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Abstract-Hydrological models are increasingly being used as decision support tools in water resource management. It is therefore 
important that these models undergo calibration and uncertainty analysis before their application. This study addresses the 
application and comparison of two calibration-uncertainty methods for a distributed model in the Upper Tana Basin. The 
Generalized Likelihood Uncertainty Equation (GLUE) and Sequential Uncertainty Fitting Ver. 2 (SUFI-2) were used in this study 
to calibrate the Soil and Water Assessment Tool (SWAT). The performance of the GLUE and SUFI-2 was evaluated using three 
objective functions namely: coefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE) and coefficient of determination 
divided by coefficient of regression (bR2). Uncertainty statistics used were the P-factor and R-factor.  The study established the 
best method for calibration and uncertainty analysis is SUFI-2. 
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1. Introduction 
Hydrological models are widely used to simulate 
hydrologic responses and play an important role in 
management of water resources [1], [2]. Distributed and 
physically based hydrologic models such as the Soil and 
Water Assessment Tool (SWAT) must be calibrated 
before use because they require many parameters that 
cannot be directly measured [3]. This is done in order to 
reduce the uncertainty associated with the model 
prediction. The major sources of uncertainty are model 
structure, model parameters and input data. Model 
uncertainty could be due to processes occurring in the 
watershed but not included in the model, simplification of 
the processes in the model and processes unknown to the 
modeler and not included in the model. Parameter 
uncertainty is caused by parameter non-uniqueness and 
input uncertainty is a result of errors in input data [4]. 
Many calibration-uncertainty methods have been 

developed in the last two decades to account for these 
uncertainties.  

These methods can be divided into three categories: a) 
methods that do not have rigorous statistical assumptions 
or ad-hoc modifications to existing statistical approaches 
such as Generalized Likelihood Uncertainty Equation 
(GLUE) [5] and Sequential Uncertainty Fitting version 2 
(SUFI-2) [6]. These approaches try to represent all 
uncertainties by an enhanced parameter uncertainty. b) 
Methods that account for effect of model structural and 
input errors on the output by an additive error model 
which introduces temporal correlation of the residuals. c) 
Improved likelihood functions that explicitly represent 
input errors and/or model structural error of the 
underlying hydrological model [7]. 

Despite the large number of suggested methods, a few 
studies have been carried out to compare calibration-
uncertainty methods. GLUE, Parameter Solution 
(ParaSol) and Markov Chain Monte Carlo (MCMC) [8], 
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[9] methods were compared in Chaohe Basin, China and 
it was found that despite big differences in concepts and 
performance, they led to similar prediction uncertainty 
bands [7]. Particle Swarm Optimization (PSO) [10], 
Differential Evolution Adaptive Metropolis (DREAM) 
and SUFI-2 methods were compared and it was found that 
the calibration and validation results indicated statistically 
insignificant differences among the three algorithms [4]. 
Five global optimization algorithms: Genetic Algorithms 
(GA) [12], Shuffled Complex Evolution (SCE) [13], PSO, 
differential evolution, and artificial immune system were 
compared and the results showed that genetic algorithms 
(GA) outperforms the other four algorithms given model 
evaluation numbers are larger than 2000, while PSO can 
obtain better parameter solutions than other algorithms 
given fewer number of model runs (less than 2000) [11].  

In this paper, GLUE and SUFI-2 calibration-
uncertainty analysis methods for SWAT were applied to 
4BE01 Upper Tana sub-watershed in Kenya. 
Performance of the GLUE and SUFI-2 was evaluated 
using three objective functions, namely coefficient of 
determination (R2), Nash–Sutcliffe Efficiency (NSE) and 
coefficient of determination divided by coefficient of 
regression (bR2). The uncertainty statistics used are the P-
factor and R-factor which compare observation signal 
with the 95% prediction band [6], [14]. 

2. Materials and methods 

2.1. Upper Tana sub-watershed 
The Upper Tana sub-watershed 4BE01, which covers an 
area of 397 km2, is in Murang’a County (Fig. 1). It lies 
between longitudes 36.58°E and 37.14°E and between 
latitudes 0.40°S and 0.50°S. 

 
Fig. 1. Location of the study site 

2.2.  Generalized Likelihood Uncertainty Equation 
Generalized Likelihood Uncertainty Equation (GLUE) 
was introduced to allow for non-uniqueness of parameter 
sets during the estimation of model parameters in over-
parameterized models. The procedure is simple and 
GLUE assumes that, in the case of large over-
parameterized models, there is no unique set of 
parameters, which optimizes goodness-of fit-criteria [15]. 
In GLUE, all sources of parameter uncertainties are 
accounted for in the parameter uncertainty [16]. The 
likelihood measure value, which is associated with a 
parameter set, reflects all sources of error and the effects 
of covariation of parameter values on the model 
performance [7]. A GLUE analysis consists of the 
following three steps: 
1) After the definition of the generalized likelihood 
measure L(θ), a large number of parameter sets are 
randomly sampled from the prior distribution and each 
parameter set is assessed as either behavioral or non-
behavioral through a comparison of the likelihood 
measure with the given threshold value.  
2) Each behavioral parameter is given a likelihood weight 
according to: 
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where N is the number of behavioral parameter sets.

 3) Finally, the prediction uncertainty is described as 
prediction quantile from the cumulative distribution 
realized from the weighted behavioral parameter sets. The 
most frequently used likelihood measure for GLUE is 
NSE [17]. 

2.3. Sequential Uncertainty Fitting version 2 
Sequential Uncertainty Fitting version 2 (SUFI-2) follows a 
different methodology to obtain posterior parameters 
from priors but is conceptually similar to GLUE. 
Parameter uncertainty in SUFI-2 accounts for all sources 
of uncertainty such as uncertainty in input data, model 
parameters and conceptual model. It is also convenient to 
use [18]. The disadvantage of this method is that it is 
semi-automated and the modeler’s interaction is needed 
to check the suggested posterior parameters, hence, a 
good knowledge on the parameters and their effect on the 
model output are needed [7]. The degree to which the 
calibrated model accounts for all uncertainty is quantified 
by a measure known as p-factor, which is the percentage 
of measured data bracketed by the 95% prediction 
uncertainty (95PPU). A SUFI-2 analysis consists of the 
following steps: 
1) In the first step, an objective function  g  and 
physically meaningful absolute minimum ( minabs ) and 
maximum ( maxabs ) ranges for the parameters are defined.  
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2) Sensitivity analysis for all the parameters is then 
carried out and then initial uncertainty ranges are assigned 
to the parameters for the first round of Latin hypercube 
sampling. 
3) Latin Hypercube sampling is carried and the 
corresponding objective functions evaluated. The 
sensitivity matrix J and the parameter covariance matrix 
C are calculated according to 

j
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

 , i=1,….., mc2 , j=1,….,n,          (2)  

where mc2  is the number of rows in the sensitivity matrix 
(equal to all possible combinations of two simulations), 
and j is the number of columns (number of parameters). 
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Where 2
gs  is the variance of the objective function values 

resulting from the n runs. 
4) The 95% prediction uncertainties (95PPU) is then 
calculated.  Then the p-factor and R-factor are calculated 
[15]. 

2.4. Soil and Water Assessment Tool 

The Soil and Water Assessment Tool (SWAT) is a 
physically based, watershed scale model designed to 
predict the impact of land management practices on water, 
sediment and agricultural chemical yields [19]-[20]. 
Major input datasets include weather, topography, 
hydrography, land use/land cover data, soils and 

management practices. SWAT is computationally 
efficient because it is able to run simulations of very large 
watersheds or management practices without consuming 
large amounts of computational time or resources. SWAT 
divides a watershed into sub basins connected by a stream 
network and further delineates each sub basin into 
Hydrologic Response Units (HRUs), which consist of 
unique combinations of soil type, slope and land cover. 
HRU delineation can minimize a simulation's 
computational costs by lumping similar soil and land use 
areas into a single unit [19]. 

2.5.  Soil and Water Assessment Tool model setup 
The model setup involves the following processes: (1) 
watershed delineation; (2) HRU analysis; (3) definition of 
the weather stations; (4) editing model databases; (5) 
simulation. The simulation of spatially distributed 
hydrological processes using SWAT requires datasets for 
topography [21], land use/cover [22], soil types [23], 
climate and river discharge. A Digital Elevation Model 
was used for watershed delineation and topographic 
analysis. Land use and soil data were used in creating the 
HRU’s by determining the parameters for each land-soil 
category simulated within each sub watershed. Once the 
HRUs were created weather data was imported into the 
model. This consisted of daily rainfall and temperature 
data. After completing the set-up, the model was run to 
simulate the river discharge. A summary of the datasets 
used is shown in Table 1 whereas, Table 2 shows the river 
gauge and rainfall station used respectively. 

Table 1. Data used in the study 

Name of data Source of data Period 
Digital Elevation Model(DEM) Shuttle Radar Topography Mission (SRTM) 2008 
Land use/Land Cover map Food and Agriculture Organization 2003 
Soil Classification map International Soil Reference and Information Centre (ISRIC) 2004 
Daily precipitation Kenya Meteorological Department 1970-2009 
Daily Maximum/Minimum 
Temperature Kenya Meteorological Department 

 
1981-2009 

Stream flow Water Resource Management Authority (WRMA) 1945-2012  
 

Table 2: Stream flow and rainfall station used in the study 

Type 
Station 
ID Name 

Longitude 
(Deg) 

Latitude 
(Deg) 

Start 
Year 

End 
Year 

% data 
missing 

Stream 
flow 4BE01 Maragwa -0.75 37.15 1972 1976 0.02 

Rainfall 9036164 
South Kinangop Forest 
station -0.72 36.68 1972 1976 0.1 
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2.6. Criteria for the Comparison 
The R2, NSE and bR2 objective functions were used. In 
order to quantify the goodness of calibration/uncertainty  
performance, the P-factor, which is the percentage of data 
bracketed by the 95% prediction uncertainty band 
(95PPU) (maximum value 100%) and the R-factor, which 
is the average width of the band divided by the standard 
deviation of the corresponding measured variable were 
used [14].  

3. Results and discussion 
3.1. Sensitivity analysis and calibration 

Sensitivity analysis was carried out using the global 
sensitivity method and ten parameters were found to be 
more sensitive (Table 3).  
 

Table 3. Stream flow calibration parameters 
 

Stream flow  
parameter  Description  
CN2.mgt Curve Number 
ALPHA_BF.gw Base flow alpha factor 
GW_DELAY.gw Groundwater delay time 
GWQMN.gw Threshold depth of water in  

shallow aquifer required for  
return flow 

GW_REVAP.gw Groundwater ‘revaporation’  
coefficient 

REVAPMN.gw Threshold depth of water in the 
 shallow aquifer for ‘revaporation’  
to occur 

SOL_AWC.sol Available water capacity of the 
soil layer 

ESCO.hru Soil evaporation compensation 
factor 

SOL_K.sol Soil hydraulic conductivity 
CH_K2.rte Effective hydraulic conductivity 

in main channel 
 

Calibration was done using data between 1972 and 1976, 
and on monthly basis. Model calibration was done using 
the ten parameters that were found to be most sensitive. 
SUFI-2 was run six times with each iteration having 500 
simulations. After every iteration, new parameter 
uncertainty ranges that were to be used for the next 
iteration were suggested. This requires that the user has a 
good knowledge on how the parameters affect stream 
flow. Comparison was done using the last run. GLUE was 
run four times with each run having 1000, 2500, 3500 and 
5000 respectively. The comparison was made using the 
run with 5000 simulations.  The model efficiency was 
measured using the three objective functions and two 
uncertainty statistics mentioned earlier. These objective 

functions were analyzed for both SUFI-2 and GLUE 
uncertainty analysis techniques as shown in Table 4.  
 

Table 4: Calibration results 
 

 

 
SUFI-2 GLUE 

R2 0.64 0.61 
NS 0.49 0.42 

bR2 0.46 0.40 
p-factor 0.15 0.03 
R-factor 0.04 0.05 

 
A graphical presentation of the simulated and observed 
stream flow for the calibration period was plotted for 
visual comparison for both procedures i.e. SUFI-2 and 
GLUE (Fig. 2).  
 

 
 
Fig. 2(a) Stream flow calibration at 4BE01 by SUFI-2 
 

 
Fig. 2(b) Stream flow calibration at 4BE01 by GLUE 
 
About 15% and 3% of the data were bracketed by the 
95PPU for SUFI-2 and GLUE uncertainty methods 
respectively. This shows that SUFI-2 accounts for 
uncertainties better than GLUE. These model 
uncertainties can be due to errors in parameterization, 
model inputs and data preparation. The coefficient of 
determination R2 is 0.64 and 0.61 for SUFI-2 and GLUE 
respectively. The results show significance in the model 
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efficiency and SUFI-2 has a higher efficiency than GLUE. 
The Nash-Sutcliffe was 0.49 for SUFI-2 and 0.42 for 
GLUE. 

4. Conclusion 
SUFI-2 generally performed better than GLUE. It also 
accounted for uncertainties better than GLUE. It can be 
run with the smallest number of runs for computational 
demanding models. However, it requires that the user has 
a good knowledge on how the parameters affect stream 
flow. In spite of the larger number of simulations in 
GLUE, it cannot provide results better than SUFI-2. The 
disadvantage of the GLUE method is its excessive 
computational burden due to its random sampling 
strategy. This study therefore establishes that the best 
calibration uncertainty method is SUFI-2. 
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