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Abstract 

The demand for higher capacity wireless communication 

networks has motivated research in the techniques of adaptive 

beamforming using smart antennas. The technique is to radiate 

narrow beams in a desired direction and to suppress 

interferences. Antenna array beamforming is a fundamental 

technique for directional signal transmission and 

reception[1].The LMS algorithm has been identified as a 

suitable technique that optimises the SNR of the desired signal 

in a particular direction. The proposed adaptive beamforming 

scheme uses an array of antennas to realise maximum reception 

in a specified direction. This is achieved by adjusting the 

weights of each of the antennas with changing signal 

environment. This paper analyses the performance of the LMS 

adaptive algorithm in terms of the convergence rate of the Mean 

Square Error (MSE), also the effect of some antenna array 

elements like the number of elements and the spacing between 

elements, based on the Direction of Arrival (DOA), but also the 

special case when the interference is correlated to the desired 

user. The simulation results show that increasing the number of 

antenna elements results in narrower beams reduces the 

correlation of the interference DOA on the desired user 

direction, and the optimum value of separation distance 

between elements is half wavelength for which the MSE gives 

an optimum error in a particular direction. Also, increasing the 

SNR of the interference over the desired signal affects the 

convergence performance of the algorithm. The convergence of 

the LMS algorithm remains unchanged even the initial weight 

vector changes. The results are simulated using MATLAB. 

Keywords: Beamforming, LMS, Mean Square Error, number 

of element, Direction of Arrival, elements spacing, SNR, 

correlated signal  

 

INTRODUCTION 

The need for wider coverage area, improved capacity and 

higher transmission quality for wireless communication 

systems is rising as the number of mobile users increase. This 

has motivated research in the techniques of adaptive 

beamforming using smart antennas as a potential solution in the 

improvement of the quality of service [2][3]. The common 

adaptive algorithms that have been investigated for 

beamforming in mobile communications include LMS 

algorithm [4][5]. Digital beamformers are a means for 

separating a desired signal from interfering signals [4]. Michal 

Vavrda describes opportunities and constraints for application 

digital beamforming techniques and adaptive beamforming 

techniques in wireless communications. His work defines the 

process of digital beamforming and the process of adaptive 

beamforming. Digital beamforming (DBF) is defined as a 

combination of antenna technology and digital technology, 

where the antenna converts spatiotemporal signals into strictly 

temporal signals, thereby making them available to a wide 

variety of signal processing techniques. In the work by 

Mallaparapu et al [6], the good attraction of the LMS algorithm 

is its low computational complexity. In addition, beamforming 

for smart antenna can be used to increase the channel 

bandwidth and capacity and at the same time minimize the 

channel interference in wireless communication. Smart 

antennas systems, have two main functions: Direction Of 

Arrival (DOA) and adaptive beamforming [7]. In this literature, 

antenna array with adaptive beam forming technique is used to 

achieve the high capacity, wider coverage and efficient 

spectrum utilization, by using the smart signal processing 

algorithm such as Least Mean Square algorithm (LMS). Zhou 

Yuanjian and Yang Xiaohui [8], proposed a new adaptive 

beamforming algorithm by improving on a projection of a 

gradient vector to a Uniform Linear Array (ULA). Its 

performance is compare to the conventional Least Mean Square 

(LMS) algorithm. The signal processing in smart antenna 

system mainly focuses on the Direction of Arrival (DOA) 

estimation and the development of the adaptive beamforming 

algorithm. Also in A. Senapati and K. Ghatak [3] performance 

of the LMS adaptive beamforming schemes for smart antennas, 

depend on the value of step size parameter used in the 

algorithm.  

 

ADAPTIVE BEAMFORMING ALGORITHMS 

CLASSIFICATION 

Adaptive Beamforming algorithms can be classified into two 

categories which are non-blind adaptive algorithms and blind 

adaptive algorithms. In blind adaptive algorithms, training 

signal d(t) is not used where as in non-blind algorithm signal 
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d(t), is known to both the transmitter and receiver during the 

training period [6]. They both rely on statistical knowledge 

about the transmitted signal in order to converge to a 

solution[9]. Typical non-blind algorithms used are least mean 

square (LMS), and Normalized Least Mean Square (NLMS). 

 

Blind adaptive algorithms  

an adaptive algorithm that does not require a training sequence, 

or other special knowledge of the environment, is known as a 

blind adaptive algorithm. The use of a blind algorithm can 

potentially eliminate the need for training sequence, thereby 

increasing the available data rate[10]. However, blind 

algorithms have some drawback relative to conventional 

training sequence-based algorithm. First, blind algorithms 

cannot in general be guaranteed to converge to the desired 

solution, unlike the case when a known training sequence is 

used. Furthermore, blind adaptive algorithms generally 

converge more slowly. 

 

Non-Blind adaptive algorithm 

Non-blind adaptive algorithms need statistical knowledge of 

the transmitted signal (training sequence, d(k)) in order to 

converge to a weight solution. This is typically accomplished 

through the use of a pilot training sequence sent over the 

channel to the receiver to help identify the desired user[10]. 

Therefore, during the transmission of the training sequence, no 

communication in the channel can take place. This dramatically 

reduces the spectral efficiency of any communications system. 

 

LEAST MEAN SQUARE ALGORITHM 

In the LMS algorithm, the computation of the weight vector is 

based on Minimum Squared Error (MSE)[11]. The minimum 

mean squared error (MMSE) algorithm minimizes the error 

with respect to a reference signal d(t). 

The actual output is: 𝑦(𝑛) = 𝑤𝐻(𝑛)𝑥(𝑛)                    (1) 

where H is the Hermitian operator (conjugate transpose). From 

figure (4.1) belw, the error can then be written as: 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛)                                                   (2) 

Where d(n) is the desired output from the antenna array. 

The MMSE finds the weights w that minimize the average 

power in the error signal, the difference between the reference 

signal and the output signal obtained using equation (1).The 

mean-squared error (MSE) is then given by the following 

equation: WMMSE  = arg min E {|e(t)|2}                                    (3)                     

Where  

E {|e(t)|2}  =  E {|𝑊𝐻X(t) − d(t)|2},   

                      =  E {𝑊𝐻𝑋𝑋𝐻𝑊 − 𝑊𝐻𝑋𝑑∗  −  𝑋𝐻𝑊𝑑 +  𝑑𝑑∗},  

                   =  𝑊𝐻𝑅𝑊 −  𝑊𝐻𝑟𝑥𝑑  −  𝑟𝑥𝑑
𝐻 𝑊 + 𝑑𝑑∗,              (4) 

Where  

rxd  = E{X𝑑∗}                                                           (5) 

To find the minimum of this functional, we take its derivative 

with respect to 𝑤𝐻  (we have seen before that we can treat w and 

𝑤𝐻  as independent variables). 

∂E{|𝑒(𝑡)|2}

∂WH
 = RW −  r𝑥𝑑  = 0, 

⇒  WMMSE  =  𝑤𝑜𝑝𝑡 = 𝑅𝑥𝑥
−1𝑟                                           (6) 

This solution is also commonly known as the Wiener filter.  

The LMS algorithm is non-blind type algorithm, so it uses a 

reference signal [4]. It is a search algorithm in which a 

simplification of the gradient vector computation is made 

possible by appropriately modifying the objective function[12]. 

it has a low computation complexity[2]. The optimum Wiener 

solution in equation (6), requires the calculation of the inverse 

of the correlation matrix R and this results in a high 

computational complexity. The Least mean square algorithm is 

a gradient based quadratic approach[13]. Gradient algorithms 

assume an established quadratic performance surface which is 

a function of the array weights, the performance surface J (W) 

is in the shape of an elliptic parabola having one minimum[14].  

 

Figure. 3.1: LMS adaptive Array System 

 

In Fig. 3.1 the outputs of the individual sensors are linearly 

combined after being scaled with corresponding weights 

optimizing the antenna array to have maximum gain in the 

direction of desired signal and nulls in the direction of 

interferers. The linear combination of input vector x(n) and 

weight vector w(n) is the output of uniform linear antenna y(n) 

at any time n and it is given by equation (1). 

𝑦(𝑛) = 𝑤𝐻(𝑛)𝑥(𝑛)                                                             

 Where 

𝑤𝐻(𝑛) = [𝑤1, 𝑤2,∙∙∙∙∙∙∙ 𝑤𝑁]𝐻                                        (7) 

And  



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 22 (2017) pp. 12735-12745 

© Research India Publications.  http://www.ripublication.com 

12737 

𝑥(𝑛) = [𝑥1, 𝑥2,∙∙∙∙∙∙∙∙∙∙∙, 𝑥𝑁]                                             (8) 

The error signal 𝑒(𝑛) is given by equation (2). 

The LMS algorithm avoids matrix inverse operation and uses 

the instantaneous gradient vector ∇𝐽(𝑛) for weight vector up 

gradation. From the method of Steepest descent, the weight 

vector w(n+1) at time (n + 1) can be written as 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
1

2
𝜇[−∇𝐽(𝑛)]                               (9) 

 Where J(n)=E[׀e(n) 2׀ ] is the mean square error (MSE) cost 

function and μ is the step size parameter which control the 

convergence rate. It value lies between 0 and 1.  

To calculate instantaneous gradient vector ∇𝐽(𝑛), auto 

correlation matrix R and cross-correlation vector r is needed. 

This can be calculated by following equations 

∇𝐽(𝑛) = −2𝑟(𝑛) + 2𝑅(𝑛)𝑤(𝑛)                                   (10) 

Where  

𝑅(𝑛) = 𝑥(𝑛)𝑢𝐻(𝑛)                                                             (11) 

And 

 𝑟(𝑛) = 𝑑∗(𝑛)𝑥(𝑛)                                                               (12) 

With 𝑑∗(𝑛) the complex conjugate of the desire signal 

By putting values from (10), (11), (12) in (9) the weight vector 

is found to be 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇[𝑟(𝑛) − 𝑅(𝑛)𝑤(𝑛)] 

                 = 𝑤(𝑛) + 𝜇𝑥(𝑛)[𝑑∗(𝑛) − 𝑥𝐻(𝑛)𝑤(𝑛)] 

 𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑥(𝑛)𝑒∗(𝑛)                            (13) 

 

Where 𝑒∗(𝑛) is the conjugate of the error signal. 

The convergence of the LMS algorithm in Equation (13) is 

directly proportional to the step-size parameter μ. If the step-

size is too small, the convergence is slow which will results in 

the overdamped case. If the convergence is slower than the 

changing angles of arrival, it is possible that the adaptive array 

cannot acquire the signal of interest fast enough to track the 

changing signal. If the step-size is too large, the LMS algorithm 

will overshoot the optimum weights of interest. This is called 

the underdamped case. If attempted convergence is too fast, the 

weights will oscillate about the optimum weights but will not 

accurately track the solution desired. It is therefore imperative 

to choose a step-size in a range that insures convergence. 

Therefore, it is better to select the step-size value µ within 

bounded conditions as defined in equation (14) below: 

0 < 𝜇 <
1

𝜆𝑚𝑎𝑥(𝑅𝑋𝑋)
                                                                 (14) 

Where, 𝜆𝑚𝑎𝑥(𝑅𝑋𝑋)is the largest Eigen value of the 

autocorrelation matrix R. 

In order to avoid  the underdamped case, the step-size actual 

value should range within: 0 < 𝜇 < 1. In most cases LMS for 

adaptive beamforming is suitable for small value of step-

size[3]. 

 

 

 

Figure 3.2: Flow chart of LMS Algorithm for weight 

updating 

 

Array Factor (AF) 

The array factor is a function of the weights, positions, and 

steering vector used in the antenna array or phased array. This 

factor quantifies the effect of combining radiating elements in 

an array without the element specific radiation pattern taken 

into account. 

The radiation pattern of antenna array is given by the product 

of array factor and element factor. If we assume all elements 

radiates in all direction equally, the radiation pattern is equal to 

the array factor. Assuming far field conditions such that r >>d, 

we can derive the array factor as follows: 

 

𝐴𝐹 = ∑ 𝑒𝑗(𝑛−1)(𝑘𝑑 sin 𝜃+𝛿) 𝑁
𝑛=1 = ∑ 𝑒𝑗(𝑛−1)𝜓𝑁

𝑛=1    (15) 

Where 𝜓 = 𝑘𝑑 sin 𝜃 + 𝛿, 

            𝑘 =
2𝜋𝑓0

𝜆
 

where 𝛿 is the phase shift from element to elements,  

d is the spacing between antenna elements  

 

SIMULATIONS RESULTS AND DISCUSSIONS  

The following simulations are done considering the desired 

user arriving at angle 30° and interference at angle -50°. The 

spacing between the individual element is half wavelength 

(0.5λ) and the Signal to Noise Ratio is 5dB. The array factor for 
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8 elements antenna arrays is computed. 

 

General case: Plotting the polar Array Factor, the 

rectangular array factor, the MSE, Magnitude of array 

weights, and the tracking output signal  

Figure (1.a) shows polar array factor plot for different angle of 

arrival. Figure (1.b) shows rectangular array factor plot for 

different angle of arrival. The uniform linear array for 8 

elements is computed considering the desired user at DOA of 

30°, and the interference DOA at -50°. 

 

 

The desired user is pointing at 30° on the polar array factor plot. 

 

The array factor for 8 elements antenna arrays is computed and 

Figure 1.b shows the normalized array factor plots and how the 

LMS algorithm places deep nulls in the direction of interfering 

signals and maximum in the direction of the desired signal. The 

beam of the desired signal is pointing at the desired direction 

angle 30°on the array factor plot from figure (1.b). 

The optimum complex weights in the case for which the 

algorithm converges is as follows. 

for the N = 8 ULA are: 

   w1 = 1 

   w2 = 0.039372+0.96988j 

   w3 = -1.0193+0.035316j 

   w4 = -0.0013838-0.98314j 

   w5 = 0.98221-0.050948j 

   w6 = 0.018406+1.0196j 

   w7 = -0.97039+0.012486j 

   w8 = -0.052968-0.999j 

 

 

 

The magnitude of the array weights shows a convergence after 

60 iterations. 

 

 

Figure 1.d: Mean square error when the desired user is 30° 

and the interferer is -50° 

 

The LMS error plot in Figure (1.d) shows that the MSE 

decreases with iterations and converges after 60 iterations. In 

this case the LMS error is satisfactory nearly 0.001 at around 

100 iterations.  

 
 

Figure 1.a: Polar array factor plot when desired 

user is 30° and the interferer is -50° 

 

 
Figure 1.b: Array factor plot when desired user is 

30° and the interferer is -50° 

 

 
Figure 1.c: Magnitude of array weights when the desired 

user is 30° and the interferer is -50° 
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Figure 1.e: Acquisition and tracking of desired signal and 

actual array output 

Figure (1.e) shows the graph of signal versus number of 

iterations. The array output was able to acquire and to track the 

desired signal after 60 iterations. If the characteristics of the 

signal rapidly changing, the LMS algorithm may not allow 

tracking of the desired signal in a satisfactory manner[11]. 

 

Special onecase: effect of number of elements on Array 

Factor and Mean Square Error 

The effect of number of elements on the Array Factor and the 

MSE is studied considering the desired user arriving at angle 

30° and the interferer at angle -50° for different number of 

elements such as N = 8 and 16 with the SNR 5dB. Figure (2.a) 

shows the array factor plot of LMS algorithm when number of 

antenna array element is 8 and 16 desired user is arriving at 

angle 30° and the interferer is at an angle of -50°.  

 

 

 

Figure 2.a: Effect of number of array element on Array 

Factor. 

 

The simulation result shows that as the antenna array element 

goes on increasing from 8 (black), to 16 (red) the beam width 

of the desired angle becomes narrow. Also, there is a 

multiplication of the number of side lobes but the level of these 

side lobes is low as compared to those generated by small 

number of elements as shown on table 1 below. 

Table 1: Values of desired angle of arrival for the array factor 

at different number of elements. 

Number of elements 

(N) 

N=8 N=16 

DOA (desired) 30° 30° 

Side Lobe Level 0.1322 0.07421 

 

 

Figure 2.b: Effect of number of array element on Mean 

square error 

The increasing number of antenna array element produce an 

increase in system noise, and overall MSE tends to be almost 

the same for the given values of antenna element as shown in 

figure 2.b. 

 

Effect of interelement spacing on Array Factor and Mean 

Square Error 

Figure (3.c) shows the effect of interelement spacing on the 

Array Factor and the Mean Square Error. The simulation is 

considered for the desired user arriving at angle 30° and the 

interferer at -50° for different spacing such as d = λ/4, λ/2, and 

λ. the Signal to Noise Ratio is 5dB. 

 

Figure 3.c: Effect of interelement spacing on Array Factor. 
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Figure 3.d: Effect of interelement spacing on Array Factor in 

dB 

 

The simulation result shows that increasing the spacing 

between array element produces narrow beams, but this also 

increases the number of side lobes. For a spacing equal to the 

wavelength, granting lobe of the same side lobe level as the 

desired user angle is created as shown on figure(3.d). This new 

main-beam causes errors in the received signal due to 

interferences and wasted power. It is also observed that when 

distance between array element is half wave length or lesser 

than that, then granting lobes are avoided. Thus the optimum 

spacing distance between the array elements is half the 

wavelength. The results are presented in table 2 below.  

 

Table 2: Values of desired angle and granting lobes at different 

elements spacing. 

Element spacing (d*λ) d=0.25 d =0.5 d =1 

Desired DOA(degree) 30° 30° 30° 

Granting Lobe (degree) - - -30° 

Side Lobe Level (dB) 0 dB 0 Db 0 dB 

 

 

Figure 3.e: Effect of inter element separation on Mean square 

error. 

From the graph of MSE it is observed that the error level 

increases by increasing the displacement between the antenna 

elements. specially for d=λ the error increases after 10 

iterations which is not suitable for the performance of the 

algorithm, meanwhile for d=λ\2 the error decreases nearly to 

zero as shown in Figure (3.e) thus, spacing between array 

elements equal to half wavelength gives an optimum error in a 

particular iteration [15], this is well established in theory.  

 

Effect of different SNR on the desired signal and the 

interference signal 

The effect of different SNR for the desired signal and the 

interference signal on the performance of the LMS adaptive 

Beamforming algorithm are given in figures 4.a), 4.b), 4.c), 

4.d), 4.e), and 4.f). These figures are plotted using the same 

array parameters such as spacing between arrays (0.5λ), and 

number of array (N=8). 

 The desired signal arriving at angle of 30°, and the interference 

signal at angle -50°.  

 

When desired signal is at 0dB, and interference is also at 0dB, 

the reception of the desired angle is not affected. The antenna 

is able to place the nulls at the undesired direction. The 

minimum error decreases faster to reach a value of 0.002086 

and the mean square error converges after 12 iterations. 

 

 
Figure 4.b): Iteration 

number versus Mean 

Square Error when 

desired signal is at 0dB 

and interferer signal is at 

0dB 

 
Figure 4.a): Array Factor 

versus Direction of 

Arrival when desired 

signal is at 0dB and 

interferer signal is at 
0dB 

 

 

 
Figure 4.d): Iteration 

number versus Mean 

Square Error when 

desired signal is at 0dB 

and interferer signal is at 

5dB 

 

 
Figure 4.c): Array Factor 

versus Angle of Arrival 

when desired signal is at 

0dB and interferer signal is 

at 5dB 
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When the desired signal is at 0dB and interference is at 5dB, 

the antenna is still able to place the null at the undesired 

direction and to direct the desired beam at the desired angle of 

arrival. Thus, the reception of the signal is not affected. The 

minimum error has increased of 39.50 %, and the mean square 

error converges after 28 iterations. Thus, the performance 

convergence of the LMS algorithm has been affected as 

compared to the case of figure (4.b) when the signal to noise 

ratio of both desired signal and undesired signal were at 0dB. 

This is due to the increase of the interference signal over the 

desired signal.    

 

 

When the desired signal (𝑆𝑑) is at 5dB and interference signal 

(𝑆𝑖)is reduced to 0dB, the reception of the desired user is not 

affected by the interference. When the signal to noise ratio of 

the desired signal is increased to 5dB, the minimum error tends 

to zero and the mean square error converges after 11 iterations. 

Table 3 below presents the results of this experiments: 

Table 3: Values of desired and interferer Direction of Arrival 

at different SNRs. 

SNR 

𝑆𝑑 

(dB) 

SNR 

𝑆𝑖 

(dB) 

DO

A 

(𝜃𝑑
° )  

DO

A 

(𝜃𝑖
°) 

Mean 

Square 

Error 

Iteratio

n 

numbe

r  

0 dB 0 dB 30° -50° 0.0020

86 

12 

0 dB 5 dB 30° -50° 0.0029

15 

28 

5 dB 0 dB 30° -50° 0 11 

 

For all the three cases, the antenna was able to place the nulls 

in the direction of interference and the reception of the signal 

was not so much affected. The major noticed was when the 

interference was increased to 5 dB and the desired user reduced 

to 0dB where the MSE was not satisfactory as the minimum 

error was high (figure4.d) with a slow convergence of the 

algorithm (after 28 iterations), as compared to the case when 

the desired signal was increased to 5 dB SNR and the 

interference decreased to 0db, the MSE was satisfactory as the 

error in the signal was almost zero (figure 4.f), and the 

convergence was rapid (after 11 iterations) as shown on table 

3. Thus the  LMS algorithm has better performance in terms of 

convergence rate of the MSE and in term of minimum error. 

This is due to the fact that the increase of the interference signal 

results in the increase of the error which has affected the desired 

user signal and so the performance convergence of the LMS 

algorithm. 

 

Effect of initial weight vector on the convergence of the 

LMS algorithm 

The influence of the initial vector weights on the convergence 

rate was also investigated. The performance is evaluated 

considering the effects on the convergence of the MSE and the 

convergence of the magnitude of the weights for the conditions 

when the initial weights are all zeros, or all ones, or random. 

 

 

 

The weights 𝑊𝐴 for the N = 8 ULA are: 

w1 = 1                                      |w1| = 1 

w2 = 0.03899+0.96916j           |w2| = 0.96994 

w3 = -1.0188+0.035723j          |w3| = 1.019426 

w4 = -0.0011146-0.98308j       |w4| = 0.98308 

 
Figure 4.f): Iteration 

number versus Mean 

Square Error when 

desired signal is at 5dB 

and interferer signal is at 

0dB 

 

 
Figure 4.e): Array Factor 

versus Angle of Arrival 

when desired signal is at 

5dB and interferer signal is 

at 0dB. 

 

 
 

Figure 5 a): Iteration number versus Mean Square 

Error when initial weights are zeros 

 

 

 

 
Figure 5 b): iteration number versus weights when 

initial weights are all zeros 
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w5 = 0.98133-0.050797j          |w5| = 0.98264 

w6 = 0.018773+1.0194j           |w6| = 1.01957 

w7 = -0.9701+0.01204j            |w7| = 0.97017 

w8 = -0.053094-0.99814j         |w8| = 0.99955 

 

 

 

 

 

 

 

 

 

 

 

The weights 𝑊𝐵 for the N = 8 ULA are: 

    w1 = 1                                                    |w1| = 1 

   w2 = 0.03857+0.96814j                         |w2| = 0.96890 

   w3 = -1.0181+0.036341j                        |w3| = 1.01874 

   w4 = -0.00076057-0.98295j                   |w4| = 0.98295 

   w5 = 0.98014-0.050709j                        |w5| = 0.98145 

   w6 = 0.0193+1.0191j                             |w6| = 1.01928 

   w7 = -0.96966+0.011476j                      |w7| = 0.96972 

   w8 = -0.053378-0.997j                           |w8| = 0.99842 

 

 

 

 

 

 

 

 

 

 

 

 

  The weights 𝑊𝐶  for the N = 8 ULA are: 

   w1 = 1                                                    |w1| = 1 

   w2 = 0.039654+0.97034j                       |w2| = 0.97114 

   w3 = -1.0196+0.035065j                        |w3| = 1.02020 

   w4 = -0.0015655-0.98318j                     |w4| = 0.98318 

   w5 = 0.98278-0.051083j                        |w5| = 0.98410 

   w6 = 0.018172+1.0198j                         |w6| = 1.01996 

   w7 = -0.97056+0.012794j                      |w7| = 0.97064 

   w8 = -0.052917-0.99958j                       |w8| = 1.00097 

 

Reference to figures after graphs have been given to verify 

when is the convergence of the LMS algorithm faster for the 

case when initial weights are all zeros, ones or random. The 

actual value of each of the weights 𝑊𝐴, 𝑊𝐵, and 𝑊𝐶 at iterations 

100 have been computed. The results are presented in table 

(4.1) below: 

Table 4.1: Values of the convergence rate when initial 

weights are all Zeros, Ones or Random 

Initial weight 𝑤𝑖  𝑤𝑖  = 

Zeros 

𝑤𝑖  = 

One

s  

𝑤𝑖  = 

Rando

m 

Number of iteration 

(Convergence MSE)   

60 60 60 

Number of iteration 

|weights| (Convergence) 

60 60 60 

 

As shown in table (4.1), figure (5 a) and (5 b) are plotted for all 

initial weight at zeros (i.e. 𝑤𝑖  = zeros). The MSE and the 

magnitude of the weight graph converges after 60 iterations. 

Figure (5 c) and figure (5 d) are plotted with initial weight are 

all ones (i.e. 𝑤𝑖=ones). The MSE and the weight graph 

converges after 60 iterations. Figure (5 e) and figure (5 f) are 

plotted with initial weight are all random (i.e. 𝑤𝑖=random). The 

Mean Square Error and the weight graph converges after 60 

iterations.  

 

Table 4.2: actual value of the weights 𝑊𝐴, 𝑊𝐵, and 𝑊𝐶 

𝑊𝑖 |𝑤1

| 

|𝑤2| |𝑤3| |𝑤4| |𝑤5| |𝑤6| |𝑤7| |𝑤8| 

𝑊𝐴 1 0.96

994 

1.01

9426 

0.98

308 

0.98

264 

1.01

957 

0.97

017 

0.99

955 

𝑊𝐵 1 0.96

890 

1.01

874 

0.98

295 

0.98

145 

1.01

928 

0.96

972 

0.99

842 

𝑊𝐶 1 0.97

114 

1.02

020 

0.98

318 

0.98

410 

1.01

996 

0.97

064 

1.00

097 

 

In table (4.2), the actual value of all the weights of the three 

different cases are presented. It is observed that all the weights 

are almost the same, there is no different whether the initial 

 
Figure 5 f): iteration 

number versus weights 

when initial weights are 

all random 

 

 
Figure 5 e): Iteration 

number versus Mean 

Square Error when initial 

weights are random 

 

 

 

 
Figure 5 d): iteration 

number versus weights when 

initial weights are all ones 

 

 
Figure 5 c): Iteration 

number versus Mean 

Square Error when initial 

weights are ones 
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weight vector at zeros, ones or random the convergence 

performance of the LMS algorithm is not affected. 

 

Especific case two: Effect of closed angle of interference on 

the desired signal  

The following experiment is carried out to show the effect of 

an angle of interference too closed to the desired angle on the 

reception of the desired signal. The desired angle is maintained 

at 30°, but the angle of interference is varied from -40° to 50° 

in order to determine at what angle is the desired signal 

affected. The experiment is carried out for different angles of 

interference such as -40°, -30°, -20°, -10°, 0°, 10° 20°, 40°, and 

50°. The number of element is equal to 8, and the spacing 

between elements is half wavelength. 

 

 

 

Figure 6 a): Array Factor versus Direction of Arrival when 

desired angle is at 30° for different interferences: -40°, -30°, -

20°, -10°, 0°, 10° 20°, 40°, and 50° 

 

Figure (6.a) shows the behaviour of the array factor when the 

desired angle is 30° and for different interferences closer to the 

desired angle. The interference varies from -50° to get closer to 

the desired angle at -40°, -30°, -20°, -10°, 0°, 10°, 20°, 40° up 

to 50°. The interference at -50° has been displayed from the 

graph, its plot result is shown on figure (1b).  

It is observed from figure (6.a) that, for the angle of interference 

such as -50°, -40°, -30°, -20°, -10°, 0°, 10° and 50°, the 

reception of the signal at the desired direction is not affected. 

The antenna is able to place the nulls at the undesired direction. 

But for the angle of interference at 20°and 40°, the reception of 

the desired beam at the expected direction is affected as it is 

shown on figure (6.b) below: 

 

Figure 6 b): Array Factor versus Direction of Arrival when 

desired angle is at 30° for different interferences: -40°, -30°, -

20°, -10°, 0°, 10° 20°, 40°, and 50° (with x axis zoomed) 

 

Figure (6.b) shows the array factor plot versus Direction of 

Arrival with the X axis zoomed to focus on the achieved 

direction of the beam. The experimental result from the graph 

shows that at 𝜃𝑖 = 20°, the desired beam is shifted from 30° to 

31° on the right, also at 𝜃𝑖 = 40° the desired beam is shifted 

from 30 to 28° on the left. From -50° the reception of the 

desired signal is not affected up to 10°, but from 20° to 40° it is 

affected, and as from 50° the reception is still good at new. 

Thus, for the angle of interference less or equal to 10°, and for 

the angle of interference higher or equal to 50° the reception of 

the desired signal is not affected. The results are presented on 

table (5.1) below: 

Table 5.1: values of the angle of arrivals of the signals for 

different desired and interferer angles 

Desired 

AOA 𝜃𝑑  

Interference 

AOA 𝜃𝑖 

Experimental results 

desired AOA  𝜃𝑒 

30°  -50° 30° 

30°  -40° 30° 

30°  -30° 30° 

30°  -20° 30° 

30°  -10° 30° 

30°  0° 30° 

30°  10° 30° 

30°  20° 31° 

30°  40° 28° 

30°  50° 30° 

 

 

Effect of larger array size on the array factor when angle of 

interference is 20° and 40°  

Figure (6.c) and figure (6.d) show the array factor plot for 

desired angle at 30° and interferer is at respectively 20° and 

40°, when array size varies from N=8, 12 and 16 elements. 
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The results are shown in table 5.2 below.  

 

Table 5.2: Values of desired Direction of Arrival for different 

array size 

Desired 

angle  
𝜃𝑑 

Interfere

nce angle  
𝜃𝑖 

Number 

of 

element  

N 

Experimental 

desired angle   

𝜃𝑒 

𝜽𝒅 = 𝟑𝟎° 𝜽𝒊 = 𝟐𝟎° N=8 𝜽𝒆 = 𝟑𝟏° 

𝜃𝑑 = 30° 𝜃𝑖 = 20° N=12 𝜃𝑒 = 30° 

𝜃𝑑 = 30° 𝜃𝑖 = 20° N=16 𝜃𝑒 = 30° 

𝜽𝒅 = 𝟑𝟎° 𝜽𝒊 = 𝟒𝟎° N=8 𝜽𝒆 = 𝟐𝟖° 

𝜃𝑑 = 30° 𝜃𝑖 = 40° N=12 𝜃𝑒 = 30° 

𝜃𝑑 = 30° 𝜃𝑖 = 30° N=16 𝜃𝑒 = 30° 

 

Figure (6.c) and (6.d) show the directivity of 3 arrays with 8 

(black), 12 (blue) and 16 (red) elements. The element spacing 

is half wavelength for all the arrays. Note the presence of side 

lobes next to the main lobes. The side lobes level decreases with 

the number of elements. The beam width becomes narrow as 

the number of elements increases. From table (5.2) it is 

observed that for a number of elements equal to 8 (N=8) when 

the interference is at 20 degrees the desired signal arrives at an 

angle of 31 degrees and as the number of elements increases, 

the desired angle of arrival is adjusted to the desired direction 

30 degrees. The same as when the interference is at 40 degrees 

given a small size of the array (say N=8), the desired signal is 

deviated at 28 degrees, but as the number of elements increases 

from 8 to 12 and 16, the desired user beam is adjusted to the 

desired direction of 30 degrees. Thus, the array directivity 

increases with the number of elements. 

 

CONCLUSION  

The performance of the LMS algorithm is evaluated here for 

three different cases such as general case and two specific 

cases. In the general case, the LMS error is satisfactory and the 

MSE converges. In the first specific case, the increase in the 

number of elements has resulted in the production of narrower 

beams, and the MSE gives an optimum error in a particular 

direction for element spacing equal to half wave lenght. The 

LMS algorithm performs in a satisfactory way when the desired 

signal is less affected by the interference in terms of SNR level. 

In The second specific case, for a better performance of the 

LMS algorithm for adaptive beamforming, the interference 

angles should be less or equal to one third of the desired angle 

(in this case desired at 30° and all the interferences ≤10°) or 

higher or equal to five third of the desired angle (in this case 

desired at 30°, and all the interferences ≥50°). The main feature 

of the LMS algorithm is its low computational complexity. The 

LMS algorithm can then further be easily implemented in real 

time.  
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