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Abstract Limited information on optimal biofuel production conditions leads to non-economical and inefficient process hence 
uncompetitive low grade biofuels. Fermentation process optimization is very crucial especially while using relatively low 
fermentable sugars substrates. In this research, banana peels derived from Ngombe cultivar were dried, ground into fine powder to 
pass through a 1 mm screen, and then hydrolyzed using 60% concentrated H2SO4 at 50oC. Bioethanol was produced by anaerobic 
fermentation of the hydrolysate using Saccharomyces cerevisiae. Erlenmeyer Flasks fitted with non-return air valves were used as 
laboratory scale still reactors. Fermentation systems were subjected to various conditions based on half factorial Central Composite 
Rotatable Design (CCRD). Total Reducing Sugars (TRS) concentrations and bioethanol yield analyses were done by Dubois and 
Gas Chromatography methods respectively. Optimum bioethanol yield of 13.09 ml/L was obtained at 180 g/L substrate 
concentration, 35oC fermentation temperature, 5.5 initial medium pH, 2 g/L yeast concentration, and 120 hours incubation 
corresponding to a TRS degradation of 30.30 g/L. Lowest yield of 1.44 ml/L was obtained at 84.86 g/L substrate concentration, 
35oC fermentation temperature, 5.5 initial medium pH, 2 g/L yeast concentration, and 120 hours incubation corresponding to a 
TRS degradation of 2.85 g/L. Maximum bioethanol yield realized from these wastes manifested viable concentrations which could 
further be distilled and dried to be used as an energy resource. The mathematical model developed also posed as a predictive tool 
on bioethanol yield while using banana peels and similar wastes in energy resource generation.   
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1. Introduction 
Ethanol can directly be used as a fuel or mixed with 
gasoline to act as an octane enhancer [1]. It is a proven 
source of energy as it burns to produce heat energy 
alongside other products. Ethanol derived from biological 
fermentation of carbonaceous feedstock e.g. banana 
peels, molasses, sorghum amongst others is referred to as 
bioethanol. Ethanol is less toxic as compared to fossil 
fuels and is biodegradable. 

In Kenya, Horticultural Crops Development Authority 
(HCDA) cited 15 different varieties of banana [1] which 
are grown in different parts of the country. Banana 
production is widely spread across Kenyan counties. 
Banana withstands short flooding periods as long as there 
is adequate soil aeration [1]. 

In Kenya, banana production (Fig. 1) has been rising in 
the past years. Productions of about 2.0 M and 1.7 M 

metric tons for 40% under Tissue Culture (TC) banana 
and 25% under TC respectively are predicted for the year 
2016 assuming total land coverage of 90,580 ha [2]. 

It has been established through research that about 10% 
of Musa Spp. is comprised of wastes including stems, 
skins or peels, and leaves [3]. This enormous quantity of 
banana wastes can be converted to bioethanol to assist in 
meeting the energy demand especially in the automotive 
industry. Banana peels are common food wastes usually 
discarded because people feel they lack economic value 
[3]. They have relatively large sugar content which can be 
harnessed into bioethanol production rather than being 
discarded as wastes. They have enormous potential in 
bioethanol industry and can be used as a cheaper source 
of alternative fuel. Banana plant parts including stems, 
fruits, pulps, and peelings have been used as bioethanol 
production feed-stocks [5]-[6]. 
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Abstract Non-Conventional methods have recently been employed in the drilling of materials such as super alloys which are hard to
machine using mechanical conventional methods. These materials are mainly used in turbines in the power generation and aerospace
industries.Oneof therecentlydevelopednon-conventionalmethodsfordrilling isusingpulsed laserswherebya laserbeamis focussed
toaspotequal indiameter to thehole tobedrilled.PulsedlaserssuchasNd:YAGaremainlyemployedfor thisprocess.Laserpercussion
drilling is commonly employed to produce holes with small diameters, usually less than 1mm. With percussion drilling, the control of
hole parameters such as taper, entrance and exit hole variation and roundness is difficult and these parameters are of utmost importance
for small holes. Selection of machining parameter combinations for obtaining optimum circularity at entry and exit and minimum hole
taper is a challenging task owing to the presence of a large number of process variables. There is therefore need to develop a control
system that is able to adjust the various process parameters to the optimum values and hence control the drilling process. This paper
discusses a neuro-fuzzy controller developed to control the hole diameters and taper through in-process adjustments of laser power
and pulse duration. The controller is based onMATLAB andLabV IEW platforms. The controller was implemented by simulating
a laser drilling environment. It is seen that while using the controller, the diameters increase with increase in peak power and pulse
durationuptoanoptimumlevelbeyondwhichthepeakpowerandpulsedurationdonot increase.Thehole taperdecreaseswithincrease
in peak power and pulse duration up to optimum level beyond which the peak power and pulse duration do not increase. Thus, the
controllerhelpsmaintainthepeakpowerandpulsedurationatoptimumlevels.

Keywords Holetaper,LaserPercussiondrilling,Neuro-fuzzycontrol,Peakpower,Pulseduration.

1. Introduction

It is difficult to produce macro or micro holes of high
aspect ratio in super alloys using conventional machining
processes [1]. High tool wear and excessive heat generation
have rendered mechanical drilling unsuitable for such
purposes [2], [3]. Past studies have shown that laser drilling
iswellsuitedfor thedrillingofthermalbarriercoated(TBC)
super-alloys since both the ceramic and metallic layers
can be processed [1]–[5]. In comparison, the competing
technology of electrical discharge machining is limited to
conducting substrates and therefore cannot machine TBC
coated components [4], [6]. An example of nickel based
super alloys is Inconel 718. Such alloys have mainly been
employed in steam turbines for power generation and jet
engines[5], [7].

In laser percussion drilling, a series of short pulses
(10−12 to 10−3 s) separated by longer time periods (10−2

s) are directed on the same spot to drill. Each laser pulse
contributes to the drilling by removing a small volume of

material. Pulsed Nd:YAG lasers are most commonly used
for percussion drilling because of their higher energy per
pulse. Percussion drilling is used to produce holes of upto
1.3 mm diameter on metal plates of upto 25 mm thick [8],
[9].

The high machining rate of laser percussion drilling
makes the drilling method a prime candidate for drilling
such components as combustion chambers, which have
between 40,000 to 50,000 holes. Other components such
as turbine and guide vanes contain fewer holes, typically
50 to 200, but given the total number of components
involved, percussion drilling still has the potential to
providesignificantcost-benefit[10].

The determination of efficient laser process parameters
and laser beam parameters for the drilling process is a
major challenge for the power generation and aerospace
industry [11], [12]. Therefore there is need to control
the laser percussion drilling process in order to avoid the
imperfections such as tapering and non-circularity which
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have adverse effects on the airflow over the surface of the
component affecting the lifespan of the component [13],
[14].

2. Neuro-Fuzzy Learning and Control Approach

Neuro-fuzzy systems represent a newly developed class of
hybrid intelligent systems combining the main features of
artificial neural networks with those of fuzzy logic systems
[15], [16]. The main aim of combining neural networks
and fuzzy logic is to circumvent difficulties encountered in
applying fuzzy logic for systems represented by numerical
knowledge (data sets), or conversely in applying neural
networks for systems represented by linguistic information
(fuzzy sets). Neither fuzzy reasoning systems nor neural
networks are by themselves capable of solving problems
involving both linguistic and numerical knowledge [17],
[18].

The integration of fuzzy logic systems with neural
networks aids fuzzy systems in learning and strengthens
the neural network features in terms of explicit knowledge
representation.

Neuro-fuzzy systems (NFS) can be divided into three
major categories, according to their topologies and func-
tionalities [15], [19]. These are; Cooperative neuro-fuzzy
systems, Neural network-driven fuzzy reasoning systems,
andHybridneuro-fuzzysystems

Ofinterest in thisstudyis theHybridneuro-fuzzysystem.
This is based on an architecture which integrates a neural
network and a fuzzy logic-based system in an appropriate
parallel structure. The fuzzy logic system and the neural
networkoperateasonesynchronizedentity[17].

Hybrid neuro-fuzzy systems have a parallel architecture,
and exploit similar learning paradigms, as is the case for
neural networks. The parallelism of the system can be
viewed as a mapping of the fuzzy system into a neural
network structure. Each functional module of the fuzzy
logic system corresponds to a particular layer of the neural
network. The resulting system can be interpreted either as a
neural network or a fuzzy logic system [19], [20]. Figure 1
depicts the mapping from a fuzzy logic system to a neural
networkstructure.

The structure of the system can be described layer by
layerasfollows[17], [19]:

Layer 1: Fuzzification–This layer consists of a set
of linguistic variables. The crisp inputs x1 and x2 are
fuzzified through mapping into membership functions
of the linguistic variables, which usually take triangular,
trapezoid,orbell-shapedmembershipfunctions.

Layer 2: Rule nodes–This layer contains one node
per each fuzzy if-then rule. Each rule node performs a
connective operation within the rule antecedent (if part).
Usually, the minimum or the dot product is used as the T-
norm operator to represent the connective AND. The union
OR connective is usually represented using the maximum
operationoranyotherT-conormoperator.

Layer 3: Normalization–In this layer, the firing strengths

of the fuzzy rules are normalized. The normalized firing
strengthisgivenby;

wp =
wp∑
i=1wi

(1)

wherewp is thefiringstrengthofthep-thrule.
Layer 4: Consequent layer–This layer is related to the

consequent of the fuzzy rule. The values of the consequent
(then part) are multiplied by normalized firing strengths
accordingto:

Op = wpOp (2)

where Op is the consequent layer output and Op is the
normalizationlayeroutput.

Layer 5: Summation–This layer computes the overall
outputasthesummationoftheincomingsignals:

O∗ =
∑

p

Op (3)

whereO∗ is theoveralloutput.
Acommonexampleofahybridneuro-fuzzysystemis the

Adaptive-Neuro-Fuzzy Inference System (ANFIS), which
can be represented in a four or five layer architecture [17],
[21], [22].

3. Development of the Neuro-Fuzzy Controller
3.1. ANFISModel

It is proposed to use Sugeno inference mechanism for the
ANFIS due to its ability to model non-linear systems [19],
[23]. In this type of inference mechanism, the output
is a function of the inputs and is a fuzzy singleton.
ANFIS involves three major steps namely: Identification
of inputs, outputs and their ranges; Design of membership
functions and rule base; and Mapping of fuzzy outputs to
correspondingcrispvalues.

3.1.1. Identificationof inputs,outputsandtheirranges

The inputs to the ANFIS model are the taper angle and
diameter at hole exit. The values of these inputs are derived
from experimental work as reported by Joonghan Shin and
Satapathy [24], [25]. Joonghan carried out Laser drilling
of Inconel 718. The laser used was a high average power
diode-pumped solid state Nd:YAG laser operated at 1064
nm. Drilling was carried out on Inconel 718 plates 3 mm
thick, 5 mm wide, and 25 mm long. Satapathy carried out
laser drilling on a medium carbon steel specimen, 100 mm
long, 10 mm wide, and 8 mm thick. A pulsed Nd-YAG laser
system was used with a rated average power of 100 W. The
set of data obtained from these experiments was used to
trainandtest theANFISforthiswork.

12
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Fig. 1. Mappingfromafuzzylogicsystemtoaneuralnetworkstructure[19]

Figure 2 shows the block representations of ANFIS. The
inputs into the ANFIS are diameters at the exit and hole
taper angles. The outputs are laser peak power and pulse
durations.

Fig. 2. BlockrepresentationofANFIS

3.1.2. Designofmembershipfunctionsandrulebase

The design of membership functions was achieved as
follows:

A set of training data, which constitutes the laser drilling
conditions and the expected output, is presented to the
ANFIS.TheANFIS isgeneratedbyuseofgridpartitioning,
which is a method for grouping data into clusters based
on their similarity. The ANFIS is then trained by use of
hybrid learning rule. The hybrid learning rule combines the
gradientmethodandtheleastsquaresestimate(LSE).

The ANFIS is then tested against a set of testing data.
Different sets of data are presented to the ANFIS, and
based on the input-output relationship of the ANFIS, the
membership functions are constructed. The membership
functions for the two inputs are similar but with different
universe of discourse. The membership functions for the
diameterat theexitareshownbyFig.3.

Fig. 3. Membershipfunctionsforholediameterat theexit

Gaussian typemembership functionsareusedfor the two
inputs because they represent the non-linear nature of the
problem in a better way than triangular or trapezoidal mem-
bership functions.Themembership functiondefinition isas
showninTable1.

Table1. Membershipfunctionsdefinition

Symbol Meaning
NVS Negativeverysmall
NS Negativesmall
NZ Negativezero
Z Zero
PZ Positivezero
PVS Positiveverysmall
PS Positivesmall

The rule base for the fuzzy logic controller (FLC) is then
generated based on the execution of the ANFIS. ANFIS
automatically generates its own rule base depending on its
setof trainingdata.

13
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3.1.3. Mapping of fuzzy outputs to corresponding crisp
values

Fig. 4. Surfacemapforexitdiameterandtaperangle

The surface map generated by ANFIS for laser power is
shown in Fig. 4. The surface map shows the mapping from
diameter at the exit and hole taper to laser peak power. The
surfacemaphelpsexaminetheoutputsurfaceofaFISstored
inafileforanyoneortwoinputs.

Fig. 5 shows a diagrammatic representation of some of
the rules for the ANFIS. It shows the crisp output (laser
power) of 3.22 kW with diameter at the exit being 283 µm
and taper angle of 2.38◦. There are a total of 49 rules. If one
or both input values are changed, then the output changes as
pertherulestogivetheoptimumlaserpower.

The ANFIS was presented with different input sets so as
to simulate a machining situation. The results were used in
the design of the input and output membership functions as
well as in the generation of the rules for the Fuzzy Logic
Controller.

3.2. DesignoftheFuzzyLogicController

LabV IEW software was used to develop the fuzzy logic
controller. Fig. 6 shows a section of the controller while Fig
7 shows the front panel for the controller, displaying some
controlleroutputs.

As can be seen in Fig. 6, implementation of the
FLC involves referencing a fuzzy system designed on
LabV IEW andsavedasa .fsfile,andreadingof inputdata
from a spreadsheet file. The input data includes values of
hole diameters at the exit and taper angles derived from a
laser drilling model. The controller computes values for the
diameter at the hole entrance. Input values are recorded as
thecontrollerruns.

Fuzzy Logic control is then performed based on the
information received on the shift register. The initial
information comes from the .fs file. The output values
are then computed based on the control action. The output

parameters are laser power and the pulse duration. These
outputsvaluesarerecordedasthecontrollerruns.

The controller checks if the control has a different
value from the previous loop interation. It then gets the
membership functions points of the input and output
variables and change the values using a simple shifting
algorithm. Membership functions points are then set with
updatedvalues.

The effectiveness of the controller was tested by com-
paring the controller results with results from a laser
drilling model. The model was developed using Finite
Element Method and was based on COMSOL which is
a Finite Element Analysis software package that allows
the user to develop 3D models with associated boundary
conditions. COMSOL was used for simulation purposes
to mathematically model the laser drilling process. A fine
mesh is used for the entire model. A Q-switched Nd:YAG
laser was employed. With this type of laser, high laser
power in the range of Kilowatts can be achieved. It is also
possible to obtain modulated laser pulses in the range of
milliseconds. An image analyzer, was used to analyze the
images generated. The model was then validated using
experimental data obtained from drilling of Stainless steel
sheets as reported by Wei Han [13]. The conditions for
the experimental work by Wei Han [13] is summarized in
Table 2. Values of hole diameters and taper angles were
measured and recorded. This data was used to validate the
laserdrillingmodel.

Table2. Machiningconditionsforexperimentalwork[13]

Machining condition Description
Material 304Stainlesssteel
Material thickness 2.4mm
Laserequipment PulsedNd:YAGlaser
Laserwavelength 1.06µm
Laserpeakpower 1.5-4kW
Laserenergyperpulse 1.75-4J
Pulsefrequency 1-10Hz
Pulsewidth 0.5-2ms
Lensfocal length 100mm
Beamspotsize 80µm

4. Results and Discussions

Two simulations were carried out using the laser drilling
model. For the first simulation, the laser drilling model was
simulated to test the effects of peak power on laser drilling
of Nickel super alloy-Inconel 718. Peak power was varied
from1kWto6kW.Themodeloutputshowedminimumand
maximum entrance hole diameters of 400 µm and 570 µm
respectively, minimum and maximum exit hole diameters
of 50 µm and 450 µm respectively, and minimum and
maximumholetaperof1.2◦ and3.4◦ respectively.

For the second simulation, the laser drilling model was
simulated to test the effects of varying laser pulse duration
at a constant peak power of 3 kW. The pulse duration
was varied from 1 ms to 6 ms. The model output showed
minimumandmaximumentranceholediametersof390µm

14
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Fig. 5. Diagrammaticrepresentationofsomeoftherulesfor theANFIS

and 580µm respectively, minimum and maximum exit hole
diameters of 70µm and 470µm respectively, and minimum
andmaximumholetaperof1.4◦ and3.6◦ respectively.

Output data from the model was used as the input to
the controller. The controller simultaneously controlled
laser peak power and pulse duration. Data from the first
simulationwasusedand includedvalues for taperangleand
exit diameter while varying the peak power at fixed pulse
duration of 2 ms. The results obtained from the controller
areshowninfollowingfigures.

Fig. 8 shows the variation of hole diameters with laser
peak power. The diameters are seen to generally increase as
the power increases. This increase is to be expected since
the laser beam intensity at a spot increases with increasing
power. For exit hole diameters ranging from 50 µm to 450
µm, the maximum laser peak power was found to be 2.082
kW.

The variation of hole taper with laser peak power is
shown in Fig. 9. The taper is seen to generally reduce as the
power increases. For hole taper angles ranging from 1.2◦ to
3.4◦, the maximum laser peak power was found to be 2.082
kW.

Fig. 10 shows the variation of hole diameters with laser
pulse duration.The diameters are seen to generally increase
as the pulse duration increases. This increase is to be
expected since the energy delivered at the spot increases
with increasingpulsewidth.Forexitholediametersranging
from 50 µm to 450 µm, the maximum laser pulse duration
wasfoundtobe1.669ms.

The variation of hole taper with laser pulse duration is
shown inFig. 11.The taper is seen to generally reduce as the
pulseduration increases.Forhole taperangles rangingfrom
1.2◦ to 3.4◦, themaximum laser pulse durationwas found to
be1.669ms.

From Figs 12 and 13, it can be deduced that while drilling
using the neuro-fuzzy controller, the laser peak power and
pulse duration can be simultaneously varied in order to
acquireoptimalholeparameters.

The controller results were compared with model input-
output data. While drilling without the controller, the hole
diameters increase with increasing laser peak power and
pulse duration. Increasing laser peak power at a fixed pulse
duration increases the laser beam intensity at the drilling
spot.

Figures 14 and 15 show the rates of change of hole
diameters and taper with increase in peak power at a
constant pulse duration. The entrance and exit diameters
increases at rates of 0.0336 mm/kW and 0.0814 mm/kW
respectively. The hole taper decreases at a rate of 0.45
deg/kW.

Increasingthepulsewidthatfixedpeakpowereffectively
increases energy per pulse of the laser beam. This will
generate high vapor pressure built up inside the hole and
ejecting more material. Figures 16 and 17 show the rates of
change of hole diameters and taper with increase in pulse
duration at a constant peak power. The entrance and exit
diameters increases at rates of 0.0334 mm/ms and 0.0809
mm/ms respectively. The hole taper decreases at a rate of
0.881deg/ms.

While using the controller, the hole diameters increase
with increase in peak power and pulse duration upto an
optimum level beyond which the peak power and pulse
duration remain constant as the diameters increase. The
hole taper decreases with increase in peak power and pulse
duration upto optimum level beyond which the peak power
and pulse duration remain constant as the taper decreases.
Thus, the controller helps maintain the peak power and
pulsedurationatoptimumlevels.
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Fig. 6. AsectionofFuzzylogiccontrolleronLabVIEW

Fig. 7. Fuzzylogiccontrollerfrontpanel

16
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Fig. 8. Effectof laserpeakpoweronholediameters

Fig. 9. Effectof laserpeakpoweronholetaper

Fig. 10. Effectof laserpulsedurationonholediameters

Fig. 11. Effectof laserpulsedurationonholetaper

Fig. 12. Surfacemapforentranceholediameters

Fig. 13. Surfacemapforholetaperangles

Fig. 14. Rateofchangeofholediameterswithpeakpower

17



 

JSRE M.Ruthandietal.,Neuro-fuzzyControlofLaserPercussionDrilling  

Fig. 15. Rateofchangeofholetaperwithpeakpower

Fig. 16. Rateofchangeofholediameterswithpulseduration

Fig. 17. Rateofchangeofholetaperwithpulseduration

Figures 18 through 21 show the rates of change of
hole diameters and taper with increase in peak power and
pulse duration. The hole entrance diameters increase at an
average rate of 0.4 mm/kW and 0.5 mm/ms while the exit
hole diameters increase at an average rate of 0.7 mm/kW
and 0.89 mm/ms upto the optimum level of peak power and
pulseduration.Theholetaperdecreasesatanaveragerateof
4.55deg/kWand3.6deg/msupto theoptimumlevelofpeak
powerandpulseduration.

5. Conclusions
In this paper, a neuro-fuzzy controller for laser percussion
drilling was developed. The controller was tested by
simulating a laser drilling environment. While drilling
without the controller, the hole diameters increase with

Fig. 18. Rate of change of hole diameters with peak power while using
thecontroller

Fig. 19. Rate of change of hole taper with peak power while using the
controller

Fig. 20. Rate of change of hole diameters with pulse duration while
usingthecontroller

increasing laser peak power and pulse duration. Increasing
the pulse width at fixed peak power effectively increases
energy per pulse of the laser beam. This will generate
high vapour pressure built up inside the hole and ejecting
more material. Increasing laser peak power at a fixed pulse
duration increases the laser beam intensity at the drilling
spot.

It was demonstrated that a neuro-fuzzy based controller
effectively controls the hole diameters and taper through
in-processadjustmentsoflaserpowerandpulseduration.

While using the controller, the hole diameters increase
with increase in peak power and pulse duration upto an

18
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Fig. 21. Rate of change of hole taper with pulse duration while using the
controller

optimum level beyond which the peak power and pulse
duration remain constant as the diameters increase. The
hole taper decreases with increase in peak power and pulse
duration upto optimum level beyond which the peak power
and pulse duration remain constant as the taper decreases.
Thus, the controller helps maintain the peak power and
pulsedurationatoptimumlevels.
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