
413

 MULTI-AGENT BASED INTRUSION DETECTION SYSTEM FOR CLOUD COMPUTING

J. O. Yogo
Department of Computer Science, Nairobi University, Nairobi, Kenya
E-mails: jimmy.yogo@gmail.com

Abstract
Cloud Computing has come to represent a significant shift in Information Technology. Companies are excited by
the opportunities to reduce capital costs, invest on core competencies and as well by the agility offered by the
rapid on-demand provisioning of computing resources. However, security concerns have slowed down the uptake
and trust has been identified as the key barrier to the uptake by most small to medium sized enterprises. This
paper details a multi agent based framework for intrusion detection in the cloud computing environment that
provides a mechanism for auditability and accountability. The design and development of the framework is based
on PASSI (Process for Agent Societies Specification and Implementation) methodology. The proposed design
consists of a virtual environment used to simulate the cloud computing environment, client and server side agent
(java based) systems setup in the virtual instances. The outcome of the experiments carried out reveal that
monitoring of all user operations on files predefined for monitoring within the virtual instances was successful.
Email and SMS notifications were sent in real time to either clients or administrators for any operations detected.
The framework depicts aspects of security assurance that assists in the efforts to promote trust between providers
and consumers of cloud computing hence increase the uptake of the technology. The potential beneficiaries of the
implementation of the framework are both service providers and consumers of cloud computing.

Key words: Agents, multi-agent systems, cloud computing, virtual machine, infrastructure as a service, intrusion

detection system

1.0 Introduction
1.1. Background
With the promising innovations, cloud computing has come to represent a significant shift in Information
Technology. Companies are both excited and nervous at the prospects of cloud computing. They are excited by the
opportunities to reduce capital costs, invest on core competencies and as well by the agility offered by the on-
demand provisioning of computing services, (Fujitsu Research Institute, 2010). In Gartners’ report, “Gartner Top
End User Predictions for 2010, coping with the New Balance of Power ”, 2010, it is observed that by the year 2012,
20% of businesses will own no IT assets; while the need for computing hardware will not go away, the actual
ownership of it will shift to cloud computing providers.

Most modern computer systems incorporate some form of long-term storage, usually in the form of files stored in
a file system. These files typically contain all of the long-lived data in the system, including user data and
applications, and system executable and databases. As such, the file system is one of the usual targets of an attack
(Gene et al., 1994). Motives for altering system files are many. Intruders could modify system databases and
programs to allow future entry and as well system logs could be removed to cover their tracks or discourage future
detection. Modification or destruction of user files also compromise aspects of the security policy. As such, the
security administrator and the owner of data need to closely monitor the integrity of the file system contents.

According to a report by Cloud Security Alliance (2010), “Top 10 threats to Cloud computing v10, 2010” and a
report by Brodkin (2008) on “Seven cloud-computing security risks”, Abuse and Nefarious Use of Cloud Computing,
Insecure Interfaces and APIs, Malicious Insiders, Shared Technology Issues, Data Loss or Leakage, Account or
Service Hijacking and Unknown Risk Profile are amongst the top security risks in a cloud computing environment. A
good percentage of these risks narrow down to lack of proper mechanisms of auditability and accountability.

A recent survey by Fujitsu Research Institute (2010), on “Personal data in the cloud: A global survey of consumer
attitudes, 2010),” revealed that 88% of potential cloud consumers surveyed are worried about who has access to
their data within the cloud, and would like to have more awareness of what “goes on” in the cloud’s backend

414

physical servers. Such surveys have not only identified trust as the key barrier to cloud computing uptake, but also
enhanced the urgency for researchers to quickly address key obstacles to trust.

Despite auditability and accountability being a crucial component of improving trust and confidence, current
prominent providers e.g. Amazon EC2/ S3, Microsoft Azure and others are still not providing full transparency or
capabilities for tracking and auditing of file access, (Ryan et al., 2011).

Concerns about the risks of cloud computing remain a serious issue that needs to be addressed. From a system
design perspective, the notion of trust can be increased through reducing risks when using the cloud. While risks
can be greatly mitigated via privacy protection and security measures such as encryption, they are not enough,
particularly as full encryption of data in the cloud at present is not a practical solution. There is a need to
complement such preventative controls with equally important detective controls that promote transparency,
governance and accountability of the service providers, (Ryan et al., 2011).

Hence, in this paper, we identify accountability and auditability as urgent research areas for the promotion of trust
in a cloud computing environment. We propose a multi agent based framework for intrusion detection in a cloud
computing environment (with our focus on the IaaS model) which will fully addresses risks related to
accountability and auditability in a cloud environment. We embrace the PASSI (Process for Agent Societies
Specification and Implementation) methodology in modeling the proposed agent based system as it offers step by
step requirements to code guidelines and the much needed iterativeness to ensure user requirements are fully
captured, (Massimo and Luca, 2003).

1.2. Problem Statement
The ability to provide multi-tenant cloud services at the infrastructure, platform, or software level is often
underpinned by the ability to provide some form of virtualization to create economic scale. However, the use of
the vitalization technologies brings additional security concerns and current prominent providers are still not
providing full transparency or capabilities for auditing and auditability, (Ryan et al,. 2011), such that:

(i) One can never tell which and when file deletions and modifications within a subscribers’ virtual space are
conducted and by who, as there is no effective mechanism for monitoring authorizations and changes to
subscribers’ data within the cloud.

(ii) One can never get to know the exact changes done to files within a subscribers’ virtual space as there is no
effective mechanism for tracking changes (whether authorized or not authorized) done to subscribers’ data
within the cloud.

(iii) According to a report by Fujitsu Research Institute (2010), “Personal data in the cloud: A global survey of
consumer attitudes, 2010,” 88% of potential subscribers surveyed are worried about who has access to
their data within the cloud and would like more awareness of what ‘goes on’. The survey identifies trust as a
key barrier to cloud computing uptake.

1.3. Significance of the Study
The project will prove the effectiveness of agents systems in the area of intrusion detection monitoring in a cloud
computing environment; hence will:
(i) Provide a mechanism for auditability and accountability in the cloud computing environment.
(ii) Provide real time notifications to the cloud administrators or subscribers in terms of either short messages

or email in case of modifications or deletions.
(iii) Detect and reduce a percentage of security breaches in a cloud computing environment hence enhance the

level of trust between the provider and the client.

1.4. Scope and Delimitations of Study
The study only focuses on Infrastructure as a Service (IaaS) model of the cloud, and to be specific the storage
aspect of it. The study does not focus on Platform as a Service (PaaS) and Software as a Service (SaaS) models of
the cloud.

415

1.5. The Proposed Design
The proposed system (Figure 1) is based on multi agents and offers a solution to auditability and accountability to
the IaaS model of cloud computing. Multi agents systems can operate asynchronously and in parallel, and this can
result in an increased overall speed (provided that the overhead of necessary coordination does not outweigh this
gain). They are scalable as they can be adapted to an increased problem size by adding new agents, and this does
not necessarily affect the operations of the other agents.
The conceptual model of the proposed system comprises:
(i) A VMware environment with a number of instances enough to demonstrate the multi-tenant nature of

cloud computing.
(ii) Database Server which hosts the information about changes or deletions on files defined to be monitored

for any intrusions.
(iii) SMS Server used for sending SMS notifications to the cloud computing subscriber or administrators for the

set triggers.
(iv) Email Server used for sending email notifications to the cloud computing subscriber or administrators for

the set triggers.
(v) Reporting Server used for generating reports for consumption by the cloud computing administrators.
(vi) Client agents - responsible for monitoring file creations, modifications or deletions in the subscribers’ virtual

space, collecting the changes detected and pushing to the processor agent in real time.
(vii) A processor agent - responsible for parsing, classification and saving the changes received from the client

agents to the database, it then as well relays the messages to the communicator agent.
(viii) A communicator agent –responsible for sending email or short message notifications to relevant predefines

parties.

Figure 1: Conceptual model of the proposed system

VM 1

VM 2

VM 3

Client Agent

File

Monitor

File

Compare

File

Backup

Client Agent

Client Agent

File

Backup

File

Monitor

File

Compare

File

Backup

File

Monitor

File

Compare

VM (Client) Side

Email

Notifications

 Processor Agent

Database

Report GUI

SMS

Notifications

Communicator Agent

Server Side

Admi

416

1.0 Materials and Methods
1.1 Methodology
Process for Agent Societies Specification and Implementation (PASSI) methodology, (Massimo, 2005) which is
an Agent Oriented methodology was used for the design and development of the multi-agent societies and
integrating design models. The design process is composed of five models as illustrated below, (Massimo and
Luca, 2003):

Figure 2: The PASSI methodology (Massimo and Luca, 2003)

1.2 System Analysis and Design
The PASSI methodology was used to model the design (Figure 1 to 10). This was achieved through the
construction of five models obtained by performing twelve sequential and iterative activities as per the
methodology.

1.3 Design Implementation
To implement the proposed design; JADE was used as the development framework of the modelled design,
JSMS java API for SMS notification, SQL for database, .net and C# for Graphical User Interface (Figure 6).

1.4 Systems Testing
Testing was categorized into 2, i.e. verification and validation testing. For verification or unit testing, the
behavior of each agent was tested with regards to the original requirements. Each executable java class
identified was tested. Verification testing was conducted by the developer of the system. The following list
describes the features that were tested:

Table 1: Test tasks-verification testing

Test Number Description

AT-001 Monitoring of directories or files for any user activity (create, modify or delete)

AT-002 Running backup of the files to be monitored

AT-003 Comparing files being monitored against the backed up ones

AT-004 Parsing, classification and sending of changes

AT-005 Saving of changes to database

AT-006 Send email notification to the administrator

AT-007 Send sms notification to the administrator

417

For validation testing or society testing several related classes were tested together to ensure successful
execution and compliance with the requirements after integration hence ensure that all functional
requirements are met. The following list describes the functionalities that the system was tested against:

Table 2: Test tasks -validation testing

Test Number Description of Functionality

ST-001 Detection of user activity (create operation) on monitored files and reporting on web
GUI.
[Report on the time of operation, user id, ip address of client VM instance, file
changed and the exact change made]

ST-002 Detection of user activity (modify operation) on monitored files and reporting on web
GUI. [Report on the time of operation, user id, ip address of client VM instance, file
changed and the exact change made]

ST-003 Detection of user activity (delete operation) on monitored files and reporting on web
GUI. [Report on the time of operation, user id, ip address of client VM instance, file
changed and the exact change made]

ST-004 Detection of user activity (modify operation) on monitored files and sending a
notification through email. [Report on file changed and the exact change made]

ST-005 Detection of user activity (delete operation) on monitored files and sending a
notification through SMS. [Report on file deleted]

2.0 Verification and Validation Results
2.1 Sample Summary of Verification Results
The output presented below is part of the outcome of verification tests conducted to confirm the functionality
of the various classes that make up the whole solution.

Test
Number

Class
Description

Expected Outcome Actual Outcome Status

AT-001 Watchdir
class

All files in the directory
predefined for
monitoring should be
monitored for any
create, modify or
delete operation.

Only (all) directories or files
predefined for monitoring were
monitored for create, modify or
delete user operations to confirm
the correct functionality of the
Watchdir class.

Functional

AT-002 Backup class All files in the directory
predefined for
monitoring should be
backed up in the path
specified.

Only (all) directories or files
predefined for monitoring were
backed up according to the preset
schedule to confirm the correct
functionality of the Backup class.

Functional

AT-003 FileCompare
class

All modification
changes in all the
predefined directories
to be monitored should
be captured.

All or any modifications on
monitored files were detected and
any changes made picked out to
confirm the correct functionality of
the FileCompare class.

Functional

AT-004 MsgProcessor
class

All file operations;
create, modify and
delete on any file in the
monitored directory
should be captured and
reported on.

All file operations were detected
and reported on accordingly as
either a create, delete or modify
operations to confirm the correct
functionality of the MsgProcessor
class.

Functional

418

2.2 Sample Summary of Validation Result
The output presented below are a sample summary of the outcome of some of the test cases from users who
participated in the validation of the solution.

Test
Number

Description of
Test

Expected Outcome Users Response Users View

ST-001 Monitoring of
create
operations

All details about create
operations on files in the
monitored directory should
be captured and saved to
the database and report
available on the reporting
interface.

Create operations by user 1, 2,3
and 4 on monitored files from
the different VM instances were
reported on web GUI.
Details recorded include; the
time of operation, user id, ip
address of client VM instance
and file created.

Functional

ST-002 Monitoring of
modify
operations

All details about modify
operations on files in the
monitored directory should
be captured and saved to
the database and report
available on the reporting
interface.

Modify operations by user 1, 2, 3
and 4 on monitored files from
the different VM instances were
reported on web GUI.
Details recorded include; the
time of operation, user id, ip
address of client VM instance,
file modified and the exact
changes made.

Functional

ST-003 Monitoring of
delete
operations

All details about delete
operations on files in the
monitored directory should
be captured and saved to
the database and report
available on the reporting
interface.

Delete operations by user 1, 2, 3
and 4 on monitored files from
the different VM instances were
reported on web GUI.
Details recorded include; the
time of operation, user id, ip
address of client VM instance
and file deleted.

Functional

2.3 Detailed Outcome
Figures 11 to 13 for sample detailed outcome.

3.0 Discussions of Results
From the results of the experiments carried out, 3 observations were made:
When a user executed a create operation on a file in a directory set to be monitored in a given instance of VM
client, details of that operation such us the user id, time the operation was conducted, ip address from where
the operation was executed, type of change and the file name of the affected file was recorded to the
database. The same was the case for create operations executed in different VM instances with different user
ids. These in turn can be monitored on the graphical user interface.

When a user executed a modify operation a file in a directory set to be monitored in a given instance of VM
client, details of that operation such us the user id, time the operation was conducted, ip address from where
the operation was executed, type of change, the exact change made and the file name of the affected file was
recorded to the database. In addition to that, an email notification was also sent out to the predefined
recipient showing the file changed and the changes made. The same was the case for modify operations
executed in different VM instances with different user ids. These in turn can be monitored on the graphical
user interface.

When a user executed a delete operation a file in a directory set to be monitored in a given instance of VM
client, details of that operation such us the user id, time the operation was conducted, ip address from where
the operation was executed and the file name of the affected file was recorded to the database. In addition to
that, an SMS notification was also sent out to the predefined recipient showing the file deleted. The same was

419

the case for delete operations executed in different VM instances with different user ids. These in turn can be
monitored on the graphical user interface. Email and SMS notifications are sent in real time hence
administrators can react in time to arrest a case of an intrusion.

4.0 Conclusion
After successfully developing, implementing and testing the prototype; it is evident that the multi agent based
solution for file centric intrusion detection in a cloud computing environment is effective for the intended
purpose hence I would strongly recommend its’ adoption by cloud computing providers. This in turn could be
extended as a value add to consumers or be sold as ‘Security as a Service’ hence detect and reduce security
breaches around auditability and accountability in the cloud computing environment to enhance the level of
trust between the providers and the consumers, hence promote the uptake of cloud computing services.

Acknowledgments
Endless thanks goes to the Lord Almighty for all the blessings he has showered onto me, which has enabled me
to write this last note in my research work. During the period of my research, I have been blessed by the
Almighty with some extraordinary people who have spun a web of support around me. First and Foremost, I
would like to thank my supervisor, Dr. Opiyo Omulo for his ideas, insight, guidance and support throughout my
project work at the University of Nairobi. Secondly, I would like to thank my MSc project committee members
who gave useful input while I was working on my research work and the entire University of Nairobi, School of
Computing and Informatics fraternity for providing me with a rich and constructive environment to pursue my
research interests.

420

References
Cloud Security Alliance (2010). “Top 10 threats to Cloud Computing v10.” Available:
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

Thomas, J. B. (2009). Gartner: Server Virtualization; One path that Leads to Cloud Computing. Gartner Core
Research Note G00171730.

Gartner (2010). “Gartner: Top End User Predictions for 2010: Coping with the New Balance of Power.”
Available: http://www.widality.com/gartner.pdf

Brodkin, J. (2008). “Gartner: Seven cloud-computing security risks.” Available:
http://www.infoworld.com/d/security-central/gartner-seven-cloudcomputingsecurity-risks-853?page=0,1

Fujitsu Research Institute (2010). “Personal data in the cloud: A global survey of consumer attitudes.”
Available: http://www.fujitsu.com/downloads/SOL/fai/reports/fujitsu_personal-data-in-the-cloud.pdf

Fujitsu Research Institute (2010). “Personal data in the cloud: The Importance of Trust.” Available:
http://www.fujitsu.com/downloads/WWW2/news/publications/FSL-0016_A4_TrustReport_online-final.pdf

Wang G., DeMara Ronald F., Rocke Adam J. “A Centralized Control and Dynamic Dispatch Architecture for File
Integrity.” Available: http://www.iiisci.org/journal/CV$/sci/pdfs/P101422.pdf

Massimo Cossentino, Luca Sabatucci (2003). “Modeling Notation Source PASSI.”

Heiser, J., Nicolett, M. (2008). “Gartner: Assessing the Security Risks of Cloud Computing.” Available:
http://cloud.ctrls.in/files/assessing-the-security-risks.pdf

Cyber Security Operations Center Initial Guidance, Department of defense, Australia (2011). “Cloud Computing
Security Considerations.” Available:
http://www.dsd.gov.au/publications/Cloud_Computing_Security_Considerations.pdf .

Ryan, K. L., Ko, Peter J., Miranda, M. and Siani, P. (2011). “Trust Cloud: A Framework for Accountability and
Trust in Cloud Computing.” Cloud and Security Lab Hewlett-Packard Laboratories.

Gene, H. K., Eugene, H. S. (1994). “Experiences with Tripwire: Using Integrity Checkers for Intrusion Detection”.

Mell, P. and Timothy, G. (2011). Cloud Computing Security Considerations.

Gerhard, W. (1999). “A Modern Approach to Distributed Modern Approach to Artificial Intelligence.”
Massachusetts Institute of Technology.

Nikos, V. (2003). “A Concise Introduction to Multiagent Systems and Distributed AI.” Informatics Institute,
Universiteit van Amsterdam.

Massimo, C. (2005). “From Requirements to Code with the PASSI Methodology.”

421

Figure 3: Main page –graphical user interface

Log into VM Client Agent Created

<<Communicate

<<Include>

<<Include>

Monitor

Files

Backup Files

<<Include>>

<<Include>

Compare

Files

Mail Notification for

SMS Notification for

<<Include>>

Record to DB Report

GUI

<<Include>

User

<<Communicate>>

<<Communicate>

<<Include>>

<<Include>>

<<Include>

Admi

Classify

Files

Figure 4: Domain requirement description diagram

422

<<Include><<Include>

<<Include>>

Files

Files

Files Monitoring

Send Changes

==Agent==

Client

==Agent==

Processor

Receive

Changes <<Communicate

Classify

Record Changes to

<<Include>

<<Include>

==Agent==

Communicator

Classified

<<Communicate>

SMS

Mail

MOD_Changes

<<Include

<<Include

Admi

User

Reports

GUI

Figure 5: Agent identification diagram

423

Monitor:

VM_instance

Processor:

Msg_Processor

 Communicator:

Communicator

Files DB

Backup Files

Monitor

User Activity

Compare Files

Send

Parse, Classify & Save

Reports GUI

Parse, Classify & Send Changes

Send

Send SMS

Admin
User

Confirm Rcpt

Figure 6: Roles identification diagram

424

Figure 7: Tasks specification diagram- client agent

Client Agent Other Agents

<<Processor>>

Processor. Receive

Parameters for Agent Activity

Monitor Files

Backup Files

Compare Files

Send Changes

Figure 8: Tasks specification- process agent

Processor Agent Other Agents

<<client>>

client. Send

<<Communicator>>

Communicator. Receive

Receive Changes

Send Parsed, Classified

Parse, Classify Changes

Record Changes

425

Figure 9: Tasks specification- communicator agent

Figure 10: Multi agent structure diagram

-Backup ()

-Watchdir ()

-CompareFiles ()

-Sendmsgs ()

<<Agent>>

Client

-ReceiveMsgs ()

-ParseMsgs ()

-ClassifyMsgs ()

-SavetoDB ()

<<Agent>>

Processor

-ReceiveMsgs ()

-SendMail ()

-SendSMS ()

<<Agent>>

Communicator

Admin User

Database
Reports

User logs into the VM Instance

Communicator Other

<<Processor>>

Processor. Send

Receive DEL_Changes Send SMS Notifications

Send Email

Notifications

Receive

MOD_Changes

426

Figure 11: Sample validation test logs

Figure 12: Sample validation test email

Figure 13: Sample verification test outcome (Watchdir class)

