Definition 1.2.17. (Boicescu et al., 1991; Klement et al., 2003). In the generalized

Lukasiewicz struacture the above equivalence relation becomes

x↔ y = (1−|xp− yp|)
1
p , p > 0 (1.2.20)

Definition 1.2.18. (Zadeh, 1975). A linguistic variable is a variable whose values are

words that we use in every day communication. For instance, temperature is a lingustic

variable whose values are warm and cold.

1.2.3 Fuzzy Logic

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to deal with

reasoning that is approximate rather than precise in nature (Zedeh, 1965). Just as in

fuzzy set theory the set membership values can range (inclusively) between 0 and 1,

in fuzzy logic the degree of truth of a statement can range between 0 and 1 and is not

constrained to the two truth values true, false as in classic logic. And when linguistic

variables are used, these degrees may be managed by specific functions, as discussed

8



below.

Both fuzzy degrees of truth and probabilities range between 0 and 1 and hence may

seem similar at first. However, they are distinct conceptually; fuzzy truth represents

membership in vaguely defined sets, not likelihood of some event or condition as in

probability theory. For example, if a 100-ml glass contains 30 ml of water, then, for two

fuzzy sets, Empty and Full, one might define the glass as being 0.7 empty and 0.3 full.

Note that the concept of emptiness would be subjective and thus would depend on the

observer or designer. Another designer might equally well design a set membership

function where the glass would be considered full for all values down to 50 ml. A

probabilistic setting would first define a scalar variable for the fullness of the glass,

and second, conditional distributions describing the probability that someone would

call the glass full given a specific fullness level. Note that the conditioning can be

achieved by having a specific observer that randomly selects the label for the glass,

a distribution over deterministic observers, or both. While fuzzy logic avoids talking

about randomness in this context, this simplification at the same time obscures what is

exactly meant by the statement the ’glass is 0.3 full’.

A basic application might characterize subranges of a continuous variable. For

instance, a temperature measurement for anti-lock brakes might have several separate

membership functions defining particular temperature ranges needed to control the

brakes properly. Each function maps the same temperature value to a truth value in the

0 to 1 range. These truth values can then be used to determine how the brakes should

be controlled.

1.2.4 Subsethood Measure

A measure of subsethood SB(A,B) gives the degree to which a fuzzy set A is a subset

of set B. A real function SB : F
(

2ζ

)
×F

(
2ζ

)
→ [0, ] is called a subsethood measure

if it satisfies the following properties (Fan et al., 1999):

9



(S1) SB(A,B) = 1 iff mA (x)≤ mB (x)∀x ∈ ζ

(S2) If A⊆
[1

2

]
, then SB

(
A,A

)
= 0 iff A = ζ .

(S3) If A⊆ B⊆C, then SB(C,A)≤ SB(B,A) and SB(C,A)≤ SB(C,B)

1.2.5 Fuzzy Distance Measure

A measure of distance between two fuzzy sets is one of the fundamental concepts

associated with fuzzy sets, both in theory and applications (Cheng, 1998; Bloch, 1999;

Saha and Wehrli, 2004; Guha and Chakraborty, 2010).

Definition 1.2.19. Formally, the function d : F
(

2ζ

)
× F

(
2ζ

)
→ [0,+∞) is fuzzy

distance measure on F
(

2ζ

)
if ∀A,B,D ∈ F

(
2ζ

)
we have (Rosenfeld, 1985):

(D1) d (A,B)≥ 0

(D2) d (A,B) = 0 iff A = B

(D3) d (A,B) = d (B,A)

(D4) d (A,B)≤ d (A,D)+d (D,B)

While, there exist a variety of functions for distance measure convenient for various

applications, the Minkowski class of metrics,

dr (A,B) =

(
n

∑
i=1
|mA (xi)−mB (xi)|r

) 1
r

,1≤ r ≤ ∞ (1.2.21)

provides a prominent function for distance. For r = 1 and r = 2, the Minkowski class

of metrics collapses to the fuzzy Hamming and the Euclidean distances,

d1 (A,B) =
n

∑
i=1
|mA (xi)−mB (xi)|, d2 (A,B) =

(
n

∑
i=1
|mA (xi)−mB (xi)|2

) 1
2

(1.2.22)
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respectively. They are sometimes normalized as,

d̂1 (A,B) =
1
n

n

∑
i=1
|mA (xi)−mB (xi)|, d̂2 (A,B) =

1√
n

(
n

∑
i=1
|mA (xi)−mB (xi)|2

) 1
2

(1.2.23)

The centre of the hypercube,
[1

2

]
is such that,

dr

(
A,
[

1
2

])
= dr

(
Ac,

[
1
2

])
=

(
n

∑
i=1
|mA (xi)−

1
2
|
r
) 1

r

≤ n
1
r

2
(1.2.24)

Distance measure between fuzzy sets gives us the ability to define a concept of fuzzy

similarity, which plays an important role in comparing fuzzy concepts.

1.2.6 Fuzzy Similarity

Fuzzy similarity gives a quantitative measure of the resemblance between two fuzzy

sets. Most prominent definitions of similarity are based on operations on fuzzy sets

and distance between fuzzy sets. Fuzzy similarity is a dual concept of fuzzy distance

measure.

Definition 1.2.20. A real valued function:

S : F
(

2ζ

)
×F

(
2ζ

)
→ [0,1] (1.2.25)

is called a measure of similarity on F
(

2ζ

)
if it satisfies the following properties (Wang

et al., 2008):

∀A,B,C ∈ F
(

2ζ

)
(S1) S (A,B) = S (B,A)

(S2) 0≤ S (A,B)≤ 1

(S3) S (A,B) = 1 if and only if A = B

11



(S4) if A⊆ B⊆C then S (A,B)≥ S (A,C) and S (B,C)≥ S (A,C)

Examples of similarity measures based on set operations include (Baccour et al.,

2014):

S1 (A,B) =
c(A∩B)
c(A∪B)

(1.2.26)

S2 (A,B) =
1
n

n

∑
i=1

(
min(mA (xi) ,mB (xi))

max(mA (xi) ,mB (xi))

)
(1.2.27)

S3 (A,B) =
c
(
A∩B

)
c
(
A∪B

) (1.2.28)

S4 (A,B) =
1
n

n

∑
i=1

(
2min(mA (xi) ,mB (xi))

mA (xi)+mB (xi)

)
(1.2.29)

Note that if the denominator equals zero in equations (1.1.27) and (1.1.29), then we

trivially have S2 = S4 = 1. Distance based measures of similarity include (Baccour

et al., 2014):

S5 (A,B) = 1− ∑
n
i=1|mA (xi)−mB (xi)|

n
(1.2.30)

S5 (A,B) =
1
n

n

∑
i=1

(1−|mA (xi)−mB (xi)|) (1.2.31)

S6 (A,B) = 1− 1

n
1
r

(
n

∑
i=1
|mA (xi)−mB (xi)|r

) 1
r

(1.2.32)

A similarity measure based on the generalized Lakasiewicz structure has the form

(Luukka and Leppälampi, 2006),

S7 (A,B) =
1
n

(
n

∑
i=1

(1−|(mA (xi))
p− (mB (xi))

p|)
m
p

) 1
m

(1.2.33)
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which is based on the equivalence relation,

mA (x)←→ mB (x) = 1−|mA (x)−mB (x)| (1.2.34)

The parameters p and m come from the generalized Lukasiewicz structure and and

generalized mean respectively.

Definition 1.2.21. (Qing and Li, 2004). For any A ∈ F
(

2ζ

)
, the nearest Anear and

farthest A f ar crisp sets are such that

Anear =


1, i f mA (x)≥ 1

2

0, i f mA (x)< 1
2

, A f ar =


0, i f mA (x)≥ 1

2

1, i f mA (x)< 1
2

(1.2.35)

Definition 1.2.22. (De Luca and Termini, 1972). A fuzzy set A∗ is said to be a

sharpened form of A if mA (x) ≥ 1
2 , then mA∗ (x) ≥ mA (x) and if mA (x) ≤ 1

2 , then

mA∗ (x)≤ mA (x).

1.3 Measures of Fuzzy Uncertainty

Uncertainty may refer to vague, doubtful or ambiguous (Klir, 1987). Two main forms

of uncertainty are easily recognizable in fuzzy sets: ambiguity and fuzziness (or vague-

ness)(Klir, 1987; Zimmermann, 2011). Ambiguity refers to one-to-many relations, that

is, situations with more than two or more alternatives that are left unspecified (Klir,

1987; Zimmermann, 2011). Fuzziness on the other hand refers to lack of sharp or

precise boundaries (Klir, 1987; Zimmermann, 2011)

1.3.1 Fuzziness and fuzzy entropy

Fuzziness refers to the amount of difficult involved deciding whether an element be-

longs to a fuzzy set or not. Fuzziness is maximal if membership value of each element

13



is 1
2 and zero for a crisp set as there exist no uncertainty as to whether or not an element

belongs to the set. It is measured using fuzzy entropy measure (De Luca and Termini,

1972; Zadeh, 1968).

In 1972, Deluca and Termin introduced the now widely adopted axiomatic defini-

tion of fuzziness (De Luca and Termini, 1972). In their view, fuzziness of set A can be

measured by a set to point mapping (De Luca and Termini, 1972).

E : F
(

2ζ

)
→ [0,1] (1.3.1)

given by

E (A) =−k (mA (xi) logmA (xi)+(1−mA (xi)) log(1−mA (xi))) (1.3.2)

where k ≥ 0 is a normalizing constant. Equation (1.3.2) is a measure of fuzzy entropy

if it satisfies the following axioms:

(A1) E (A) = 0∀A ∈ 2ζ

(A2) E (A) attains its maximum at the centre of the fuzzy hypercube, [1
2 ]

(A3) if A∗ is a sharpened version of any A ∈ F
(

2ζ

)
then E (A∗)≤ E (A)

(A4) For any A ∈ F
(

2ζ

)
, E (A) = E

(
A
)

Several researchers have successfully formulated new fuzzy entropy measures sat-

isfying the above postulates. They include:

Kaufman (1975):

Eka (A) =
2

n
1
r

(
n

∑
i=1
|mA (xi)−mAnear (xi)|r

) 1
r

(1.3.3)

Yager (1979):

Ey (A) = 1−
γr
(
A,A

)
n

1
r

(1.3.4)
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(Kosko, 1990):

Ek1 (A) =
dr (A,Anear)

dr
(
A,A f ar

) (1.3.5)

Kosko (1990):

Ek2 (A) =
c
(
A∩A

)
c
(
A∪A

) (1.3.6)

1.3.2 Measures of Specificity

Lack of ambiguity in a fuzzy set is measured using specificity(Klir, 1987; Yager, 1982).

Specificity is a quantitative measure of the extent to which a fuzzy set restricts a vari-

able to a small number of membership values(Yager, 1982). It is a measure of exact

knowledge we have regarding a system. Yager (1982), proposed the following defini-

tion for specificity of fuzzy sets.

Definition 1.3.1. Yager (1998) Specificity Sp(A) of fuzzy set A is a mapping Sp :

F
(

2ζ

)
→ [0,1] satisfying the following axioms: ∀A,B ∈ F

(
2ζ

)
(S1) Sp( /0) = 0

(S2) Sp(A) = 1 iff A is a singleton set.

(S3) Sp(A) increases as the largest membership value in A increases and decreases as

the non-maximal membership values increases.

In addition a measure of specificity is said to be regular if for any A ∈ F
(

2ζ

)
such

that mA (xi) = a∀i we have Sp(A) = 0, where a is constant membership value (Yager,

1998).

Common examples of measures of specificity include:

Yager (1982):

Sp(A) =

h(A)∫
0

1
c(Aα)

dα (1.3.7)
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Where A is a finite set and h(A) is the height of A and Aα is an alpha cut of fuzzy set

A. For normal fuzzy sets the above formula becomes

Sp( A) =
1∫

0

1
c(Aα)

dα (1.3.8)

Yager (1995):

Sp(A) = a1−
1

n−1

n

∑
i=2

ai (1.3.9)

where membership values of A be ordered such that a1 ≥ a2 ≥ ·· · ≥ an. This measure

is known as the linear measure of specificity.

Dubois and Prade (1985):

Sp(A) =
n

∑
i=1

ai−ai+1

i
(1.3.10)

The complement of specificity is called non-specificity (Dubois and Prade, 2012)

or anxiety, NSp, and is given by

NSp(A) = 1−Sp(A) (1.3.11)

1.4 Classfification Problems

Classification problem involves grouping of entities into a set of classes based on sim-

ilarity among the entities (Duda et al., 2012). Similar entities are put in one class.

Classification problem can be viewed as a task of approximating a mapping function

f from input variables y to discrete output variables z.The input variables are called

attributes or features while the output variables are often called labels, categories or

classes. Features can discrete or continuous. Entities to classified are also called in-

stances, examples or samples.

Classification problems are further divided into binary and multi-class classifica-
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tion depending on the number of the underlying classes.Binary classification involves

classifying entities into either of the two classes. Binary classification problems arise

disease diagnosis (Huang et al., 2007; Nahar et al., 2013) and malware detection (Fir-

dausi et al., 2010). Multi-class classification involves classifying the input entities into

more than two classes. Multi-class classification problems arise in risk classification

(Zabalgoitia et al., 1998), character recognition (Cecotti and Vajda, 2013), biometric

identification and security (Bailey et al., 2014), face recognition (Parveen and Thurais-

ingham, 2006).

Traditional classification methods are based on crisp sets in which each entity can

belong to only one class. Accordingly, in crisp classification, class membership is

binary, that is, an entity is a member of a class or not. Crisp class membership values

can be either 1 when the entity is a prototype of the class and 0 for all other classes.

On the other hand, in fuzzy classification, an entity can have membership in many

different classes to different degrees at the same time. Fuzzy classes are appropriate

for continuous and imprecise data that does not fall neatly into discrete classes, such as

data medical applications (Ali et al., 2011; Nauck and Kruse, 1999), image processing

(Bezdek et al., 2006), control engineering (Zhang and Liu, 2006), soil classification

(McBratney and Odeh, 1997) and many others.

Classification problems where data grouped together based on predetermined char-

acteristics is called supervised learning. On the other hand, if predetermined charac-

teristics are not provided we have unsupervised learning (Marsland, 2011).

An algorithm that performs classification is called a classifier. A classifier should

be fast and accurate. Classification algorithms tend to be affected by noise in data.

Noise should be reduced as much as possible in order to avoid unnecessary complexity

in the inferred models and improve the effectiveness of the algorithm (Strong et al.,

1997; Wang and Strong, 1996). Noise in data can be due to (Zhu and Wu, 2004):

feature noise or class noise. Attribute noise is caused by errors in the feature val-

ues (wrongly measured variables, missing values), irrelevant and redundant features,
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while class noise is caused by samples that are labelled to belong in more than one

class and misclassifcations (Hira and Gillies, 2015). The presence of irrelevant and re-

dundant features increases the model’s computational cost, usually exponentially (Hira

and Gillies, 2015). To overcome this problem it is necessary to find a way to reduce

the number of features by discarding irrelevant and redundant features (Luukka, 2011;

Hira and Gillies, 2015).

1.5 Statement of the Problem

Uncertainty is a natural phenomenon in all classification problems and often leads to

loss of information. Main forms of uncertainty that arises in fuzzy classification in-

clude: fuzziness (not sharp, unclear, imprecise and approximate) and ambiguity (not

specific) (Booker and Ross, 2011). Fuzzy entropy is frequently used to measure un-

certainty arising in classification problems particularly due to redundant and irrelevant

features. However, Pal and Pal (1992) have shown that this measure is inadequate in

feature selection because it fails to detect ambiguity. They instead proposes the use

of fuzzy entropy and higher order fuzzy entropy. Nevertheless, it is computationally

expensive to implement these measures which makes this approach highly impracti-

cal. This thesis aims to address the inadequacy of fuzzy entropy based feature se-

lection method by designing a geometrical fuzzy hypercube classification model that

estimates ambiguity in features using measures of specificity. In addition, this mea-

sures of ambiguity will allows us estimate uncertainty when entities are assigned to

classes. This form of uncertainty, which is rarely reported, will give us insights into

how much information we lose during class assignment.

1.6 Justification

To handle larger and more complex classification tasks, the problem of focusing on the

most relevant information in a potentially overwhelming quantity of data has become
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increasingly important. In fuzzy classification problems, algorithms that are efficient

and require less computational effort to implement during feature selection will prove

very useful. Such algorithms should be to detect ambiguity in attributes and classifica-

tion classes.

1.7 Objectives

1.7.1 General Objective

The main objective of this study is to design a fuzzy set theoretic classification model

based on the geometry of fuzzy sets.

1.7.2 Specific Objective

Objectives of this study is to:

1. Construct a fuzzy hypercube similarity classifier based on the Lukasiewicz gen-

eralized structure.

2. Develop feature selection scheme using the similarity measure based on the gen-

eralized Lukasiewicz structure.

3. Derive a measure of uncertainty using Yager’s linear measure of specificity.

4. Evaluate the performance of the proposed model using standard bench mark data

sets from UCI machine learning repository.

5. Evaluate uncertainty in the proposed model due to ambiguity in class assignment

using the measure of uncertainty obtained in (1.) above.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Overview

In this chapter we provide a survey on studies that have considered classification prob-

lems within the framework of fuzzy set theory. In particular, we look at studies that

have demonstrated how the geometry of fuzzy sets can be applied to pattern recogni-

tion. Literature on fuzzy set based feature selection techniques is covered as well.

2.2 Application of Fuzzy Sets in Classification Problems

Fuzzy set based approaches have been successfully applied in classification problems

across several fields of study. This has led to well established fuzzy classification

algorithms such neural-fuzzy, fuzzy genetic algorithms among others. Most of these

algorithms are rule based, implying that their classification accuracy depends on how

efficient they generate and manipulate the fuzzy if-then rules. Some of the fuzzy logic

rule based classifiers include, fuzzy image processing classifiers (Fageth et al., 1996;

Moore et al., 2001) and fuzzy genetic classifiers (Yuan and Zhuang, 1996; Krömer

et al., 2011).

Other than the rule based techniques, approaches based on fuzzy sets as basic math-

ematical structures for representing and quantifying various aspects of non-probabilistic

uncertainty associated with real-world problems have been investigated (Sadegh-Zadeh,

1999; Nieto and Torres, 2003; Nieto et al., 2006). Such representation does not only al-

low the use of fuzzy measures of similarity and distance to efficiently represent entities

of a physical problem, but also provide a framework for interpretation of such prob-

lems afforded by a fuzzy unit hypercube. We now look at a survey of some studies that

have demonstrated how these basic elements can be used in classification problems.

Kang and Vachtsevanos (1993) have developed a tool for intelligent control and
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identification. A robust and reliable learning and reasoning mechanism is addressed

based on fuzzy set theory. The mechanism stores a priori an initial knowledge base

via approximate learning and utilizes this information for identification and control

via fuzzy inferencing. This processor is called a fuzzy hypercube. Fuzzy hypercubes

can be applied to a class of complex and highly nonlinear systems which suffer from

vagueness uncertainty. Evidential aspects of a fuzzy hypercube are treated to assess

the degree of certainty or reliability. The implementation issue using fuzzy hypercubes

is raised, and a fuzzy hypercube is applied to fuzzy linguistic control.

Other applications of fuzzy hypercube includes disease casuality (Helgason and

Jobe, 1998). They argue that diseases such as stroke which involve multiple concomi-

tant causal factors that are difficult to represent using conventional statistical methods.

Their work illustrates how fuzzy sets and fuzzy logic form the best paradigm for rep-

resenting complex multi-causal clinical phenomenon in stroke. In their view, this rep-

resentation is generalizable to all of clinical science since multiple concomitant causal

factors are involved in nearly all known pathological processes. Furthermore, Helga-

son (2007) how complex interaction between variables associated with stroke can be

represented using fuzzy unit hypercube.

Sadegh-Zadeh (1999) has used the geometrical representation of fuzzy sets to in-

troduce the concept of nosology within fuzzy set theoretic frame work. In this frame-

work, the vague notions of health, disease, and nosology are analyzed. It is shown that

health and disease as generic concepts, and also individual disease entities are best un-

derstood as fuzzy sets. Clinical language and linguistics, nosology and diagnosis may

thus become directly amenable to fuzzy theory.

Landscapes are normally classified into three main categories, urban, semi-urban

and rural. However, these categories are characterized by vague boundaries which

can not be captured using conventional approaches. One of the studies that has taken

advantage of the flexibility of fuzzy sets in characterizing urban landscapes can be

found in (Heikkila et al., 2003). In this study, the fuzzy unit hypercube has been
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used to develop three metrics to measure extent of urbanization, level of fuzziness,

and degree of entropy, to characterize levels of urban membership typical in cities of

China, and other Asian countries. This is made possible by representing the entire area

of study as a point within a fuzzy hypercube. Using these three dichotomies with fuzzy

set interpretations, they exploited the geometrical interpretations of fuzzy sets afforded

by the fuzzy unit hypercube to show how a study area could be located within a three

dimensional fuzzy hypercube.

Similarly, Torres and Nieto (2003) have used a 12-dimensional fuzzy hypercube

of to represent triplet codon. They have also illustrated how dissimilitudes between

polynucleotides can be measured using geometrical properties of fuzzy sets. Such ge-

omtrical representation allows calculation of frequencies of the nucleotides at the three

base sites of a codon in the coding sequences of Escherichia coli K-12 and Mycobac-

terium tuberculosis H37Rv, when considered as points in the fuzzy space.

On the other hand, Nieto and Torres (2003) have used the fuzzy unit hypercube to

define concept of midpoint of fuzzy sets. This concept together with distance measure

then forms a basis for representing fuzzy degree of two concurrent food and drug

addictions, and a fuzzy representation of concomitant causal mechanisms of stroke.

In (Nieto et al., 2006) a fuzzy unit hypercube is applied in the study of polynu-

cleotides. They have used the concept of a metric space to investigate differences

between polynucleotides. The hypercube allows definition of distances between nu-

cleotides and some complete genomes using several metrics within the hypercube. In

addition, results on the notions of similarity and equality between polynucleotides are

presented.

2.3 Fuzzy Feature Selection Based Techniques

Feature selection seeks to address the issue of geometrical complexity in classifica-

tion problems. Feature selection plays an important role in classification for several
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reasons. First it can simplify the model and this way computational cost is reduced.

Secondly, by removing insignificant features from the dataset makes the model more

transparent and more comprehensible, providing better explanation, which is an im-

portant requirement in applications. Feature selection process can also reduce noise

which enhances the classification accuracy.

In quest for higher classification accuracies, feature subset selection has been used

for data reduction in areas characterized by high dimensionality due to the large num-

bers of available features, for example in seismic data processing (Hoffman et al.,

1998), remote sensing (Yu et al., 2000), drug design , speech recognition (Abdulla and

Kasabov, 2003). Feature selection is expected to improve classification performance,

particularly in situations characterized by the high data dimensionality problem caused

by relatively few training examples compared to a large number of measured features.

Even if no significant improvements in classification accuracy are achieved, re-

ducing the number of features still has many advantages. These are e.g. reducing

the number of measurements required, shortening training and execution times, and

improving model compactness, transparency, and interpretability (Luukka, 2011).

Most of the prominent feature selection approaches have been investigated within

the proabilistic framework. These techniques can be grouped into three broad cate-

gories: embedded, filter and wrapper techniques (Blum and Langley, 1997).

Embedded techniques involve procedures that perform feature selection as part of a

classification algorithm. Such methods are common in machine learning. They include

ID3(Quinlan, 1986), C4.5 (Salzberg, 1994), rough sets(Pawlak, 1982), classification

and regression trees(Breiman, 2017). Filter schemes on the other hand, do not interact

with the classifier during feature selection. Within this context, feature selection is

performed as a preprocessing stage prior to model development in order to filter out

the irrelevant or redundant features from the analysis. Thus, the selection of the most

important features is not related to the classification method that is used to build the

model. This is the main disadvantage of such algorithms, since the characteristics of
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the method are ignored during the feature selection process. However, filter techniques

are quite popular mainly owing to their computational efficiency even for large data

sets. Some common filter feature selection algorithms include the RELIEF algorithm

(Kira and Rendell, 1992), the FOCUS algorithm (Kira and Rendell, 1992), sequential

forward and backward generation algorithms(Liu and Yu, 2005).

Feature selection approaches utilizing tools of fuzzy set theory are fairly recent.

Most of these approaches use the concept of fuzzy entropy to determine relevant fea-

tures.

A feature selection approach proposed by Lee et al. (2001) is such that the fea-

ture space is partitioned into nonoverlapping decision regions. They then apply fuzzy

entropy measure to select important features. This approach was then tested using

Iris and Breast cancer datasets from UCI machine learning repository achieving good

classification rates.

In (Luukka, 2011) a feature selection method based on fuzzy entropy measures

with similarity classifier is introduced. Model was tested with four medical data sets

which were, dermatology, Pima-Indian diabetes, breast cancer and Parkinsons data

set. With all the four data sets, he managed to get quite good results by using fewer

features that in the original data sets. Also with Parkinsons and dermatology data

sets, classification accuracy was enhanced significantly. Mean classification accuracy

with Parkinsons data set being 85.03% with only two features from original 22. With

dermatology data set, mean accuracy of 98.28% was achieved using 29 features instead

of 34 original features. Iyakaremye et al. (2012) have proposed a similar approach but

instead they have used Yu’s similarity measure.

Mitra et al. (2002) have introduced a feature selection algorithm suitable for large

data sets. Their method is based on measuring similarity between features whereby

redundancy therein is removed. This does not need any search and, therefore, is fast.

They used a feature similarity measure, called maximum information compression in-

dex. The algorithm is generic in nature and has the capability of multiscale representa-
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tion of data sets. The superiority of the algorithm, in terms of speed and performance,

is established extensively over various real-life data sets of different sizes and dimen-

sions. It is also demonstrated how redundancy and information loss in feature selection

can be quantified with an entropy measure.

Jaganathan and Kuppuchamy (2013) have presented an approach for measurement

of feature relevance based on fuzzy entropy for a medical database classification. Three

feature selection strategies are devised to obtain the valuable subset of relevant fea-

tures. Five benchmarked datasets, which are available in the UCI Machine Learning

Repository have been used in this work. The classification accuracy shows that the

proposed method is capable of producing good results with fewer features than the

original datasets.

25



CHAPTER THREE

Methodology

3.1 Overview

In this chapter, we first outline the key components of the proposed fuzzy hypercube

classification model. These include the similarity classifier and the proposed feature

selection scheme. We conclude with discussion on how the model can be validated and

estimation of uncertainty due to class ambiguity.

3.2 Fuzzy Similarity Classifier

Suppose a set X of samples is classified into classes C1,C2, . . . ,Cn based on a set of fea-

ture which are shared by these samples to the greatest extent. Let F =
{

f1, f2, . . . , fq
}

be a set of features measured for each of the classes. The values of these features

are fuzzified by normalizing them so that they lie in the unit interval [0,1]. Thus, the

samples x(i)∈ X ,1≤ i≤N to be classified can be viewed as q-dimensional fit vectors,

x̂(i) =
(
x̂1 (i) , x̂2 (i) , . . . , x̂q (i)

)
(3.2.1)

in a fuzzy unit hypercube

[0,1]× [0,1]×·· ·× [0,1] = [0,1]q (3.2.2)

In this case, the jth feature corresponds to the jth dimension of the fuzzy unit hyper-

cube. For a classification problem with three features we have a three dimensional

hypercube space of features (attributes) shown in the figure below. Classification is

performed in this multidimensional feature space by first determining a vector

Vk =
(
v1 (k) ,v2 (k) , . . . ,vq (k)

)
,(1≤ k ≤ n) (3.2.3)
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that carries properties of the kth class to the greatest extent. Pasi Luukka calls this

vector an ideal vector for the kth class. It can be defined by an expert or computed

using the generalized mean as follows. Suppose the sample set X t
k of fit vectors x̂t

k (i) =(
x̂t

1 (i,k) , x̂
t
2 (i,k) , . . . , x̂

t
q (i,k)

)
in the training set X t is known to belong to the kth class.

Then,

v j (k) =
(

1
|X t

k|
∑
(
x̂t

j (i,k)
)m
) 1

m

,1≤ j ≤ q (3.2.4)

Figure 3.2.1: Attribute Space
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Figure 3.2.2: Space for Classes

Where the sum of the fit values x̂t
j (i,k) is performed over all the ith training samples

in the kth class for each j and |X t
k| is the number of samples in the kth class of the

training set and m is the parameter for the generalized mean. In this study we have

used the arithmetic mean, m = 1.

Consider artificial training samples given in the table (3.1) below

Table 3.1: Artificial data
Sample Feature1 Feature2 Feature3 Classes

1 0.6 0.8 0.7 C1

2 0.6 0.5 0.4 C2

3 0.4 0.3 0.3 C2

4 0.8 0.5 0.6 C1

5 0.1 024 0.5 C2

6 0.5 0.4 0.9 C1

In this case the number of classes is n = 2 and |X t
k|=3 for both classes, i.e, we have

three instances which are known to belong to each of the classes. Ideal vector for each
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class is obtain by getting the mean of the values of features for samples belonging to

the class. If we use the arithmetic mean, that is, m = 1 we have

V1 =

(
1
3
(0.6+0.8+0.5) ,

1
3
(0.8+0.5+0.4) ,

1
3
(0.7+0.6+0.9)

)
=(0.63,0.57,0.73)

(3.2.5)

and

V2 =

(
1
3
(0.6+0.4+0.1) ,

1
3
(0.5+0.3+0.2) ,

1
3
(0.4+0.3+0.5)

)
=(0.37,0.0.33,0.4)

(3.2.6)

To classify an arbitrary sample x(i), we compare its fit vector with the ideal vectors

Vk using the similarity measure

Sk = S (x̂(i) ,Vk)

=

[
1
n

q

∑
j=1

w j
(
1−|

(
x̂ j (i)

)p−
(
v j (k)

)p|
)m

p

] 1
m (3.2.7)

where
q

∑
j=1

w j = 1,w j ∈ [0,1] (3.2.8)

is a subjective weight reflecting the relative importance of the jth feature. In this study

we set w j = 1∀ j. The parameter p is chosen from the generalized Lukasiewicz struc-

ture and m is for the generalized mean. In particular for p = 1 we have the normal

Lukasiewicz structure.

The sample is then assigned class k∗ if it bears the highest similarity with this class,

that is,

Sk∗ = Maxk {S (x̂(i) ,Vk)} (3.2.9)

with Sk∗ = 1 if x(i) coincides with the ideal vector for class k∗ and Sk∗ = 0 if it bears

no resemblance with the kth class.

Since in the hypercube space [0,1]q, we have a continuum of fuzzy sets, it follows
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that Vk ∈ [0,1]q is the centre of the kth class. Thus, the similarity classifier can be

interpreted as a between cube mapping given by the equation below

Sk : [0,1]q→ C (3.2.10)

where C is the space of all classification classes. In this space, each point is a similarity

vector which can be understood as an ordered fuzzy set.

3.2.1 Feature selection

Consider the ideal vectors

V1 =
(
v1 (1) ,v2 (1) , . . . ,vq (1)

)
V2 =

(
v1 (2) ,v2 (2) , . . . ,vq (2)

)
. . .

Vk =
(
v1 (k) ,v2 (k) , . . . ,vq (k)

)
(3.2.11)

corresponding to the n classification classes. In a perfect situation the n ideal vectors

correspond to the single element sets (1,0,0, . . . ,0) ,(0,1,0, . . . ,0) , . . . ,(0,0,0, . . . ,1).

These are precisely vertices of a fuzzy unit hypercube. Now, assume we want to clas-

sify sample x(i) using the jth feature. In the normal Lukasiewicz structure, each of the

n similarity values S1 ( j) ,S2 ( j) , . . . ,Sn ( j) is obtained from the equivalence relation

Sk ( j) = x̂ j (i,k)←→ v j (k) = 1−|x̂ j (i,k)− v j (k)| (3.2.12)

The sample is then assigned to the class that gives maximum value of similarity.

However, if it has same maximum value of similarity to more than one class, then we

are faced with difficult in deciding which class to assign this sample. In other words,

the classes are indistinguishable based on the jth feature. We can measure this by

computing the distance between each sample x(i)(1≤ i≤ N) and the ideal vectors.
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Observe that negating the equivalence relation given in equation (3.12) we obtain

the distance D between sample x(i) and the kth class,

D =
(
x̂ j (i,k)←→ v j (k)

)∗
= |x̂ j (i,k)− v j (k)| (3.2.13)

If x(i) coincides with class say k′ then we must have

D = |x̂ j
(
i,k′
)
− v j

(
k′
)
|= 0 (3.2.14)

and

D = |x̂ j
(
i,k′
)
− v j (k)| 6= 0∀k 6= k′ (3.2.15)

In the generalized Lukasiewicz structure with parameter p we have

Dp =
(
x̂ j (i,k)←→ v j (k)

)∗
= |
(
x̂ j (i,k)

)p−
(
v j (k)

)p|
1
p (3.2.16)

The distance measure D can be computed for all samples in the training set X t and

all classification classes. The average of this measure can be viewed as a measure of

separation between classes. Intuitively, features that do separate classes well are ex-

pected to give small average values of D. These features are then successfully removed

by setting a minimum threshold value of this measure till no further improvement in

classification rate is achieved. In this work, D is computed in the normal Lukasiewicz

structure. Because in the normal Lukasiewicz structure D is linear, we see that the sug-

gested measure requires less computational effort to implement as compared to entropy

based approach.

3.3 Uncertainty in Class Assignment

If the similarity vector for a given sample is such that the it has same values of simi-

larity to all classes then we are faced with uncertainty as to which class to assign this
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sample. This form of uncertainty is called ambiguity. Ambiguity exists when selection

must be made from two or more classification classes and attributes do not offer suf-

ficient information to discriminate the classes and determine the appropriate class to

assign a sample. For example for a space consisting of three classes C = {C1,C2,C3},

the similarity vector (0.7,0.4,0.1) indicates a fairly good degree of compatibility be-

tween a sample and the first class, while (0.6,0.6,0.2) shows ambiguity between the

first and the second classes. Further, by assigning a sample to the first class in the for-

mer, we ignore the fact that this sample carries properties of the second and the third

classes to degrees 0.4 and 0.1 respectively. Using Yager’s linear measure of specificity,

this form of uncertainty is given as

Ui = 1−Sp(Ωi) (3.3.1)

Where Ωi = (S1,S2, . . . ,Sn) is the vector of similarity values for the ith sample.

3.4 Numerical Experiment

3.4.1 Model Validation

After developing the model, the next step is to find out how effective is the model based

on some performance measures using data. For purposes of comparing our results with

those obtained using similar models, we will use four widely used benchmark datasets

from UCI machine learning repository (Blake and Merz, 1998). Each data set is di-

vided into 50% for model training and 50% for model testing. This process is repeated

randomly 10 times for each fixed value of parameters in the similarity classifier. We

report the following measures of performance, highest mean classification accuracies

and variances, specificity and sensitivity. Specificity and sensitivity are computed us-
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ing the following formulae

Sensitivity =
T P

T P+FN
(3.4.1)

and

Selectivity =
T N

T N +FP
(3.4.2)

where T P of Ck is all Ck samples that are classified as Ck.

T N of Ck is all non-Ck samples that are not classified as Ck.

FP of Ck is all non-Ck samples that are classified as Ck.

FN of Ck is all Ck samples that are not classified as Ck. and Ck is the kth classification

class.

3.4.2 Characteristics of Datasets

Table 3.2: Validation data and properties
Validation data Number of classes Dimension Number of observations
Dermatology 6 34 366

Pima-Indians 2 8 768

Parkinsons 2 22 197

Thyroid 3 5 215

(i) Dermatology Dataset.

This database contains 34 attributes, 33 of which are linear valued and one of them is

nominal.

The differential diagnosis of erythemato-squamous diseases is a real problem in

dermatology. They all share the clinical features of erythema and scaling, with very

little differences. The diseases in this group are psoriasis, seboreic dermatitis, lichen

planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra pilaris. Usually a biopsy
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is necessary for the diagnosis but unfortunately these diseases share many histopatho-

logical features as well. Another difficulty for the differential diagnosis is that a disease

may show the features of another disease at the beginning stage and may have the char-

acteristic features at the following stages. Patients were first evaluated clinically with

12 features. Afterwards, skin samples were taken for the evaluation of 22 histopatho-

logical features. The values of the histopathological features are determined by an

analysis of the samples under a microscope.

In the dataset constructed for this domain, the family history feature has the value

1 if any of these diseases has been observed in the family, and 0 otherwise. The age

feature simply represents the age of the patient. Every other feature (clinical and

histopathological) was given a degree in the range of 0 to 3. Here, 0 indicates that

the feature was not present, 3 indicates the largest amount possible, and 1, 2 indicate

the relative intermediate values.

(iii) Pima Indian Dataset

The Pima-Indian data set concerns the presence or absence of diabetes among Pima-

Indian women living near Phoenix, Arizona.

1. Number of times pregnant

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test

3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/(height in m))

7. Diabetes pedigree function

8. Age (years)
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(ii) Parkinsons Dataset

The dataset was created by Max Little of the University of Oxford, in collaboration

with the National Centre for Voice and Speech, Denver, Colorado, who recorded the

speech signals. This dataset is composed of a range of biomedical voice measurements

from 31 people, 23 with Parkinson’s disease (PD). Each column in the table is a partic-

ular voice measure, and each row corresponds one of 195 voice recording from these

individuals (’name’ column). The main aim of the data is to discriminate healthy peo-

ple from those with PD, according to "status" column which is set to 0 for healthy and

1 for PD.

(iii) Thyroid Dataset

This data set contains 3 classes and 215 samples. These classes correspond to to the

hyper, hypo and normal function of the thyroid gland. The followings give the 5 tests

which are applied to patients to measure the thyroid functions.

1. T3-resin uptake test (as a percentage).

2. Total Serum thyroxin as measured by the isotopic displacement method.

3. Total Serum triiodothyronine as measured by radioimmuno assay

4. Basal thyroid-stimulating hormone (TSH) as measured by radioimmuno assay

5. Maximal absolute difference of TSH value after injection of 200 micro-grams of

thyrotropin-releasing hormone as compared to the basal value.
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CHAPTER FOUR

Results and Discussion

4.1 Theoretical results

In this section we investigate Yager’s linear measure of specificity (Yager, 1998) within

the geometrical setting of fuzzy sets. Thereafter, we demonstrate how this measure can

be used to measure uncertainty in classification problems.

4.1.1 Geometrical Measure of Specificity

We now turn to specificity as a measure of certainty. In this discussion we require the

concept of the principal diagonal of a fuzzy hypercube. This is the diagonal joining

the points (0,0,0, . . . ,0) and (1,1,1, . . . ,1).

Figure 4.1.1: Principal diagonal

Observe that any point on the principal diagonal is a constant fuzzy set, [a]. More-

over, it follows that if As( j) a singleton subset of X with 1 in the jth position then

d1
(
[a] ,As(1)

)
= d1

(
[a] ,As(2)

)
= · · · = d1

(
[a] ,As(n)

)
. The subsets A( j) ∀ j can be re-

garded as basis vectors (Yager, 1998). Basis vectors have maximum specificity.
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Observe that if A is a singleton set then we must have A=A( j) and hence dr
(
A,A( j)

)
=

0.

Lemma 4.1.1.

dr
(
A,A( j)

)
= (n−1)

1
r if and only if A = X . (4.1.1)

Proof. The result follows from the fact that the whole space X is farthest from any

basis vactor A j.

Yagers linear measure

Sp(A) = a1−
1

n−1

n

∑
r=2

ar (4.1.2)

can be expressed as,

Sp(A) =
1

n−1

(
a1 (n−1)−

n

∑
r=2

ar

)
(4.1.3)

Which can be checked to be the same as,

Sp(A) =
1

n−1
((a1−a1)+(a1−a2)+(a1−a2)+ · · ·+(a1−an)) (4.1.4)

Intuitively, this represents the fuzzy Hamming distance between set A and the point

[a1] on the principal diagonal,

Sp(A) =
1

n−1
d1 ([a1] ,A) (4.1.5)

Let us consider the a more general case of this measure of expressed as the normal-

ized distance between [a1] and A

Theorem 4.1.1.

Sp(A) =
1

(n−1)
1
r

dr
([

a j
]
,A
)

(4.1.6)
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Proof. This formula is a measure of specificity if it satisfies satisfies the basic proper-

ties of specificity. First, observe that if A = A( j), then
[
a j
]
= X implying dr

(
X ,A( j)

)
=

(n−1)
1
r and thus Sp(A) = 1. On the other hand, if A = /0, then A = [0] and hence

Sp(A)= 0. Geometrically, specificity decreases as A approaches the principal diagonal-

in other words the nearer A gets to the principal diagonal, the more evenly distributed

the membership values become and thereby reducing precision of A.

Further, observe that this measure of specificity is regular since for any constant

fuzzy set we have
[
a j
]
= [a] = A.

4.1.2 Estimation of Uncertainty in Classification Problems Using

Specificity

We now show how this measure can be used to estimate uncertainty in classification

problems. A consider for instance the lenght of a train. If it known this lenght is

between 100 f t to 200 f t then there if no fuzziness in information being conveyed but

rather, there is lack of specificity. We are not told what is the exact value of the length

of the train. This form of uncertainty is prominent in classification problems where an

entity might posses properties of several classes to same extent.

In the previous chapter, we proposed a feature selection scheme based on some

measure of separation between classes. Now, our first assignment is to show that this

measure is indeed a measure of uncertainty based on Yager’s linear measure of speci-

ficity.

Consider a fuzzy similarity vector for the ith sample based on the jth feature

Ωi ( j) = (S1 ( j) ,S2 ( j) , . . . ,Sn ( j)) (4.1.7)
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If this vector is a single element set say

Ωi ( j) = (1,0,0, . . . ,0) (4.1.8)

then this sample precisely belongs to the first class. This is, this sample is unambigu-

ously classified using the jth feature. This lack ambiguity can be easily determined by

computing specificity of Ωi ( j). Because specificity is a measure of certainty, we see

that uncertainty in classification of sample i using feature j is given by

Ui ( j) = 1−Sp(Ωi ( j)) (4.1.9)

with Ui ( j) = 0 if Ui ( j) is a single element set and Ui ( j) = 1 if Ui ( j) = [Sk ( j)]∀k.

Consider an ideal situation where ideal vectors correspond to vertices of a fuzzy hy-

percube. If sample i is assigned class k, then the sum of D over all classes takes a

maximum value of n−1 and minimum value of 0 when

S1 ( j) = S2 ( j) = · · ·= Sn ( j) (4.1.10)

This is the same as computing specificity of Ωi ( j). We wrap this up by consider-

ing a simple numerical example. Suppose we have a classification problem with 2

classes, C1,C2 and and 3 features say f1, f2, f3. If sample i gives similarity vectors

(0.5,0.4) ,(0.4,0.4) and (0.9,0.9) using features f1, f2 and f3, respectively, then it is

difficult to decide which sample assign this sample using features f2 and f3. Using

specificity measure, we obtain maximum uncertainty with these features. On the other

hand, fuzzy entropy based feature selection method will give large uncertainty for f1

because it is closer to the centre of the hypercube as compared to f2 and f3. Thus,

using fuzzy entropy, classification using feature f2 and f3 are less uncertain. Clearly,

this is not intuitive.

Now, after classifying all the samples we would like to determine how ambiguously
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they are classified. This is a measure of uncertainty in class assignement. Given a fuzzy

similarity vector

Ωi = (S1 (i) ,S2 (i) , . . . ,Sn (i)) (4.1.11)

Then

Sp(Ωi) = Sk∗ (i)−
1

n−1 ∑
k∗ 6=k

S∗k =
1

n−1
d1 ([Sk∗] ,Ωi) (4.1.12)

Where Sk∗ (i) is the largest similarity value. Therefore a sample that is most ambigu-

ously classified is such that its corresponding similarity vector lies on the principal

diagonal of the hypercube space for classes.

4.2 Experimental Results

In this section, we present classification results from the four UCI machine learning

datasets. Classification rates, specificity and sensitivity values are reported. Plots of

classification rates vs parameters p and m are given as well. These results are obtained

using MATLAB software, version 17.

(i) Dermatology

The mean classification accuracies of 98.34% and 98.21% are achieved with 28 and

24 features respectively as compared with 97.82% without feature removal as shown

in table 4.1. Plots for 34,29 and 24 features as shown in figures (4.2.1-4.2.3). The

corresponding values of specificity and sensitivity are shown in table (4.2).

The first column in table (4.1) corresponds to method used, similarity classifier (S)

or similarity classifier with feature selection ( S & F ).

Features:

(1) Erythema.

(2) Scaling.
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Table 4.1: Classification rate with dermatology data
Method Mean Accuracy (%) Variance Dimension

S 97.82 0.0001 34
S & F1 98.34 0.0000 28
S & F2 98.21 0.0000 24

Table 4.2: Specificity and sensitivity with dermatology data
Dimension Specificity (%) Sensitivity (%)

34 99.57 97.70

28 99.69 98.11

24 99.65 98.16

(3) Definite borders.

(4) Itching.

(5) Koebner Phenomenon.

(6) Polgonal popules.

(7) Follicular papules

(8) Oral mucosal involvement.

(9) Knee and elbow involvement.

(10) Scalp involvement.

(11) Family history.

(12) Melanin incontinence.

(13) Eosinophils in the infiltrate.

(14) PNL infitrate.
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Figure 4.2.1: Dermatology classification using similarity classifier without feature se-

lection

(15) Fibrosis of the papillary dermis.

(16) Exocytosis.

(17) Acantosis.

(18) Hyperkeratosis.

(19) Parakeratosis.

(20) Clubbing of the rete ridges.

(21) Elongation of the rete ridges.

(22) Thinning of the suprapapillary.

(23) pongiform pustule.

(24) Munro microabcess.
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(25) Focal hypergranuosis.

(26) Disappearance of granular layer.

(27) Vascularization and damage of basal layer.

(28) Spongosis.

(29) Saw-tooth appearance of retes.

(30) Follicular horn plug.

(31) Perifollicular parakeratosis.

(32) Inflamatory mononuclear infiltrate.

(33) Band-like infiltrate.

(34) Age.

Figure 4.2.2: Dermatology classification using similarity classifier with 28 features

Removed features:
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(1) Erythema.

(2) Scaling.

(17) Acantosis.

(13) Eosinophils in the infiltrate.

(32) Inflamatory mononuclear infiltrate.

(34) Age.

Figure 4.2.3: Dermatology classification using similarity classifier with 24 features

Removed features:

(1) Erythema.

(2) Scaling.

(3) Definite borders.
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(13) Eosinophils in the infiltrate.

(17) Acantosis.

(19) Parakeratosis.

(23) pongiform pustule.

(30) Follicular horn plug.

(32) Inflamatory mononuclear infiltrate.

(34) Age.

(ii) PIMA-Indian Diabetes

With the Pima Indian data set, we only require 1 feature to obtain an accuracy of

77.73% as shown in table (4.3). For these data set, the best classification rate is ob-

tained with 1 feature. The plots of accuracies with respect to these parameters indicate

a significant difference with 8 as compared to 3 and 1 features as shown in figures

4.2.4-4.2.6. This dataset gives low values of specificity and sensitivity. From values of

specificity and sensitivity shown in table (4.4), the classifier performs fairly well with

5 features.

Table 4.3: Classification rate with Pima Diabetes data

Method Mean Accuracy (%) Variance Dimension

S 77.21 0.0000 8

S & F1 77.47 0.0012 3

S & F2 77.73 0.0008 1
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Table 4.4: Specificity and sensitivity Pima Diabetes data

Dimension Specificity (%) Sensitivity (%)

8 72.88 78.03

3 70.30 75.70

1 70.45 75.72

Features:

(1) Number of times pregnant.

(2) Plasma glucose concentration a 2 hours in an oral glucose tolerance test.

(3) Diastolic blood pressure (mm Hg).

(4) Triceps skin fold thickness (mm).

(5) 2-Hour serum insulin (mu U/ml).

(6) Body mass index (weight in kg/(height in m)).

(7) Diabetes pedigree function.

(8) Age (years).

46



Figure 4.2.4: Classification of PIMA-Indian diabetes data with 8 features

Figure 4.2.5: Classification of PIMA-Indian diabetes data with 3 features
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Selected features:

(2) Plasma glucose concentration at 2 hours in an oral glucose tolerance test.

(3) Diastolic blood pressure (mm Hg).

(5) 2-Hour serum insulin (mu U/ml).

Figure 4.2.6: Classification of PIMA-Indian diabetes data with 1 feature

Selected feature:

(2) Plasma glucose concentration at 2 hours in an oral glucose tolerance test.

(iii) Parkinsons

The mean classification accuracy attained with similarity classifier alone in 84.69%.

With feature selection, we managed to obtain a mean classification accuracy of 87.24%

and 87.76% with 3 features and 1 feature respectively. Plots for 22,3 and 1 features

as shown in fig 4.2.7-4.2.9. With 1 feature we have the best values of specificity and

sensitivity as shown in table (4.6).
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Table 4.5: Classification results with Parkinsons data

Method Mean Accuracy (%) Variance Dimension

S 83.22 0.0000 22

S & F1 87.24 0.0013 3

S & F2 87.76 0.0002 1

Figure 4.2.7: Classification of Parkinsons data with 22 features

Features:

(1).MDVP:Fo(Hz) Average vocal fundamental frequency,(2) MDVP:Fhi(Hz) Maxi-

mum vocal fundamental frequency, (3).MDVP:Flo(Hz) Minimum vocal fundamental

frequency, (4).MDVP:Jitter, (5).MDVP:Jitter(Abs),(6).MDVP:RAP, (7). MDVP:PPQ,

(8).Jitter:DDP - Several measures of variation in fundamental frequency, (9).MDVP:Shimmer,

(10).MDVP:Shimmer(dB), (11). Shimmer:APQ3, (12). Shimmer:APQ5, (13).MDVP:APQ,

(14).Shimmer:DDA - Several measures of variation in amplitude (15) NHR, (16).HNR,

(17).RPDE, (18).D2, (19). DFA, (20). Exponent spread1 (21).Spread2, (22).PPE
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Table 4.6: Specificity and sensitivity for parkinsons data
Dimension Specificity (%) Sensitivity (%)

22 78.44 82.75

3 79.98 84.49

1 83.71 86.57

Figure 4.2.8: Classification of Parkinsons data with 3 features

Selected features:

(3) MDVP:Flo(Hz) Minimum vocal fundamental frequency.

(19) DFA.

(20) Exponent spread1.
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Figure 4.2.9: Classification of Parkinsons data with 1 feature

Selected feature:

(19) DFA.

(iv) Thyroid data set

The similarity classifier achieved high classification accuracy with this data set.

With 5 features we have a mean classification accuracy of 97.69%. On the other hand,

with 4 featurs we managed to obtain a classification accuracy of 98.61%. The required

plots with and without feature selection are shown in figures 4.2.10-4.2.11.

Table 4.7: Classification rate with thyroid data

Method Mean Accuracy (%) Variance Dimension

S 97.69 0.0000 5

S & F 98.61 0.0000 4
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Figure 4.2.10: Classification of Thyroid data with all features

Table 4.8: Specificity and sensitivity with thyroid data

Dimension Specificity (%) Sensitivity (%)

5 97.73 95.26

4 98.84 97.82

Features:

(1) T3-resin uptake test (as a percentage).

(2) Total Serum thyroxin as measured by the isotopic displacement method.

(3) Total Serum triiodothyronine as measured by radioimmuno assay.

(4) Basal thyroid-stimulating hormone (TSH) as measured by radioimmuno assay.

(5) Maximal absolute difference of TSH value after injection of 200 micro-grams of

thyrotropin-releasing hormone as compared to the basal value.
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Figure 4.2.11: Classification of Thyroid data with 4 features

Selected features:

(1) T3-resin uptake test. (as a percentage)

(2) Total Serum thyroxin as measured by the isotopic displacement method.

(3) Total serum triiodothyronine as measured by radioimmuno assay.

(5) Maximal absolute difference of TSH value after injection of 200 micro grams of

thyrotropin-releasing hormone as compared to the basal value.

4.2.1 Disussion

In tables (4.9-4.12), a comparison of the proposed feature selection method to fuzzy en-

tropy based approach by Luukka (2011) and Luukka and Leppälampi (2006) is given.

From these results, it can be seen that the proposed method yields very impressive

results with some data sets. In particular, with the dermatology data set, we have an
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average classification accuracy of 98.21% with only 24 features. Similarly, we report a

slightly improved classification rate with the thyroid data set. The similarity classifier

gives a classification accuracy of 98.84% with 4 features as compared to 95.45% re-

ported in (Luukka and Leppälampi, 2006). In addition, these two data sets display the

best values of specificity and sensitivity. For PIMA Indian and Parkinsons data set, we

have fairly good classification results. However, the similarity classifier gives lowest

values of specificity and sensitivity with these two data sets.

Table 4.9: Feature Selection Comparison for Dermatology

Method % Accuaracy (Removed Features) % Accuaracy (Removed Features)

Pasi Luukka (2011) 98.28 (13,23,24,30,31) 98.15 (31,33)

Proposed Method 98.38 (1,2,13,17,32,34) 98.21 (1,2,3,13,17,19,23,30,32,34)

Table 4.10: Feature Selection Comparison for PIMA

Method % Accuaracy (Selected Features) % Accuaracy (Selected Features)

Pasi Luukka(2011) 75.84 (1,2,3,4,5,7,8) 75.97 (1,2)

Proposed Method 77.47 (2,3,8) 77.73 (2)

Table 4.11: Feature Selection Comparison for Parkinsons

Method % Accuaracy (Selected Features) % Accuaracy (Selected Features)

Pasi Luukka(2011) 85.03 (19,20) 84.52 (19)

Proposed Method 87.24 (3,19,20) 87.76 (1)
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Table 4.12: Feature Selection Comparison for Thyroid

Method % Accuaracy (Selected Features)

Pasi Luukka(2006) 95.45 (1,2,3,4,5)

Proposed Method 96.21 (1,2,3,5)

It is observed that for most of the data sets, some of the features used for clas-

sification are the same for both methods. This is an important observation because

features which give fuzzy similarity vectors with maximum fuzziness are equally most

ambiguous and therefore not selected for classification by both methods. However,

most ambiguous fuzzy similarity vectors are not necessarily most fuzzy. This provides

a convincing justification why the proposed feature selection method performs better

than entropy based approach.

4.3 Uncertainty in Class Assignment

We now report uncertainty due to ambiguity in class assignment. This form of uncer-

tainty is important since it tells us how much information we lose and where. Since the

similarity classifier discussed here assigns samples based on the degree of similarity

of features of samples with typical attributes representing classification classes, it fol-

lows that samples with high similarity values with two or more classification classes

are likely to be mis-classified. Average uncertainty for both correctly and wrongly

classified samples are presented in tables (4.13-4.22).

(i) Dermatology Dataset

For this dataset, with 28 features, samples correctly classified display the lowest uncer-

tainty than those correctly classified with both 34 and 24 features. Samples correctly

and wrongly classified with 34 features display highest uncertainty as compared to the

other two cases.

55



Table 4.13: Uncertainty for dermatology with 34 features

Parameter Correct classification Wrong classification

Average number of samples 175.1 3.9

Mean uncertainty 0.6755 0.7884

Variance 0.0091 0.0009

Table 4.14: Uncertainty for dermatology with 28 features

Parameter Correct classification Wrong classification

Average number of samples 175.8 3.2

Mean uncertainty 0.6102 0.7607

Variance 0.0116 0.0047

Table 4.15: Uncertainty for dermatology with 24 features

Parameter Correct classification Wrong classification

Average number of samples 176.1 2.9

Mean uncertainty 0.6336 0.7486

Variance 0.0112 0.0012

(ii) PIMA Dataset

This dataset displays very high values of average uncertainty for samples (correctly

and wrongly classified). With 8 mean uncertainty for samples correctly and wrongly

classified is higher than for 5 features and 3 features. Observe that with 8 features and 3

features, we have the same value of uncertainty, which is consistent with classification

results obtained for this data set.
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Table 4.16: Uncertainty with 8 features

Parameter Correct classification Wrong classification

Average number of samples 296.5 87.5

Mean uncertainty 0.9799 0.9890

Variance 0.0001 0.0000

Table 4.17: Uncertainty for PIMA with 3 features

Parameter Correct classification Wrong classification

Average number of samples 297.5 86.5

Mean uncertainty 0.9667 0.9689

Variance 0.0003 0.0002

Table 4.18: Uncertainty for PIMA with 1 feature

Parameter Correct classification Wrong classification

Average number of samples 298.5 85.5

Mean uncertainty 0.8904 0.9016

Variance 0.0011 0.0016

(iii) Parkinsons Dataset

The results obtained for this dataset are similar to those for PIMA dataset. However, we

see a slight reduction in uncertainty for both correct and wrong classifications when

1 feature is used. Note that lower uncertainty for 1 feature implies smaller degree

of overlap among classes based on the feature. This explains why we have better

classification results with 1 feature for this data set.
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Table 4.19: Uncertainty for Parkinsons with 22 features

Parameter Correct classification False classification

Average number of samples 83 15

Mean uncertainty 0.9927 0.9970

Variance 0.0000 0.0000

Table 4.20: Uncertainty for Parkinsons with 3 features

Parameter Correct classification False classification

Average number of samples 85.5 12.5

Mean uncertainty 0.9840 0.9900

Variance 0.0000 0.0000

Table 4.21: Uncertainty for Parkinsons with 1 feature

Parameter Correct classification False classification

Average number of samples 86 12

Mean uncertainty 0.9503 0.9721

Variance 0.0004 0.0004

(iv) Thyroid Dataset

As already seen, this dataset gives the best classification results. However, we still

have relatively high uncertainty in class assignment. In fact, samples correctly wrongly

classified display higher class ambiguity than those for dermatology dataset.
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Table 4.22: Uncertainty for thyroid with 5 features

Parameter Correct classification Wrong classification

Average number of samples 105.5 2.5

Mean uncertainty 0.7730 0.8584

Variance 0.0036 0.0005

Table 4.23: Uncertainty for Thyroid with 4 features

Parameter Correct classification False classification

Average number of samples 106.5 1.1

Mean uncertainty 0.7666 0.8548

Variance 0.0038 0.0004

4.3.1 Discussion

The uncertainty reported in tables correspond to classification results discussed in pre-

vious previously. As desired, all datasets display high mean uncertainty in misclassi-

fied samples as compared to those correctly classified. Also, all the samples correctly

classified posses class ambiguity of greater than 0.5. This is an important observation

because it tells us that these observations carry properties of more than one class to a

fairly good extent. have the lowest class ambiguity with dermatology data set, while

the parkinsons and PIMA data sets display the highest class ambiguity. This result

is consistent with classification results previously obtained. Further, we observe that

these two data sets have the lowest variances in uncertainty. This further explains why

classification rates for these two data sets were much lower as compared to the rest of

the data sets.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This thesis presented a classification model based on the fuzzy unit hypercube. First,

we have developed measures of uncertainty associated with classification problems us-

ing fuzzy specificity. Using the similarity classifier based on the generalized Lukasiecz

structure, we have demonstrated how these measures can be used to determine uncer-

tainty in class assignment. In addition, an efficient feature selection method has been

proposed as well.

The model has been validated using medical data sets from UCI machine learn-

ing repository. We managed to obtain exceptionally good results with all data sets.

Classification accuracies were better than those obtained in previous studies (Luukka

and Leppälampi, 2006; Luukka, 2011). For example, with Dermatology data set we

were able to significantly reduce features from 34 to 24 obtaining a classification rate

of 98.15% as compared with 29 features with a classification rate of 98.29% given

in(Luukka, 2011). For the Pima dataset, we obtained a classification accuracy of

76.32% with 3 features. Even though some data sets presented only a slight improve-

ment in classification rate, the reduced number of features significantly reduces com-

putational time and greatly enhances the model by reducing the number of measure-

ments required. This makes disease screening faster, more convenient and less costly.

In addition, models with fewer measurements are more transparent and more compre-

hensible, providing better explanations of suggested diagnosis, which is important in

medical applications.

In addition to classification rate, we have reported uncertainty in class assignment

due to ambiguity. All the data sets displayed greater values of average ambiguity

for misclassified observations as compared to those correctly classified. This is true

because ambiguous class assignments means observations are similar to an equal extent
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to two or more classes and are therefore, likely to be misclassified. With PIMA and

Parkinsons data sets, we have the highest values of uncertainty. This is consistent with

classification results for the two data sets. Uncertainty of this nature gives us some

insights on quality of the data sets.

5.2 Recommendations

The model proposed in this thesis uses a similarity classifier and feature selection, both

of which are based on the generalized Lukasiewicz structure producing very impressive

results. However, it is imperative to explore how other similarity classifiers compare

with this classifier in terms of classification rate and computational cost. In addition,

further research can include other forms of uncertainty such as discord, dissonance

and probabilistic. The model can also be automated for use by physicians in clinical

decision making.
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