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Abstract 

 

Modelling and Forecasting volatility is one of the fundamental areas of research in Financial 

Mathematics, and thus has been the focus of many researchers; also, financial markets are 

known to be far from deterministic but stochastic and hence random models tend to perfectly 

model the markets. This study used appropriate Discrete-time Markov models to predict the 

multivariate stochastic Autoregressive volatility of an equity portfolio on a stock market. 

Therefore, the idea of modelling volatility as a stochastic process for an accurate forecast using 

the Markov chain on the financial data sets are based on the risks that often affect investment 

opportunities and the risk factors for prices changing that investors are most concerned about 

making decisions. The results provided more accuracy on forecasting price volatility on stock 

markets. We used a 3-state Discrete-Time Markov Chain (DTMC) for a portfolio of two stocks 

for the same sector and we compared the used model (fitted on a portfolio) to the multivariate 

GARCH models using real data from a stock market. The modified and generalized model 

provided more suitable volatility smiles compared to the Multivariate Generalized 

Autoregressive Conditional Heteroscedasticity (MGARCH) models and showed that working 

in a multivariate frame is most relevant especially when the number of state is bigger. 
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Résumé 

 
La modélisation et prévision de la volatilité est l'un des domaines fondamentaux de la recherche 

en mathématiques financières et a donc été au centre de nombreuses recherches; aussi, les 

marchés financiers sont connus pour être non seulement déterministes mais stochastiques et 

donc les modèles aléatoires tendent à modeler parfaitement les marches. Cette étude a utilisé 

les modèles de Markov à temps discret approprié pour prédire la volatilité autorégressive 

stochastique multivariée d'un portefeuille d'actions sur un marché boursier. L'idée de modéliser 

la volatilité en tant que processus stochastique pour une prévision précise utilisant la chaîne de 

Markov sur les ensembles de données financières repose sur les risques qui affectent souvent 

les opportunités d'investissement et les facteurs de risque de variation des prix. Les résultats 

fournissent plus de précision sur la prévision de la volatilité des prix sur les marchés boursiers. 

Nous avons utilisé une chaîne de Markov à temps discret (DTMC) à 3 états pour un portefeuille 

de deux actions du même secteur et nous avons comparé le modèle utilisé (appliqué à un 

portefeuille) aux modèles GARCH multivariés en utilisant les données réelles d'un marché 

boursier. Le modèle modifié fournit de meilleurs sourires de volatilité par rapport aux modèles 

multicritères d'autorétérosion conditionnelle autorégressive généralisée (MGARCH) et a 

montré qu’il est plus favorable de travailler dans un cadre multivarié surtout lorsque le nombre 

d’état est plus grand. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Background of the study 
 

The stock market is an attractive area for wealth creation through investments; in fact, it is a 

market where companies can offload securities (stocks or bonds) in order to find financing. 

However, the profitability-risk couple is a primary criterion for each financial analyst in order 

to realize profits; to mitigate this risk, the players in the financial market must resort to 

modelling volatility. 

The interest in volatility has always given rise to a number of researches, and is motivated by 

important reasons including: the increasing number of companies using risk management tools, 

the number of derivatives traded in global financial markets, the increasing need to invest, the 

instability of macroeconomic factors and so on. Thus, for a company to mitigate the level of 

exposure to a financial risk, it must be able to assess the volatility of each of the assets on the 

stock market. Considering the importance of volatility, or the price movement in finance, it is 

necessary to model volatility in order to make forecasts for the future. For this purpose, several 

models for forecasting volatility have been recorded in literature including the ARCH model 

proposed by Engle (1982) and its extension GARCH model by Bollerslev (1986). These have 

become very popular and useful in that they enable researchers and analysts to estimate the 

variance of a series at a particular point of time. Since then, there have been a great number of 

empirical applications of modelling and forecasting volatility of financial time series by 

employing these models and more other new models such as the Discrete Stochastic 

Autoregressive Volatility of Adriana and Kirby (2014) in which they make use of the famous 

Markov chain. Andrei Markov (1906) discovered Markov chain or Markov process in his first 

publication on Markov chains with finite state space. Random walks on the integers and the 

Gambler’s ruin problem are Markov processes in discrete-time studied in the 1800 years. 

In financial mathematics, a Markov’s chain is simply a discrete-time or continuous-time 

stochastic process with a discrete or continuous state space. The peculiarity of this model is 



                                                                 

2 

 

that it has ¨no memory¨ that means, in determining its future state, it only takes into account 

the state of the last moment (that is, only the present moment can influence the future) and not 

from the past moment or the process history. However, this is not the case in many other 

processes such as AR, ARMA processes, where the determination or the approximation of the 

future depends on the previous states especially when the order is different from one.  

Moreover, as shown in (Norris, 1997) the class of Markov chains is rich enough to serve in 

several applications; making them the first and most important examples of random processes. 

An in-depth analysis of the Markov chain in forecasting volatility in a stock market has the 

potential to provide very useful information to investors who wish to invest in these markets, 

also, to researchers who intend to use it for one reason or for another (Simeyo et Al. (2015)).  

In the world of finance, the theory of volatility has proved to be very useful in the analysis of 

many problems, especially the problems related to investment decisions. The analysis and 

study of Markov process may provide useful insight into the qualitative and quantitative 

analysis of some models.  

Financial times series usually exhibit stylized characteristics. Knowledge on volatility of stocks 

returns is a crucial area of concern that needs special attention to compete favourably with 

developed stock markets. 

 

1.2 Statement of the problem 
 

The Discrete-Time Markov chain introduced in (Norris, 1997) proved to be somewhat useful 

in modelling volatility. Therefore, due to the importance of the study on volatility, there have 

been numerous research and various approaches on it. Among them, the two main approaches 

are deterministic models and stochastic models; however, deterministic models assume that, 

volatility at a particular time follows a deterministic function of the past whereas stochastic 

models assume that the volatility follows certain random process, and use ranges of values for 

variables in the form of probability distributions. Several authors have thoroughly modelled 

volatility using different deterministic models, but less attention has been given to the Markov 

chains, especially discrete-time Markov chain due to their property that the next value of the 

process depends on the current value but it is conditionally independent of its behaviour in the 

past.  
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Generally, stock markets are known to be far from deterministic and hence, random models 

tend to perfectly model the market. The most specific type of a mathematical object known as 

a stochastic or random process is the Markov process. Notwithstanding, Markov chain methods 

have been used to develop a class of Discrete Stochastic Autoregressive models in forecasting 

volatility for individual stock and stock index returns and it has been shown the performance 

of that models comparing to the GARCH(1,1) model (Adrianas & Kirby, 2014). However, the 

study has not carried out in forecasting volatility for portfolio returns that is a multivariate 

scenario for the simple reason that individuals or investors for a purpose of wealth creation 

need to diversify and maximise their investments. Today, globalization has resulted in higher 

international economic integration, investors and financial institutions are interested in 

knowing financial markets integration and how financial volatilities together move over time 

across several markets. Empirical results show that working with separate univariate models is 

much less relevant than multivariate modelling framework (Mgr Milan, 2014). 

 

1.3 Justification of the study 
 

Forecasting stock returns variations is one of the fundamental areas of research in Finance, and 

thus, has been the focus of many researchers; this is due to its potential ability to assess the 

level of exposure to a financial risk, and to increase the trend of investment decisions. 

Therefore, a successful prediction of the stock’s future price could yield significant profit and, 

developing better frameworks for risk modelling and forecasting is of huge benefit in financial 

industry because of the minimization of the risk or the maximization of the investments returns. 

Only to consider the characteristics of the evolution on the history situation of the event itself, 

and to predict changes of the internal states by calculating the state transition probability; thus, 

Markov model has broad applicability in prediction of the stock market (Zhang & Zhang, 2009) 
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1.4 Objectives of the Study 

 

1.4.1 General Objective 

The general objective was to develop a discrete Multivariate Stochastic Autoregressive 

Volatility model using Markov Chains process with application to the NSE stock returns. 

1.4.2 Specific Objectives 

i. To fit the Multivariate GARCH models to the NSE data and measure portfolio 

volatility. 

ii. To generalize a discrete time Multivariate stochastic autoregressive volatility model 

using Markov chain process. 

iii. To fit the Multivariate stochastic autoregressive volatility model to the stock indices 

returns in the NSE data. 

 

1.5 Significance of the study 
 

The study is highly significant considering the importance of forecasting in the world of finance 

especially in financial markets, which are somewhat considered as risk areas. Volatility plays 

an important role for stock prices prediction; it refers to the measure for price fluctuation of a 

specific financial instrument over time. It is therefore, a very important factor as mentioned 

above, that can deeply affect investment decisions and concerns every other participant or 

player in the financial markets.  

The prices movement on the financial markets is the factor that investors care the most about, 

the more the prices are variant, the greater the risk of investing. In stock markets, the price 

movement affect investment decisions making it important to model volatility of returns using 

the stochastic models, which assume that volatility follows certain random process. Therefore, 

the study will provide useful insight and help us in understanding the suitability of the Discrete-

time Markov chain in forecasting the stock prices movement. 
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1.6 Scope of the study 
 

The study will be limited only to the numerical investigation on the discrete-time Markov 

process. We use daily closing prices for Equity and KCB stocks of the NSE market for a period 

from 2010 to 2016. In particular, underlying model, theorems, model assumptions and time 

will be considered. 

However, we shall not only do the analysis of some models available in the literature for 

modelling and forecasting volatility, but we will also apply the Discrete Multivariate Stochastic 

Autoregressive Volatility model to Stock market data. 

 

1.7 Organization of the study 
 

The rest of this work is organized as follows: Chapter two presents the literature review relating 

to our research objectives which provides the related works that have been done. Chapter three 

discusses the methodology in which we develop the model. Chapter four gives data analysis 

and discussion and the conclusion and recommendations for further study are given in the last 

Chapter. 
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Chapter 2 

 

LITERATURE REVIEW 
 

This chapter presents the research on modelling and forecasting volatility of stock returns. It 

reviews the various models that have been used and studied to model and forecast volatility by 

different authors both theoretically and empirically. 

 

2.1 Generalized ARCH Models  
In recent years, a variety of models which apparently forecast changes in stock market prices have 

been introduced, and have played an important role to help people forecast the future. 

The ARCH class of model introduced by Engle (1982) and its generalization, GARCH models by 

Bollerslev (1986) are the most and widely used methodologies in modelling and forecasting 

volatility of financial time series. The literature of ARCH-type models is developed and we will 

use it as benchmark models for comparison of the Discrete Multivariate Stochastic Autoregressive 

Volatility model. In this chapter we will study different univariate and multivariate GARCH 

models. We will also use the Quasi Maximum Likelihood Estimation which is the common 

estimate method for this type of models. 

 

2.1.1 ARCH (p) Model 

Engle (1982) introduced this model for forecasting volatility, with the following specifications. Let 

 t t
e


 be a sequence of independent and identically distributed random variable such that 

 0,1te N . t t



 follows an ARCH (p) process if: 

                                                      t t tr     

                                                          
 2 2

1

2.1

t t t

p

t i t i
i

e

   








 
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with tr , the return at time t, t  denotes the average return at time t, p  is the order of the process, 

0  , and 0i   for 1, ,pi   in order to ensure non-negativity of the conditional variance 

(Engle,1982). 

Now, let  t t
F


 denote the sigma algebra representing the information set given at time t  denoted 

by   1, ,t t tF     . 

Equation (2.1) ensures that t  is measurable w.r.t 
1tF 
 provided that  E t  , we have 

                                                  

   

 

   

1 1

1

|

|

E E

E

E 0 2.2

 





 







 

t t tt t

t t t

t t

| F e F

e F

e

 

A simple interpretation of this, is that the ARCH process has a martingale difference property w.r.t 

 t t
F


. We then assume that the process is a covariance stationary white noise, with  E t   

and  

                                                

   
 

   

2 2
1 1

2
1

2 2

| |

|

var E

var

var 2.3

 



 

 







 

t t tt t

t t t

t t t

F e F

e F

e

 

This means that the conditional standard deviation is a continually changing function of previous 

squared values of the process. However, despite the simplicity and flexibility of the ARCH model, 

one of its disadvantages is that, it often requires many parameters to be estimated to accurately 

describe the process of volatility of an asset return (Tsay,2010). This can present difficulties when 

using the model to accurately describe the data set, that is why Bollerslev introduced the 

Generalized ARCH model in order to solve this problem. 

 

2.1.2 GARCH (p, q) Model  

Bollerslev (1986) introduced an extension of the ARCH model, with the following specifications. 

Let  t t
e


 a sequence of i.i.d random variables such that  0,1te N . Here,  t t




 is said to 

be GARCH (p, q) process if: 
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 2 2 2

1 1

2.4

t t t

p q

t i t i j t j
i j

e 

      
 



   
 

where p  and q  are the orders of the process,  , i , and 
j  are the parameters to be estimated, 

with 0  ,  0 1, ,i for i p    and  0 1, ,j for j q   . These are the necessary 

conditions for the variance to be positive (Chong et Al, 1999). 

If we let 0q  , the process reduces to an ARCH (p) process and for 0p q  , t  is simply  

white noise. However, the short run dynamics of the resulting volatility process is determined by 

the size of the parameters i  and 
j . 

Large ARCH coefficients, i  imply that volatility reacts significantly to markets movements, 

while large GARCH coefficients 
j  indicate that shocks are persistent on the stocks market 

(Perrelli, 2001). 

We can also write the variance 
2
t  of equation (2.4) in terms of the lag-operator L where 

 1L t t    we get: 

                                                   2 2 2 2.5L Lt t t         

where  

       2
1 2L L+ L Lp

p       and    2
1 2 2.6L L+ L Lq

q       

Moreover, if   2
1 21 0p

px x x        

that means if the roots of the characteristic equation lie outside the unit circle and the process  t  

is stationary, then we can write the variance equation of  equation (2.4) as 

                                              
 

 
 

 2 2 2.7
L

1 L1 1
t t


 


 


 

Now let 
 1 1








, and i  the coefficients of  Li

 in the expansion of 
 
 

L

1 L




 then, we 

obtain the following transformation of equation (2.7) 
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                                                           2 2

1

2.8t i t i
i

   





   

We have demonstrated that the GARCH (p, q) can also be written as an ARCH    process with 

a fractional structure of the coefficients. This clearly means that t  is also a martingale difference 

and the conditional variance of t  is given by 

                                           2

1 1

2.9
1

t p q

i ji j




 
 


  

                                              

with 
1 1

1
p q

i ji j
 

 
    to ensure the stationarity of the conditional variance. 

GARCH models have been extended by many others authors in order to fill the gaps in the main 

GARCH model. 

 

2.1.3 Symmetric GARCH Models  

Our study is focused on one of the several symmetric GARCH models that have been used in the 

literature; this is the Standard GARCH (1, 1) model which will be discussed in the subsequent 

section. This model has the particularity that the conditional variance depends only on the 

magnitude. 

GARCH (1, 1) model 

In the GARCH (1, 1) model, the dynamics show up in the ACF of the squared returns and the ACF 

is like that of the ARMA (1, 1) process. If    is close to one then, the ACF will decay slowly 

indicating a relatively slowly changing conditional variance. In this model, the conditional variance 

is presented as a linear function of its own lags. It is a particular case of  GARCH (p, q) where 

1p q  . The basic univariate GARCH (1, 1) is given by 

               2, 0, 2.10    t t t tmean Equation r N  

         1

2 2 2
1 1 1volatility Function 2.11       t t t  

where 0  , 1 0  , 1 0   and tr  is the return of the asset at time t ,   denotes the average 

return , 2

t  is the conditional variance and t  is the residual returns as defined in equation (2.4). 
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The size of parameters   and   determine the short-run dynamics of the volatility time series 

and if  1 1 1   , then any shock will lead to a permanent change in all future values. Hence, 

shock to the conditional variance is “persistence”. 

We can write the variance equation as a stochastic recurrence equation (SRE) by substituting the 

first equation (2.4) in equation (2.11), we obtain 

                                                  
 

   

2 2 2 2
1 1 1 1 1

2 2
1 1 1 1 2.12

t t t t

t t

e

e

     

   

  

 

  

  
 

This can be written in the following form  

                                                   1 2.13 t t ttX A X B  

where  t and  ,te t   are sequences of i.i.d random variables and with 
2

t tX , 

2

1 1t t


 
X , 

2

1 1 1t t
e 


 A , and 

t
B  

These following conditions are sufficient to get a solution  

              E ln
t

B    and    2.14E ln  
t

A                                                                                                                                                  

 and the meaning of   E ln
t

B
 is   max 0, ln

t
B . 

By iteration n times  we get from equation (2.13) the following expression 

 1 2 1

1

1

1 0 0

t t t t t t

n nn

t t i t j t k t i

i j i

X A A X B B

B B A X A

  



    

  

  

    
 

Conditions given in (2.14) ensure that the middle term on the right hand side converges absolutely 

and the last term disappears as shown by the following expression 

 
0

1
ln E ln 0

1

n

t i t

i

A A
n





 

  

and by the strong law of large numbers, this yields  

00

exp ln 0
n k

t i t i

ii

A A
 



 
  

 
  
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Hence, the unique solution of equation (2.13) is given by 

                                   
1

1 0

2.15
i

t t t i t j

i j

X B B A


 

 

    

In this case, the sum 
1

t i

i

B






  also converges absolutely almost surely. Then the general solution 

of equation (2.12) becomes 

                                  2 2

1 1 1

1 1

1 2.16
i

t t

i j

e  




 

 
   

 
  

Then, the solution of the GARCH (1, 1) defining equations is given by 

                            2

1 1 1

1 1

1 2.17
i

t t t

i j

e e  




 

 
   

 
  

Proposition 2.1 

A GARCH (1, 1) process is covariance stationary white noise process if and only if 
1 1

1   . 

And the variance of the covariance stationary process is constant and then given by 

 2

1 1

E
1

t




 


 
 

Proof 2.1  

From equation (2.11), 

 

2 2 2

2 2 2

1 1 1 1

2 2 2 2 2 2

1 1 1 1

t t t

t t t

t t t t t t

e

e

e e e



   

     



 

 



  

  

 

Let’s assume the covariance-stationarity, then it follows from the previous equation of 
2

t
  and 

 2E 1
t

e   that 

     2 2 2

1 1 1 1
E E E

t t t
     

 
    

Since         2 2 2 2

1 1
E E E

t t t
   

 
     
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then it is clearly shown that   2 2

1 1

E
1

t




 
  

 
  with the condition that 

1 1
1    to 

ensure stationarity. 

 

2.1.4 Asymmetric GARCH Models   

The problem of leverage effects in stock returns is a very important aspect to be studied. Since the 

previous symmetric GARCH models have not been able to capture this relevant aspect of the stock 

returns, we propose some models which have been introduced in the literature in order to solve this 

problem, while being able to capture this asymmetry: they are called asymmetric models. 

These models include, EGARCH model (Nelson,1991), TGARCH (Glosten et Al, 1993) …but our 

study will focus on the EGARCH model which is most common and where the stocks of the same 

magnitude, positive or negative have different effects on future volatility. 

 

EGARCH Model  

This model is based on the logarithmic expression of the conditional variability. We use this model 

to capture the asymmetric responses of the time varying volatility and returns at the same time, 

whenever the parameter values are negative, the model ensures that the conditional variance is 

always positive (Suliman and Winker,2012), this means that there is no need for parameter 

restrictions to impose non negativity. The model was developed by Nelson (1991) and hence, the 

following equation 

                           2 2

1 1

ln 2.18ln
p q

t i i t i

t i j t j

i jt i

  
   


  



 


     

where   is the asymmetric response parameter. 

The EGARCH (p, q) conditional variance model includes q  past log conditional variances that 

compose the GARCH component polynomial. 

In most empirical cases,   is expected to be negative so that a “negative shock” increases “future 

volatility”, while a positive shock eases the effect on future volatility (Harvey and Genaro, 2013). 

Therefore, for an EGARCH (1, 1) model where 1p q   given by 



                                                                 

13 

 

                         2 2 1 1

1 1 1

1 1

ln 2.19
2

ln
  

    
 

  



 

  
     

  

t t

t t

t t

 

The left hand side is the log of the conditional variance. The coefficient   is known as the 

asymmetry or leverage term. The presence of leverage effects can be tested by the hypothesis that 

0  , the impact is symmetric if 0   and 22 / 7  . 

 

2.2 Multivariate GARCH Models 
 

2.2.1 Basic Idea 

Today, globalization has resulted in higher international economics integration, investors and also 

financial institutions are interested in knowing financial markets integration and how financial 

volatilities together move over time across several markets or assets. 

Empirical results show that working with separate univariate models is much less relevant than 

multivariate modelling framework. Let’s assume that 

1
Assumption . Assets pricing depends on the covariance of the assets in a portfolio. Hence, it is 

important to consider the co-movements in the portfolio. 

2
Assumption . Financial volatilities move together more or less closely over time across assets and 

markets (correlation coefficient). 

3
Assumption . Recognizing the previous feature through a Multivariate model should lead to more 

relevant empirical models than working with separate univariate models. 

 
4

Assumption . In financial applications, extending from univariate to multivariate modelling 

opens the door to better decision tools in various areas such as asset pricing models or portfolio 

selection. 

MGARCH models were initially developed in the late of 1980s and the first half of the 1990s. The 

most common application of these class of models is to estimate the volatility effects among 

different markets or assets. In MGARCH models, covariance matrix need by definition to be 

positive definite, therefore imposing positive definiteness is one of the features that needs to be 

taken into account in its specifications. One possibility is to derive conditions under which the 

conditional variance matrices implied by the model are positive definite, but this is often not 
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feasible in practice. In this case, an alternative is to formulate the model in a way that positive 

definiteness is implied by the structure (in addition to some simple constraints). 

Before we start with the definitions, we will introduce some basic multivariate framework of 

GARCH models. 

Let’s consider a stochastic vector* process  X
t
 with dimension k . Let F

t
 be the non-decreasing 

collection of   fields generated by past of the series X
t
 that means: 

 1
F X ,X , .

t t t



  

Assume that conditional covariance matrix Ht
 of  X

t
 is measurable  with respect to 

1
F

t
. The 

MGARCH framework is then given by      

                                         X H 2.20 tt t
z                                                   

where 
2H

t i j t
     is k k  symmetric positive definite matrix for all t . H

t
 may be obtained 

by Cholesky decomposition of  H
t
. 

t
z  is a k dimensional i.i.d vector process with zero mean and 

unit variance*. 

Hence, 
t

z  is independent of 
1

F
t

, it follows that    1
cov | F cov I


 

t t t n
z z . The process X

t
 

is then a k  dimensional vector martingale difference sequence*. That means  

 1
E X | F 0




t t
 

                                         1 1
cov X | F H cov | F H H 2.21

 
 

t t t t t t t
z  

The demonstrations can be referred in the univariate section. The information set F
t
 contains both 

lagged values of the squares and cross-product of X
t
 and elements of the conditional covariance 

matrices up to time t . 

 

2.2.2 Generalizations of the univariate to Multivariate 

The extension from univariate GARCH to the Multivariate introduced above  requires considering 

k dimensional stochastic process with zero mean random variables X
t
 and covariance matrix 

H
t
 as shown previously. 
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a. VGARCH Model 

Bollerslev et Al (1988) proposed a VGARCH model which is a straightforward generalization of 

the univariate GARCH model. 

 Every conditional variance and covariance is function of all lagged conditional variance and 

covariance, as well as lagged squared returns and cross products of returns. The VGARCH is 

defined as follow: 

Definition 2.1 

A VGARCH (p, q) process is a martingale difference sequence X
t
, relative to a given filtration F

t

, whose conditional covariance matrix  1
H cov X | F




t t t
 satisfy, t   

               

       
1 1

'Vech H A X X B H 2.22
  

 

   
p q

t i t i t i j t j

i j

vech vech  

where  .vech  is the operator that stocks the lower triangular portion of a symmetric square k k  

matrix into a   1 / 2 k k dimensional vector.   is an   1 / 2k k   dimensional vector, 

A
i
 and B

i
 are square parameter matrices of order   1 / 2k k   

For a purpose of explanation, let’s consider a bivariate VGARCH (1, 1) model with 2k   and we 

denote  2 H
t t

vech  , the equation (2.29) becomes 

2 2 2

11, 1, 11 12 13 1 1 11 12 13 11 1

2 2 2

12, 2, 21 22 23 1 1 2 1 21 22 23 12 1

2 2 2

22, 3, 31 32 33 2 1 31 32 33 22 1

X

X X

X

t t t t

t t t t t t

t t t t

a a a b b b

a a a b b b

a a a b b b

  

   

  

 

  

 

          
          

             
                   

 

We can notice that, from this we immediately see equivalency between the VEC and VECH 

representation. 

In VEC representation all the covariance equations appear twice, because there is an equation for 

2

,i j t
  as well as for 

2

ji,t
 . This is because all the off-diagonal terms appear twice within each 

equation. (i.e. both of the terms 
2

, 1ij t



 and 

2

, 1ji t



 appear in each equation). We can then remove 
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this redundant terms without affecting the model doing so, dimensions of matrices A
i
 and B

i
 

become   1 / 2k k   instead of 
2k . 

This model is general and flexible, and the coefficients are also directly interpretable, but it has 

some drawbacks in applications, the higher number of parameters which equals 

      
2

1 / 2 1 / 2p q k k k k     , however the model will be practicable in practice in 

our study since we use the bivariate case. Another disadvantage is, there exists only sufficient 

conditions on the parameters to ensure that conditional variance matrices H
t
 are positive definite 

almost surely t . 

The restrictions of the model are introduced by Bollerslev, Engle and Wooldridge (1988) such that, 

each component of the covariance matrix H
t
 depends only on its own past and past values of 

'X X
t t

 as in equation (2.22), that means in the diagonal representation, it is assumed that the 

matrices A
i
 and B

i
 are diagonal, we call it a diagonal VECH model. 

b. Diagonal VGARCH Model 

This so called DVGARCH model will reduce the number of parameters to 

    1 1 / 2p q k k    and therefore it is still possible to obtain conditions for positive 

definiteness of H
t
 t . 

To illustrate the bivariate case, the DVGARCH model is simply: 

Letting 
2

t t
h  , 

2 2 2

11, 1, 11 1, 1 11 11, 1

2 2 2

12, 2, 22 1, 1 2, 1 22 12, 1

2 2 2

22, 3, 33 2, 1 33 22, 1

0 0 X 0 0

0 0 X X 0 0

0 0 X 0 0

t t t t

t t t t t t

t t t t

a b

a b

a b

  

   

  

 

  

 

          
          

             
                    

 

We have  

2 2 2

11, 1, 11 1, 1 11 11, 1
X

t t t t
a b  

 
    

2 2

12, 2, 22 1, 1 2, 1 22 12, 1
X X

t t t t t
a b  

  
    

2 2 2

22, 3, 33 2, 1 33 22, 1
X

t t t t
a b  

 
    
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In the bivariate model illustrated here, there are three free parameters in each of the 
1

A  and 

1
B  matrices and nine parameters (including constants). In the general k variate DVGARCH 

model there are   1 / 2k k   free parameters in each matrix.  

However, the DVGARCH representation seems to be too restrictive since no interaction is 

allowed between the different conditional variances and covariance. 

In order to derive a sufficient condition for the DVGARCH for H
t
 to be positive definite , we 

write the known DVGARCH model in a matrix representation yields 

                                   1 1 1

'H W + A X X B H 2.23
  

 
t t t t

 

where  denotes the element-by-element product of the two matrices. W , A , and B  are all 

k k  parameter matrices. Using Cholesky decomposition of the parameter matrices and from 

the properties of a Hadamard product yields  

                     1 1 1

' ' ' 'H WW + AA X X BB H 2.24
  

 
t t t t

 

where 
'WW , 

'AA , and 
'BB  are all positive semi-definite and therefore, H

t
 is positive 

definite t , since the initial covariance matrix 
0

H  is also positive definite. 

By writing the parameters matrices in the form of Cholesky decomposition, the positive semi-

definiteness is guaranteed in estimation without imposing any further restrictions. 

By definition we have the operator L as mentioned previously in the univariate case, where 

LX Xi

t t i
  and by convention,   2

1 2
A L A L + A L A Lp

p
     and 

  2

1 2
B L B L + B L B Lq

q
   . Now let 

t
z  our k dimensional i.i.d vector process with 

mean zero and unit variance, knowing that 
t

z  is independent of 
1

F
t

, it follows that 

   1
cov / F cov I

t t t n
 z z . There exists a VGARCH process X

t
 such that X H tt t

 z  

where  1
H cov X / F

t t t
  and  1

F X ,X , .
t t t




 . 

Assuming that X
t
 is doubly infinite sequence, yields to the following equation for conditional 

covariance matrix, by rewriting equation (2.29) as  
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                                
1

1

'H B L A L X X 2.25






  
 

i

t t t

i

vech vech  

Proposition 2.2 

Equation (2.32) is indeed a VGARCH model. 

Proof 2.2 

           
1

2

' 'H A L X X B L A L X X
i

t t t t t

i

vech vech vech 






    
   

                   =            
1

1

' 'A L X X B L B L A L X X
i

t t t t

i

vech vech 






   
   

                    =        'A L X X B L H
t t t

vech vech      

In the VGARCH representation and even DVGARCH representation, the restrictions can be 

difficult to check, let alone impose during estimation. We then propose a new parameterization 

which easily imposes these restrictions and which eliminates very few if any interesting models 

allowed by the VGARCH representation. Necessary conditions for the conditional variance 

matrix is presented by Engle et Al (1995), to be positive definite, such conditions are often 

difficult to impose during the optimization of the log-likelihood function; Bollerslev (1990) 

suggested a CC-MGARCH model that can overcome these difficulties. 

 

c.  Constant Conditional Correlation Model 

Introduced for the first time by Bollerslev (1990), the conditional correlation matrix in this 

class of models is time invariant. We then choose a GARCH-type model for each conditional 

variance and we model the conditional correlation matrix, based on the conditional variances. 

Since the conditional correlation matrix is time invariant, the conditional covariance is 

therefore proportional to the product of the corresponding conditional standard deviations. 

Hence, 

Definition 2.3 

The CCC (p, q) process is a martingale difference sequence X
t
, relative to a given filtration 

F
t
, whose conditional covariance matrix  1

H cov X | F



t t t

 satisfy 
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                               t t t ij iit jjtH D RD 2.26     

where                     t 11t kktD diag , , 2.27   

and                              ijR 2.28   

is a symmetric positive definite matrix with ii 1  , i  then off diagonal elements of the 

conditional covariance matrix are defined as  t it jt ijij
H     for i j , 1 i, j k  . 

2

iit  is 

defined as univariate GARCH (p, q) model 

                    
qP

2 2 2

t i t i i t i

i 1 i 1

A X B 2.29   

 

     

where   is k 1  vector, iA  and iB  are diagonal k k  matrices. See Francq and Zakoian 

(2010). 

d. Dynamic Conditional Correlation Model 

A generalization of the CCC model was proposed by Engle (2002), the so-called DCC is a new 

class of multivariate models where conditional correlation matrix is time-dependent. These 

models are flexible like the previous univariate GARCH and parsimonious parametric models 

for the correlations. 

 

Definition 2.4  

The DCC process is a martingale difference sequence X
t
, relative to a given filtration F

t
, 

whose conditional covariance matrix  1
H cov X | F




t t t
 satisfy 

                                          t t t tH D R D 2.30  

where  

                                     t 1t ktD diag , , 2.31   

and tR  is k k  time varying correlation matrix of X
t
, 

2

it  is defined as univariate GARCH 

(p, q) model. 
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i ip q
2 2 2

it i ij t j ij t j

j 1 j 1

X     

 

     

where i , 
ij , and 

ij  are non-negative parameters for i 1, ,k , with the usual GARCH 

restriction for non-negativity and stationary being imposed, such as non-negativity of variances 

and 
i ip q

ij ij

j 1 j 1

1 
 

   . 

In bivariate case, the number of parameters to be estimated equals   k 1 k 4 / 2  . Note 

that tH , being a covariance matrix has to be positive definite, tD  is positive definite since all 

the diagonal elements are positive, this ensure tR  to be positive definite. Also, all the elements 

in the correlation matrix tR  have to be equal or less than one by definition; See Engle (2002). 

 

2.3 A review on Discrete-Time Markov Chain 
 

The concept of Markov chains came into being at the beginning of the 20th century. The Russian 

mathematician Andrei Markov introduced them in a paper published in 1906. Since that time, 

many scientists working in fields as varied as statistical physics, biology, mathematics and 

mathematics finance, have been able to integrate the key properties of the Markov chains in 

their respective scope. In the literature, the first paper that we have been able to identify, 

involving the Markov chains in a financial context is Pye (1966), the problem is the evaluation 

of cash flows in an uncertain environment of interest rates. The author uses Markov chains to 

model the evolution of the short-term rate for a given period. This employment is based on the 

Markov hypothesis of the evolution of these rates. 

In other words, the author assumes that the short-term rate that will be effective in a period 

depends only on the current short-term rate for a period. Under these assumptions, the 

evaluation of financial flows is therefore carried out only by simple matrix operations.  

Simeyo et Al (2015) used a derived initial state vector and a transition matrix to predict the 

states of Safaricom share price accurately. They concluded that the Markov chain predict 

method is purely a probability forecasting method, as their predicted results were simply 

expressed probability of certain state of stock prices in the future rather than be in absolute 

state. Their study showed how Markov model fits the data and its ability to predict trend. 
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Kobbacy and Nicol (1994) also use Markov chains to model interest rates. The transition matrix 

of the Markov chain has been obtained with historical data. We can thus see that; the Markov 

chain can be used as much in a context of historical probability as in a more theoretical context. 

The Markov chains have also been privileged tool to analyse the concept of random walk, for 

example McQueen and Thorley (1991) in which the authors use a transition matrix to test the 

hypothesis that annual returns follow a random walk.  

A discrete time stochastic process is a family of random variables  ,tv t N  defined on a 

given probability space and indexed by the parameter  0,1,2,t N  . 

If the state space of a Markov process is discrete, the Markov process is a discrete-time 

stochastic process and is called a Markov chain. We will consider Markov chains having finite 

number of states: 

                                                  

   1,2,3, , 2.32 mM  

with 3m . Therefore, a first-order discrete-time Markov chain (DTMC) having 3m  

discrete states satisfies the following relationship: 

 1 1 1Prob / , , ,       t k h t i t jv v v v  

 1Prob /   t i t jP v vi j
 

where  1 2, , ,t Nv     for all t . The conditional probabilities  1 1Prob /   n n n nv v  

are called the single-step transition probability of the Markov chain. They give the conditional 

of making a transition from state i  to state j  when the time parameter increases from n  to 

1n . These probabilities are independent of  n  and are written as: 

   1 / , 2.33Prob      i j t i t jv v i j MP  

The matrix P , formed by placing i jP  in row i  and column j for all i  and j , is called the 

transition probability matrix (t.p.m). Therefore, the elements of the matrix P  should satisfy 

the two following properties: 

 1 0 1 ,i jP i j M     

 
1

2 1
m

i j

i

P j M


    
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Chapter 3 

METHODOLOGY 

 

3.1 Proposed Model  
In this work, we extended the model of Adriana and Kirby (2014) by developing a discrete 

multivariate stochastic autoregressive volatility model. Stochastic modelling is a form of 

financial modelling that includes one or more random variables. Among the stochastic models, 

one kind of process called Markov process is a specific type of a stochastic process, which is a 

mathematical object usually defined as a collection of random variables, this has been studied 

by several independent researchers. Two related modelling strategies are typically followed in 

specifying the dynamics of the volatilities; the volatilities can be assumed to be a non-linear 

function of past returns, as shown previously in the ARCH type models also, the volatility 

process is a function of an exogenous shock as well as past volatilities as shown below. The 

stochastic volatility model can easily be parsimoniously extended to include multiple assets. 

The standard stochastic volatility model is defined as 

                            t t tr v    1,..., , (0,1)tt T N                                            

where tr  is the return for the interval 1t   to t , 0tv   is the return volatility for period t , and 

t  is a white-noise error that is independent of 
t jv 

 for all 0j  . 

A discrete time stochastic process is a family of random variables  ,tv t N  defined on a 

given probability space and indexed by the parameter  0,1,2,t N  . We can assume that 

1tv   follows a first-order Markov process, i.e. 

1 1 1

1

Pr ( / , , , )

Pr ( / ) t

t k h t i t j

t k t j

v v v v

v v

   

 

 



   

   
 

where   is the standard deviation, and also that the transition probabilities for this process are 

time invariant, that is: 

1

1

Pr ( / )

Pr ( / ) , t

t n k t n i

t k t i

v v

v v n

 

 

  



 

   
 



                                                                 

23 

 

That means we model volatility as a time-homogeneous, first-order Markov Chain with 3m 

states, which are respectively (Decrease-Stable-Increase). It was first decided that stock prices 

could either fall (this is bearishness in a downtrend), remain unchanged (that is what we called 

Stable; this is an indecision in a sideway market) or rise (this is bullishness in an uptrend). 

When a stock market is on the rise, it is considered to be an up and coming economy, it is often 

considered as the primary indicator of a country’s economy strength and development. A rise 

in share prices is usually associated with increased business investment and vice versa.  

Volatility is simply conditional standard deviation and is computed by the given formula, then 

its unconditional:  
2

1

1

1
ˆ

T

t

t

r
T







   

As mentioned before, tr  is the return of an asset at time t  and   is an average return over T  

periods. We use conditional  variance, 
2 , as a measure of volatility but variance and standard 

deviation are already connected by a simple relationship.   

From that, suppose '
1( , , )kS SS  denotes a vector of log-prices for k  financial assets, and 

1

'( , , )t ktt r rr  denotes a vector of the observed log- returns for k  financial assets at time t  

for 1, ,t T . We assume that the conditional mean of r  is zero for expositional purposes. 

Note that the conventional first-order Markov Chain model for k financial data sets of m  states 

has km states. 

Let 1( , , )t t kt  , 1( , , )t t ktv vV  . A Multivariate model of returns is then defined as:  

                               3.1 Vt t tr                                                                                           

 where 
' V V tt t   is the k k  volatility matrix of tr , and εt  is a 1k  vector of White-noise 

error which are independent of 
t jV  for all  0j  , and k  the number of assets. The model of 

returns has to focus both the distribution of the shocks t  and the functional form of the 

volatilities t . In order to illustrate the key elements of our strategy, we assume that the 

dynamics of volatility is governed by a first-order Markov chain properly parameterized.  

Let’s assume that 1t  follows a first-order Markov process, i.e. 

 1 1 1/ , , ,P t k h t i t j    V V V V     
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1P( / ),   V Vt jt k
t   

In fact, we assume here that the volatilities that will be effective in a period depends only on 

the current volatilities for a period. 

Commonly the return shocks εt  are assumed to be normal and tr  is conditionally normal, 

while the unconditional distribution of r  is non-normal, and can exhibit the expected stylized 

facts about returns, such as fat tails and volatility clusters. The variance of the shock returns is 

not constant over time or the volatility is clustering. 

In the SV case, the volatilities are a dynamic latent variable and estimation is nontrivial since 

the volatilities have to be integrated out of the joint density for returns and volatilities. The 

stochastic volatility specification has several advantages over the GARCH class of models e.g. 

they are much more closely integrated with microeconomic theory (Anderson,1994). 

The expression of the volatility is: 

                                                         

 1 1
3.2'

 
V

t t
 x    

 and  

                                                1 1
3.3P'

 
 tt t

x x e  

where tx  is the state of today and '  an 1k  vector of m  that specifies the volatilities mass 

points and where each  1 2

'
, , ,m M    . 

We can represent an M-states Markov chain in terms of a M 1  vector tx  whose each thj  

element equals 1 if the process is in state  1,2. ,Mj  at time t  and 0 otherwise; see 

Hamilton (1994). We have the state-transitions described by a VAR (1) process as below: 

1 1
P' tt t 

 x x e    

where P  is a M×M  transition matrix with 1 ) k, j M      P V | V
k j t k t j=P(   and 1te  is 

a vector martingale difference sequence, i.e., 1 1 1E( , , , ) 0  tt t|e x x x . 

If we assume that for the 3-variate case, we work with 3-states (Decrease-Stable-Increase) then, 

the probability transition matrix is of the form: 

11 12 13

21 22 23

31 32 33

 
 

  
 
 

P

P P P

P P P

P P P
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Calculating the state Probabilities of the posterior closing days 

Let us denote the state probabilities matrix in different periods and for the portfolio of stocks 

by ,k in . 

Where 1,2 ( )k the number of stocks , 1, ( )i the different periods  and 
   ,, 1

k

k ik i ij
n n p


        

Thus,  
   

 
,, ,

n

k ik i n k ij
n n p


         

Depending on the state of the closing share prices on the last day “of trading” period under 

study ( . 1756thi e the day ) with no follow-up information, it will be regarded as the initial 

matrix. Suppose they are all at “Stable” state 

 , 0

1 0 0

0 1 0

0 0 1

k
n

 
 

  
 
 

 

By virtue of the initial state matrix, we can predict state probabilities and transition matrix of 

various closing date in future. For example, we can obtain the state probabilities closing prices 

on the 1757th
 day as: 

     , 1 , 0 ,k k k ij
n n P   

State probabilities matrix of closing prices on 1758th
 day will be 

     , 2 , 1 ,k k k ij
n n P  and so on. 

Initial state vector-matrix of portfolio shares prices 

Each closing day is taken as a discrete time unit and the closing share prices of each stock of 

the portfolio are divided into three states as Decrease (D), Stable (S), Increase (I). 

If we let 1kX D , 2kX S  , 3kX I  or more precisely, let 
1

11X D ,
1

21X S ,
1

31X I  (for the 

first stock (Equity)). Then, 
2

12X D , 
2

22X S , 
2

32X I (for the second one (KCB)), where 

,i kX  are the number observations for the shares prices in the named states gathered over the 

period of study, then the state space is: 
11 21 31

12 22 32

 
 
 

X X X
E

X X X
 

 Note that a state probability is the possibility size of emergence of a variety of states. 

Therefore, the state matrix here is denoted by:  
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 

3111 21

,

3212 22

1756 1756 1756

1756 1756 1756

 
 

  
 
 

i k

XX X

n
XX X

 

Where 1,2,3 ( )i is the number of states and 1,2 ( )k is the number of stocks  

Then, the probabilities for share prices that decrease (D) are stable (S) and increase (I) in the 

portfolio is: 

 0

0.3963 0.2340 0.3695

0.4322 0.1771 0.3906

 
  
 

n  

Establishment of the three states Transition Matrix 

Let the transition matrix involve three states; the states are the fact that from a given started 

point each stock Decrease, doesn’t change (Stable) or Increase. Let’s now compile the 

transitions from one state to another for the given portfolio stocks from our data panel. 

The transitions from one state to another are: 

Stock Decrease Stable Increase Sum 

Decrease 
11n  12n  

13n  1 jn  

Stable 
21n  22n  23n  2 jn  

Increase 
31n  32n  33n  3 jn  

We have: 

Equity Decrease Stable Increase Sum 

Decrease 279 148 269 696 

Stable 159 114 138 411 

Increase 261 148 240 649 
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KCB Decrease Stable Increase Sum 

Decrease 259 79 421 759 

Stable 205 106 0 311 

Increase 296 126 264 686 

Each number in these tables refers to the number of times a transition has occurred from state 

i  to state j  for each stock. We computed the transition probability in order to get the desired 

transition matrix for the portfolio of stocks. We used the previous constructed transition 

probability matrix and in conjunction with the probabilities values of the present state of the 

system in order to determine the probability of the next states. Here 
i j

i j

j

n
P

n




 and

1Pr ( )  V | V
k

i j t i t jP   , we have the following transition probability matrix: 

0.40 0 0.21 0 0.39 0

0.39 0 0.28 0 0.34 0

0.40 0 0.23 0 0.37 0

0 0.34 0 0.10 0 0.55

0 0.66 0 0.34 0 0.00

0 0.43 0 0.18 0 0.38

 
 
 
 

  
 
 
  
 

k

i jP  

The model allows for leverage effects and time varying correlation. Hence, it is more flexible 

than those other models, the estimated model should be the same as the Multivariate model of 

Danielson (1998) and Harvey et Al (1994).  

Assume that in the equation of the multivariate model of returns, the return shocks εt  are 

multivariate normal. From the definition of the k k  matrix of volatilities t , where the 

covariance matrix, 
t  is defined by: 

 

where  is the matrix of correlation coefficient defined by 
'E t t

 
 
   and: 

 1 1i j i j      

 1i j i j     

'  t t t
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The covariance matrix will always be positive definite since   is positive definite. In the MSV 

model, variances and correlations are instantaneous stochastic variables. 

In the discrete state-space framework, the autocorrelation function of volatility is determined 

by how we parameterize the transition matrix of the Markov chain. The most transparent way 

to obtain a multivariate first order autoregressive model is to specify P  such that it is 

immediately apparent. We have: 

                                   

 1 1 3.4       t t t  

This is an AR (1) model of volatility, where   is the first order autocorrelation coefficient of 

volatility and, 
1 1't te    is white noise. We can set 

                                       P = I 1 1 ' 3.5   M M                                       

where  0,1 , MI  denotes an M M  identity matrix, M1  is the M 1  vector of 1’s and   

is the M 1  vector of ergodic probability with  tE x  , with tx  denoting the state. 

By substitution of equation (3.5) into equation (3.3) and simplification, we obtain the volatility 

process in equation (3.4) with  1 '     . This is a straightforward approach for 

formulating multivariate first order discrete stochastic volatility model. 

 Therefore, we will refer equations (3.2), (3.3) and (3.5), as a Discrete Multivariate Stochastic 

Autoregressive Volatility (1, M) model, this designator conveys its two most important 

features. Volatility follows a discrete AR (1) process, and allows for M  different realizations 

of volatility.  We then assume that the distribution of volatility has discrete support for 

achieving the computational tractability of our approach. 

The choice of N  and M  controls the degree of approximation error, if we wanted to 

approximate a continuous stochastic AR volatility process in which the marginal distribution 

of volatility is log normal, we could parameterize   and   by specifying the mean an 

variance of the log normal distribution. Formulating a multivariate higher-order of the previous 

DMSARV model will require some modifications to the methods developed above and this is 

an interesting avenue for future research. 
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3.2 Parameterization Strategies 

Since M  is small ( i.e. 3 ), the multivariate stochastic volatility specifications developed 

below are slightly parameterized because each 
k  and 

k  have M  elements for k 1,2 We 

will impose two additional restrictions on the parameter space for more specifications. Let 

parameterize 
k  and 

k  as: 

                       

 jk k k j, k 1,2 and j 1,2, ,M 3.6       

where each 0 and       

Volatility mass points are evenly spaced along a line. Now,  
k  can be parameterized as:  

                           
 

   
   

M jj 1

jk k k

M 1 !
1 3.7

j 1 ! M j !
  


 

 
     

j 1, ,M with M 3 and k 1,2   , where  0,1 . 

By imposing these two restrictions, we obtain a class of models that have only 8 parameters 

regardless the size of the state space. 

By extending this approach to a log linear specification, this yields 

                             jk k klog j j 1, ,M 3.8      

where 0   and the value of   is unrestricted, one in which the mass points of the log-

volatility are evenly spaced along a line. Changing how to parameterize   has no effect on 

the basic time series of volatility, t  still follow a discrete AR (1) process. 

Therefore, knowing that parameterization strategies of   is an important factor for the 

approximation of the marginal distribution of volatility, however, the evidence from the 

realized-volatility literature suggested that the marginal distribution of volatility is much closer 

to log normal than to normal. Then, we use the parameterization which is more in line with 

log-normality and expect it to better fit the data. 

Another parameterization of   that offers greater flexibility in the positioning of the volatility 

mass points is done by replacing the linear functions in the previous equations with 

polynomials of any order less than M , That is  
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 2

jk k k klog j j 3.9       

where 0   and the values of   and   are unrestricted, allowing the mass points of log-

volatility to take on a quadratic configuration, provided that M 3 . 

The normal distribution has the fourth moment equal to 3, although some papers have shown 

that the distribution of market returns have sample fourth moments larger than 3. Also, prices 

movements are negatively correlated with volatility, this means that the volatility of shock 

tends to increase when the stocks prices fall, decrease when the stock prices rise and null when 

the stock prices are stable, since the stock market prices are highly fluctuating.  

The simplest way to estimate volatility is taking daily squared returns, Unfortunately, this 

method gives an inaccurate estimation of volatility (Taylor, 1986); we then calculate daily 

returns using the closing price of each asset in the end of a trading session. 

   

3.3 Models with Asymmetric Volatility 
There is an asymmetric relation between stock prices changes and the volatility of future stock 

returns as shown previously. Therefore, the source of this asymmetry has been explained in the 

literature of Adriana and Kirby (2014); the common explanations are known as the leverage 

hypothesis and the volatility feedback hypothesis. 

It is known that the leverage hypothesis asserts that a fall in the stock market price leads to an 

increase in financial leverage, which makes the stock a riskier investment and that can create a 

decreasing need to invest, and causes its volatility to increase, while the volatility feedback 

hypothesis asserts that the risk premium demanded by investors increases whenever they 

expect volatility to increase, and this increase in the risk premium immediately causes a 

decrease of the stock prices. 

In that case, in order to capture these effects, we may allow the transition probability for the 

volatility process to be variant over the time. 

Let consider the following model 

 
t 1 t 1

t 1 t t t 1

'x

x P 'x e 3.10

 

 

 

 


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with 
tP  a time varying transition matrix, denoted by 

   t M M tP I 1 1 ' 3.11      

Here 
t  is no more  tE x  but  it it 1 i1f r ,r , , r with i 1, ,k  . The time-varying 

transition probability still requires some parameterization decisions and since its well-known 

that the volatility follows a discrete AR (1) process, and that 
tP  depends on predetermined and  

exogenous variables (see Diebold et Al. (1994), for further discussion). The transition 

probabilities for 
t 1  are a function of only the lagged returns which are those predetermined 

variables. Let, 

 t 1 t t t 1 3.12         

This model is described by a discrete AR (1) process with T-varying intercept, where 

 t t1 '     . This process can capture asymmetric volatility effects because it allows 

the expected value of 
t 1  knowing 

t  to be correlated with 
tr  and 

t 1 t 2 1r , r , , r 
. The 

correlation between returns and volatility like that implied by the leverage and volatility-

feedback hypothesis, is generated by having negative returns in periods t  and earlier to be 

associated with changes in 
t  that increase the value of 

t . Another parameterization of 
t  

is 

 
   

     
j 1 M j

k k k

jt t t

M 1 !
1 3.13

j 1 ! M j !
  

 
 

 
  

 j 1, ,M  

Let’s specify a binomial inspired parameterization for 
t   

 
   

   
M jj 1

jt t t

M 1 !
1 3.14

j 1 ! M j !
  


 

 
 

j 1, ,M  

where the time varying parameter 
t  is: 
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 
 

 
2 t 1

t t 1 t 2 1

t 2 t 1

t t 1 t 2 1

exp r r r r
3.15

1 exp r r r r

    


    



 



 

       


        
 

with  0,1  

In this case, the sign of   controls the strength and direction of the asymmetric volatility 

effect. If we set 0  , that means, it gives us a model in which negative returns are associated 

with increases in expected future volatility. On the other side,   controls the rate at which this 

asymmetric volatility response diminishes with time. If at time t , a negative return tells us that 

the volatility is expected to increase in the future, then this expected increase could be entirely 

transitory if     , if     then it could be moderately persistent and highly persistent of 

and only if it is close to one i.e.     

 

3.4 Model with time varying volatility persistence  
We would like to formulate a model that displays time-varying volatility persistence, allowing 

for time-varying transition probabilities, we therefore allow the transition probabilities matrix 

for the volatility process to vary over the time by assuming it is selected in a stochastic manner 

for each t . 

If we suppose that  t t 1
y




 is a stochastic process with discrete support such that  tY 1,2  

for all t  and  t 1t 2ty y ,y '  a k 1  vector. If we let 
tY  be generated by a time-homogenous 

ergodic and irreducible 3-state Markov chain, then we can express the transition probabilities 

for 
t 1Y 

 as 

 

         
t j

t 1 t

b

Pr Y j / Y

1 1 2 j 3 j j 1 j 2 1   




 
 



        
 

where  0,1  and  0,1  

Let 
 y

tx  denote a 3 1  vector whose 
thj  element equals one if  

tY j  and zero otherwise. 
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To obtain a general multivariate stochastic volatility model for volatility that displays time-

varying  volatility persistence, we assume that the joint transition probabilities of 
t 1  and 

t 1Y 
 are given by 

 

      
t k

t 1 k t 1 t t

j k j t 1 t

Pr ,Y j / ,Y

1 1 Pr Y j / Y


  

 

 

   

   


 

with  j 0,1   for  j 1,2,3 , and 
1 2 3    . 

 

3.5 Estimation Method 
As S.V models typically do not have a closed-form expression for the likelihood function, the 

estimation of the parameters for the wide range of univariate and multivariate S.V models has 

attracted significant attention in the literature. An important concern for the choice of a 

particular estimation method lies in its efficiency. We applied the Simulated Maximum 

Likelihood techniques to the estimation of multivariate Stochastic Autoregressive Volatility 

models. 

 

3.5.1 Simulated Maximum Likelihood (SML) Method 

The SML method introduced by Danielsson and Richard (1993) depends on Monte Carlo 

integration to evaluate the likelihood. The likelihood function of multivariate stochastic 

volatility models involves high-dimensional integration, which is difficult to calculate 

numerically. Nevertheless, estimation of the parameters can be based on evaluating high-

dimensional integrals with simulation methods and then maximizing the likelihood function, 

resulting in the so-called SML estimators. There are several ways to perform SML estimation 

for multivariate stochastic volatility models, the most usual approach to SML is the importance 

sampling method. The basic idea of this method is to approximate first the integrand by a 

multivariate normal distribution using the so-called Laplace approximation and then draw 

samples from this multivariate normal distribution.    

Let  t 1 t 1 tf R | , ;  I   be the joint probability density function of 
t 1R 

 conditional on 

observing both 
t 1  and  t t t 1 1R ,R , ,RI , with   a vector of unknown parameters 
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which is estimated by maximum likelihood. In order to fit our model in equation [3.2], [3,3], 

and [3.5], let’s assume that  

 2

t 1 t 1 t t 1R | , N 0,   I  where 
t 1 t 1 t 1where V' V     

And 
t 1 t 1V 'x   

  t 1 N N t t 1x I 1 1 ' 'x e        

 , '    since the normal distribution is determined by its mean and variance, in the case 

where   is parameterized as j j   , j 1, ,M . 

Now, let  t 1|t t 1 tx E x  | I  denotes the expectation of the M 1  vector 
t 1x 

 given the 

period t  information set. Hamilton (1989) show that 
t 1/ tx 

 is given by 

 
t|t 1 t

t 1|t

N t|t 1 t

x
x P'

1' x











 
  

 
 

 

where  t 1t Mt, , '    is a M 1  vector with 
thj  element, 

 jt t t j t 1f R | , ;    I   

Then we can write the log likelihood function as  

   
T

N t/t 1 t

t 1

L log1' x 



  

where   contains both parameters that determine the transition probabilities and those 

contained in  , with P  parameterized as in equation (3.5) and  is as in equation (3.7). We 

then use a quasi-Newton method to find the value of   that maximizes  L   and we compute 

standard errors using the second-derivative estimate of the information matrix. In order to 

select the model that fit better the data, we measure the performance of the out-of-sample 

variance forecasts produced by various models, and we require a proxy for the unobserved 

variance of daily returns. 

For example, if we want to evaluate one-step ahead forecasts, we might fit a regression of the 

following form 
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2

t 1 t 1|t t 1
ˆa b     R ε  

where 
t 1R  is the realized variance joint variance for period t 1  and 

2

t 1/t̂   is constructed 

using maximum likelihood estimates of the model parameters, and models are rank using the 

regression R-squared. 

 To conduct formal comparisons of the various models under study, we will use either Akaike 

Information Criterion or Bayesian Information Criterion tests. 

 

3.6 Models Selection Criteria 
In financial modelling, one of the main challenges is to select an adequate model from the 

panoply of models in order to achieve the goal of accurate volatility forecasting in a given data 

set. The choice of a good model in the application of time series analysis is crucial, since there 

is not a perfect or a unique model. Models selection criteria provide useful tools in this regard 

and assess whether one model is better than another one in fitting data. Ideally, a criterion will 

identify candidate models that are either too simplistic to accommodate the data or 

unnecessarily complex, the most common modes selection criteria are the AIC and the BIC. 

We then use them to select the best model in each family of candidate models. The model with 

the least values of these information criteria is the best. 

 

3.6.1 The Akaike Information Criterion 

Akaike (1974) introduced the AIC as an extension to the ML principle and this was the first 

model selection criterion to gain widespread acceptance. The AIC is defined by  

 AIC = -2 log likelihood 2 n  

where n  is the number of parameters. One of the advantages of AIC is that it provides an 

asymptotically unbiased estimator of the expected Kullback discrepancy between the 

generating model and the fitted approximating model. However, it is not consistent and not 

enough to have an accurate decision on the choice of the best model. 
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3.6.2 The Bayesian Information Criterion      

Schwarz (1978) later, also introduced the BIC which is useful for model comparison in its own 

right. It is defined by 

 BIC = -2ln likelihood lnT n  

where T  is the number of observations or equivalently , the sample size and n  denotes the 

number of parameters. BIC penalizes more complex models (especially those with many 

parameters) relative to simpler models. This definition permits multiple models to be compared 

at once, the model with the highest posterior probability is the one that minimize BIC. BIC 

provides a large-sample estimator of a transformation of the Bayesian posterior probability 

associated with the approximating model. It is consistent but not asymptotically efficient, 

reason why in our study we use both AIC and BIC for exact results. 
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Chapter 4 

DATA ANALYSIS AND RESULTS 

 

4.1 Introduction 
 

Having explored the general theory of the family of models under study in chapters 2 and 3, 

this chapter is dedicated to fitting both family of models, the GARCH models and the MSV 

models to the NSE data. Therefore, in the first section we display a description of the data, 

where the general statistical features of the NSE data are investigated and the rest of the sections 

discuss the application of MGARCH models together with DMSARV models in real life data. 

R software was used to analyse the data. 

 

4.2 Descriptive Statistics 
 

The data sequences are generated by the same source. Daily closing prices of NSE Equity and 

KCB shares data over a period of 7 years extending from 01/01/2010 to 31/12/2016 with 1756 

observations were used. The Equity and KCB shares are the most traded and most profitable 

companies trading in NSE market. They track the daily performance of the most capitalized 

companies in the sector of Banking among the eight (08) segments listed on the NSE. The 

choice of 7 years represents an attempt to balance the potential adverse impact of a phenomena 

(such as occasional structural breaks) against the desire for precise parameters estimates; we 

could obviously use a much longer sample period for the stocks. In order to make forecasts, 

the full sample was divided into two parts, in sample and out-of-sample observations. The 

sample period is January 1, 2010 to December 31, 2016 (1756 observations) while the out of 

sample covers one year: January 1, 2017 to December 31, 2017 (200 observations). 

4.2.1 Assets returns  

Most financial studies involve returns instead of prices of assets to forecast volatility. This is 

because the return of an asset is a complete and scale-free summary of the investment 

opportunity for average and aware investors, and returns series are easier to handle than price 

series because return series have more attractive statistical properties. (Giot and Laurent, 2001). 
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We used the daily percentage returns for the stock indices namely Equity and KCB stocks, in 

order to fit the discrete MSARV models. 

Let P
t
 and 

1
P

t
 denote the closing asset prices of NSE assets at the current (t) and previous (t-

1) day respectively. The NSE All share returns (log-returns or continuously compounded 

returns) at any time are given by: 

1

P
r = log

P

t

t

t

 
 
 

 

4.2.2 Summary statistics of NSE returns series data 

In order to describe the behaviour of NSE return series, we have drawn descriptive statistics 

table for the returns. The data are in log-difference form. The skewness, kurtosis, Kolmogorov 

test for normality, and correlation coefficients are used as the diagnostic tools under this study.  

This is implemented by using the estimated mean,   and the standard deviation,   . The null 

hypothesis of normality is rejected if the p-valued of the Kolmogorov statistic is less than the 

significance level. 

Table 4. 1 Summary statistics of NSE return series 

 

The summary of the descriptive statistics for the NSE returns series are shown in Table 4.1. As 

it is expected for a time series of returns the mean is close to zero.   

       The return series are both negatively skewed, this indicates a distribution with an 

asymmetric tail extending toward more negative values. The kurtosis is greater than three for 

the normal distribution, this indicates that the underlying distribution of the returns are 

leptokurtic or heavy tailed. The series fail the Kolmogorov normality test statistic which rejects 
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normality at the 1% confidence level in both cases; that means they have positive excess 

kurtosis which confirms that the returns are effectively leptokurtic or heavy tailed. We can 

observe that the standard deviation of the daily returns shows little variation across the indices. 

We found out that the stock indices are a bit volatile and the least volatile stock index is the 

KCB Group, because it is the smallest from our sample in terms of market capitalization. 

 

 

 

 

Figure 4.1 Equity and KCB daily prices and returns distributions (Jan 2010-Dec 2016) 

Figure 4.1 shows that, the stocks prices are non stationary while the return series are mean-

stationary with a mean return of zero, there is also volatility clustering in the returns series. We 

can see that for the whole period of study the volatility is very high. We can interpret this as a 

result of macro economic factors like inflation and exchange rates. 
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4.2.3 ACF and PACF 
 

Figure 4.2 shows that ACF of both return series are not significant, thus the returns are 

stationary. Hence, there is no need to test the mean effect (ARMA test). Moreover, the ACF of 

the return series in Figure 4.2.a and Figure 4.2.b show no evidence of seriel correlation except 

at lag 0 and the only significant lag of the PACF of the return series in the same figures are lag 

2. It is shown from the correlograms in figure 4.2 that p  is obtained from the PACF while q  

is obtained from the ACF. Hence, the only competitive lag order (p, q) of the ARMA model is 

(2, 0) which is an AR (2), that means it is the one that fits best to the NSE returns data. This 

means that the residuals of the ARMA (2, 0) model can be used to test for ARCH effects before 

we apply the GARCH models. 

Figure 4.3 shows that, the ACF of the squared returns are almost surely significant, this means 

that there is an ARCH effect. The PACF are both significant at lag 1 and lag 2. Using the ACF 

and PACF, the probable lag orders (p, q) of the GARCH (p, q) model are GARCH (1, 1), 

GARCH (1, 2), GARCH (1, 3), GARCH (2, 1), GARCH (2, 2), GARCH (2, 3). 
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4.2.a

4.2.b   

     

 

Figure 4.2 ACF and PACF of Equity and KCB Assets Returns        
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4.3.a

        

 

4.3.b

 

Figure 4.3 ACF and PACF of Equity and KCB Squared Returns 
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4.2.4 Testing for Stationarity 

 

Before starting with the estimation of the parameters of our models, it is required to check 

whether the series are stationary. Under this study, ADF test by Dickey and Fuller (1981) was 

used to investigate the stationarity of our series. The test includes a constant term without trend. 

 

Table 4. 2  ADF test results 

 

 

Table 4.2 shows the ADF test results for the two return series, where the Null hypothesis of a 

unit root is rejected at the level of significance, this means that they are both stationary with 

respect to the mean over the specified period. 

 

4.2.5 Testing for Autocorelation and Heteroscedasticity  

Before GARCH models are applied to any data set, it is also required to test for conditional 

heteroscedastcity or ARCH effects, even though it has already been shown that the data has an 

ARCH effect based on the ACF of squared returns plots, we still need to confirm this by a test. 

To this effect, the Ljung-Box test is used in this study. This test was used to examine the 

existence of serial correlation, it checks whether the data are autocorelated based on a number 

of lags m  and this was done through  the Ljung-Box Q-statistics given by 

   
1 2

1

T T 2 T r
m

m i

i

Q i




    

where r
i
 is the sample autocorrelation coefficient, T  is the sample size and m  is the max lag 

length. The Null hypothesis that all r
i
 are zero is rejected if the value of the test statistic Q is 

larger than the critical Q-statistic from the chi-square distribution at the given level of 

significance. 

In order to test for ARCH effects, ARMA (2, 0) model for the conditional mean in the return 

series was employed as an initial regression. Then, the Null hypothesis that there are no ARCH 

effects in the residual series up to lag 36 were tested. The results are summarized in Table 4.3. 
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Table 4. 3  Ljung-Box test for residuals of the NSE asset returns series 

 

 

As the ARCH effect in the residuals was already shown by the plot ACF of the squared returns, 

the results in Table 4.3 confirm the presence of ARCH effects in the residuals returns series of 

the mean equation, and an evidenced serial correlation. This means that the variance of the 

stocks returns series is non-constant and so GARCH models can be applied. 

 

4.3 Empirical Results  
 

The main findings of this thesis can be summarized as follows, we first provide a general view 

of our estimation results, then we take a look at each model separately, finally, we provide a 

comparison of all models and choose the suitable one. 

 

4.3.1 Selection of GARCH (p, q) Model 

 

We base the choice of the GARCH (p, q) model on AIC and BIC tests specially. The idea is to 

have a parsimonious model that best describes the data among the precedent candidate GARCH 

(p, q) models as indicated by ACF and PACF in figure 4.3. 

Note that GARCH (1. 0) is similar to ARCH (1) model, in this case GARCH (1, 1) model is 

prefered to the ARCH (1) model because ARCH (1) model has few parameters and so can not 

describe adequately the volatility process of the assets data returns (Tsay, 2010). 

After comparison of the different GARCH (p, q) models under study,GARCH (1,1) model 

revealed to be the best model to capture the ARCH effect in the residual returns of the AR(2) 

model, with least value of BIC and AIC. The results are shown in table 4.4. 
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Table 4. 4  GARCH (p, q) models for the residual returns 

 

A composite model was developed for the ARMA (2, 0) and GARCH (1, 1) models and the 

estimated parameters are shown in Table 4.6. Table 4.6 shows that all the estimated parameters 

of the ARMA (2, 0)-GARCH (1,1)  are not statiscally significant, thus AR (2)-GARCH (1, 1) 

model is refined to the simple GARCH (1, 1) model by dropping all the AR (2) parameters. 

Table 4.6 Estimation results of AR (2)-GARCH (1, 1) model 

Table 4.6 a Estimation results of AR (2)-GARCH (1, 1) model (Equity) 

 

                          Note:  Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The variance equation is given by 

2 2 2

1, 1 1, 1
0.0105 0.234 0.492  

 
  

t t t
 

This result supports that of Bollerslev et al (1992) where he states that simple GARCH models 

capture most of the variability in most stabilized series for volatilities even over long sample 

periods. The sum 0.7256    and 0.7056 for Equity and KCB respectively, determine the 

rate at which the response function decays on daily basis. The half-life was also investigated; 
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the half-life volatility measures the time required for the volatility to move half way back 

towards its unconditional mean (Engle and Patton,2001). The half-life was estimated using the 

relation 

  
 

log / 2

log

 


 





 

Fitting the values, the estimated half-life is approximately 3 days in each case; this means that 

any shocks to this volatility takes approximately 3 days to return half-way back without any 

further shocks to this volatility. 

Table 4.6 b Estimation results of AR (2)-GARCH (1,1) model (KCB) 

 

                          Note:  Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The variance equation is given by 

2 2 2

2, 1 2, 1
0.000094 0.2306 0.4752  

 
  

t t t
 

 

4.3.2 Selection of MGARCH (p, q) Model 
 

Empirical results show that working with separate univariate models is much less relevant than 

multivariate modelling framework. We have investigated the empirical evidence of conditional 

volatilities and believe that such approach provides a comprehensive picture of world stock 

market co-movements. The selected models used in the empirical application were respectively 

the Dynamic Conditional Correlation of Engle, Constant Conditional Correlation of Bollerslev 

and the MDSARV models. 
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a. Estimation results  

Several ARCH models were estimated with the data. In each model, conditional normality was 

assumed since the purpose of the estimation is a comparison with discrete multivariate 

stochastic autoregressive volatility models, the final univariate ARCH results are reported in 

Table 4.7.  

Table 4.7 Univariate ARCH results. Log-likelihood values 

 

And multivariate results are in Table 4.8. In all univariate cases, the EGARCH model 

outperforms the GARCH (1, 1) model in log-likelihood values with the largest difference in 

likelihood values (121.4) and (124.7) for Equity and KCB stock index respectively. 

Table 4.8 Multivariate GARCH results: Bivariate Log-likelihood values 

 

For the multivariate models, the DCC model has the best performance. The CCC model, almost 

like DVGARCH performs significantly worse than the DCC model, and finally the VGARCH 

model is far the worst model for the stock indices. The difference in likelihood values is 

therefore indicative of which model fits better.  

We continue with the DCC (1, 1) model. The DCC estimates of the conditional correlations 

between the volatilities and also estimates of the GARCH parameters are presented in Table 

4.9. As the estimates of both adcc  (the impact of past shocks on current conditional 

correlations) and bdcc  (the impact of previous dynamic conditional correlations) are 

statistically significant, this clearly indicates that the conditional correlations are not constant. 

The estimate of adcc  is generally low and close to zero, while the estimate of bdcc  is high and 

close to one. The conditional correlations between the stocks indices are dynamic. 
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Table 4.9 Estimation of the coefficients of the DCC model for the stocks indices  

 

 

These findings are consistent with the plot of Dynamic correlations of the stocks indices in 

figure 4.4 which change over time. Figure 4.4 displays the estimated volatilities based on the 

DCC model. At first sight the graphs of these methods seem to imply very similar volatilities. 

The second model, which we considered was the CCC model, that allows contemporaneous 

dependence through conditional correlations. 

 

Figure 4.4 Estimated Dynamic Conditional Correlation of Stocks Indices: Equity and 

KCB  

DCC correlation seems to be much more stable in estimates of stock market data, the smoother 

volatilities are provided by DCC model, and CCC estimates are more volatile than the other 

multivariate models. It is clear that correlations have changed greatly over the 7 years’ period 

and exhibit time-dependence.  
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Figure 4.5 Estimated Constant Conditional Correlation of Stocks Indices: Equity and 

KCB  

 

 

Figure 4.6 Estimated Dynamic Conditional Covariance of Stocks Indices  

We can see from figure 4.4 and 4.5 quite similar level of dependence between Equity and KCB. 

The correlations between Equity and KCB are positively correlated and seem to be stable 

during a long period. From our sample, we finally notice that pair Equity and KCB represents 

for investors a good ability of portfolio diversification.  
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Table 4.10 Estimation of the coefficients of the CCC model for the stocks indices  

 

 

4.3.3 Discrete Stochastic Autoregressive Volatility Models 

All the estimation in this thesis were performed by R programming software and we used the 

DCC and CCC models as benchmarks Multivariate models which have been revealed to fit 

better the data. To address the issue of model selection, we measured the performance of the 

in-sample and the out of sample variance forecasts produced by the various models. We 

required a proxy for the unobserved variance of daily returns. Fitting Mincer and Zarnowitz 

regressions is a common strategy for evaluating the forecasting performance of volatility 

models (Calvet and Fisher, 2004) and (Fleming and Kirby, 2013). If we are evaluating one-

step-ahead forecasts for example, we might fit a regression of the form 

                             2

t 1 0 1 t 1 t 1
ˆR 4.1      V e  

where t 1R V  is the realized variance for period t 1  variance based on the period t  

information set. Unbiased forecasts correspond to the hypothesis 0 0   and 1 1  . And 

2

t 1̂   is constructed using maximum likelihood estimates of the model parameters and models 

are ranked using the regression R-squared. We used the Diebold and Mariano test of equal 

predictive accuracy to conduct formal comparisons. For example to compare model i  and j  

under a specified loss function  2 2

t 1 t 1
ˆL ,   . Our null hypothesis is 

  i

t 1E 0 
j

e . Where,                                           

       i 2 2 2 2

t 1 t 1 t 1 t 1 t 1
ˆ ˆL , L , 4.2        

j

i je  

denotes the loss differential for period t 1 . To implement the test, we used the MSE loss 

function, we fitted to daily percentage returns, the regressions are estimated via OLS and the 

forecasts are for one-day horizon.     
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Let’s start with the linear discrete SARV model. Results from estimation of DSARV (1, M) 

model of the data are presented in table 4.11. We fitted first-order discrete SARV models to 

daily percentage returns for the two stocks first individually with T=1756. All the specifications 

employ the linear parameterization of   given by j j     with j 1,2, ,M . Table 

4.11.a and 4.11.b report maximum likelihood parameter estimates for M=3 and M=10. And 

table 4.11.c reports the in-sample and out-of-sample model selection criteria for all values of 

M from 3 to 10. 

Table 4.11 Estimation results for linear discrete SARV (1, M) models 

Table 4.11. a DSARV (1, 3) parameters estimates 

 

Table 4.11. b DSARV (1, 10) parameters estimates 

 

Table 4.11. c BIC and 
2R of volatility forecasts 
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The former is the BIC obtained by fitting the model and the latter is the R-squared for a 

regression of daily realized variances on the variance forecasts produced by the fitted model. 

The parameter estimates for the M 3  display the expected characteristics, the estimates of   

and   provide clear evidence of time-varying volatility for both stocks while the estimate of 

  the ergodic probability of the high volatility state are all below 0.5. This implies that the 

process spends more time in the low-volatility state, and the estimates of   is high for both 

stocks, this indicates a strong persistence in volatility. Increasing the volatility mass point to 

M 3  changes all the estimates and the BIC decreases monotonically with M in each case; 

this suggests that it is suitable to work with M 3 . 

The question is whether first-order discrete MSARV models capture the dynamics of volatility.  

Table 4.12 Model selection criteria for linear, log linear and log-quadratic discrete 

MSARV (1, M) models 

 

From Table 4.12, we see how changing the parameterization of   affects the performance of 

the model. We fitted the linear parameterization in equation (3.6), the log-linear 

parameterization in equation (3.8) and the log quadratic in (3.9), then we notice that from 

M 3  the BIC values are decreasing and the parameterization for log volatility values lower 

than those for the volatility itself for every M 3 , this is because there is gain in moving to 

log parameterization. BIC values match with higher R-squared values, and the R-squared 

values are increasing with M. Moreover, we notice that almost all the values of R-squared are 

closed to one, this suggests that the model fits the data well; for example with M 3 , the R-

squared improves from linear to log quadratic parameterization. It is worth noting that, since 

the BIC values diminish quickly as the value of M increases, this means there is benefit of 

increasing the number of states. We can conclude that the parameterization   impacts on the 
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performance of the discrete multivariate SARV and shows the advantage of working with a 

portfolio of stocks instead of a single stock.  

Finally, the model selection criteria suggest that there is more benefit fitting the log quadratic 

parameterization for the bivariate model, since for every number of state chosen from M 3  

the BIC decreases. We took a look at the dynamics of estimated conditional volatilities using 

all three models. We studied volatility dynamics of the returns by utilizing MGARCH and 

MDSARV models and then we reported statistically significant cross market effects as 

evidence of linkages and measured the extent of the linkages by the estimated time-varying 

correlations. The next part of this chapter is focused on comparison of the multivariate models. 

 

4.4 Models Comparison  
 

To conduct suitable pairwise comparison for the selected multivariate models, we used Diebold 

and Mariano to evaluate the forecast accuracy of the models by comparing the out-of-sample 

forecasting performance of selected first-order discrete multivariate model to that of the two 

benchmarks models above. We considered the discrete MSARV (1, 10) model, our benchmarks 

are a DCC and CCC models which are nonlinear combinations of univariate GARCH models. 

Therefore, Table 4.13 reports the results of t-statistics for pairwise tests of equal predictive 

accuracy under MSE loss. We considered forecast horizons one day and one week; this is 5 

trading days and the loss differentials for day t 1  are computed as follow: 

     
2 2ij 2 2

t 1,H t 1,H it 1,H t 1,H jt 1,H
ˆ ˆR R        V Ve  

With  H 1,5 , the forecast horizon,  i 1,2  and  j 1,2  indicates the benchmark 

models. The null hypothesis for the test is  ij

t 1,HE 0 e . The t-statistics are based on robust 

standard errors that are constructed using Newey and West (1987) weight. The lag length for 

the weights is 10 for the one-day horizon and 20 for the 5-day horizon, and a negative or 

positive t-statistic indicates that the model produces a lower or higher loss on average than the 

benchmark model.  
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Table 4.13 Pairwise Comparison-Diebold Mariano test for stock indices 

 

 

4.5 Forecasting Performance  
 

The forecasting ability of the models under study were also evaluated. In order to make 

forecasts, the full sample was divided into two parts, 1658 in-sample observations from 

04/01/2010 to 05/08/2016 and 100 out-of-sample observations from 08/08/2016 to 30/12/2016. 

The forecast performance is shown in figure A below. Figure 4.7.1 shows that DCC model 

outperformed at volatility forecasting comparing the volatility of the original return series in 

Figure 4.6. 

  

                         

Figure4.7.1                                                           Figure4.7.2 

        Figure 4.7 Prediction of Conditional Covariance between Equity and KB and One-

step prediction of volatility over the sample 
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Chapter 5 
 

 

CONCLUSION AND RECOMMENDATIONS 
 

5.1 Conclusion 
 

The empirical analysis highlights the promise of our approach. Ultimately, volatilities and 

correlations among market returns are widely used in asset pricing. Although researchers have 

built many multivariate models, the multivariate stochastic volatility models remain the least 

mentioned in the literature. The multivariate volatility of NSE returns has been modelled and 

forecasted for a period of 1/01/2010 to 31/12/2016 using different GARCH-type model and by 

building on well-established techniques for constructing Markov chains with a specified 

autocorrelation function, we developed a multivariate stochastic volatility model in which 

volatility follows a low-order autoregressive process; the model specifications assume that 

volatility has discrete support. In this thesis, we also presented a theoretical and empirical 

modelling with some multivariate GARCH models and highlighted their features, we surveyed 

some MGARCH models and their basic constructions and we used maximum likelihood 

estimation procedures and SML estimation to estimate the models. Interestingly, however, the 

parameterization and estimation methods suggested here have already found use in other 

applications by Adriana and Kirby (2014), Mgr. Milan M. (2014), Choi (2011), …among 

others. The results suggest that, the Equity market is influential in the pricing process of the 

KCB market and vice versa, and there is a close relationship between these two stock markets; 

therefore, investors may seize these stock markets as one investment opportunity instead of 

two separate classes of assets.  One of the main findings is that volatility forecasts produced by 

first order discrete MSARV models outperform those produced by multivariate GARCH-type 

models and conditional correlations exhibit significant changes over time; these findings hold 

for the stock indices on the NSE. Therefore, there is opportunity to maximize portfolio returns 

through diversification.   
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5.2 Recommendations 

 

Based on the results obtained from this research study, the following are the suggested 

recommendations for further study. Due to the evidence of high volatility persistence, it is 

recommended that DMSARV and DCC models are used in order to adequately describe the 

volatility process of the NSE returns. 

Further research can be done to determine the effects of macroeconomic factors like exchange 

rate, inflation, taxes, exports on the stock prices using higher-order Discrete Multivariate 

Stochastic Autoregressive Volatility models. 

We can conclude that, there is a number of interesting directions in which our analysis could 

be extended. One possibility is to investigate the performance of higher-order discrete MSARV 

models in assets returns context and this should be relatively straightforward.  
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Appendix.  
 

R. Codes 

 

 acf(Equity,lag=35,main="") 

 acf(KCB,lag=35,main="") 

 acf(Equity^2,lag=50,main="") 

 acf(KCB^2,lag=50,main="") 

 dcc.fcst=dccforecast(dcc.fit,n.ahead=100) 

 dcc.fcst 

 pacf(Equity,lag=35,main="") 

 pacf(KCB,lag=35,main="") 

 pacf(Equity^2,lag=50,main="") 

 pacf(Equity^2,lag=50,main="") 

 pacf(KCB^2,lag=50,main="") 

 par(mfrow=c(2,1)) 

 plot.ts(Equity) 

 plot.ts(KCB) 

 plot(Equity.ret) 

 plot(KCB.ret) 

 plot(dcc.fit) 

 plot(x=time(as.zoo(Equity.KCB.ret)),Y=Equity.KCB.cond.cov,type="L",xlab="Time

",Ylab="covariance",lwd=2,col="blue",main="EWMA covariance between Equity 

and KCB") 

 plot(garch_ccc,item="correlation") 

 plot(garch_ccc,item="volatility") 

 plot.ts(cbind(h[,2],hest[,2],type="L",main="h2",xlab="",Ylab="",plot.type=c("single"

),col=c(‘red’,’blue’)) 

 


