
1

A CLUSTERING ALGORITHM IN TWO-PHASE COMMIT

PROTOCOL FOR OVERCOMING DISTRIBUTED

TRANSACTION FAILURE

TERESA KWAMBOKA ABUYA

MASTER OF SCIENCE

(Computer Systems)

JOMO KENYATTA UNIVERSITY OF

AGRICULTURE AND TECHNOLOGY

2015

2

DECLARATION

This thesis is my original work and has not been presented for a degree in any other

University.

Signature……………………………………..Date:………………………………………

 Teresa Kwamboka Abuya

This thesis has been submitted for examination with our approval as University

Supervisors

Signature:…………………………………………..Date:……………………………..

 Dr. Richard M. Rimiru

 JKUAT, Kenya

Signature:…………………………………………..Date:………………………………..

 Dr. Cheruiyot W.K

 JKUAT, Kenya

3

DEDICATION

This work is dedicated to my mother Lucy K. Abuya who taught me to be hardworking,

honest, focused and respective of others. Not forgetting her unending guidance and

encouragement while undertaking this thesis. To my late father Francis Abuya for my

earlier upbringing. You were the greatest gift that God gave to me.

4

ACKNOWLEDGEMENT

I am greatly indebted to Dr.Rimiru and Dr.Cheruiyot, my supervisors for their patience,

guidance, enthusiastic encouragement and useful critique of this thesis. I am grateful for

your words of wisdom, mentorship and emotional support which have made me reach

this far. May the good lord always reign in your life. Not forgetting Proff.Sigei,

Dr.Stephen Kimani, Dr. Mindila and Sylivester Kiptoo for their invaluable advice in this

thesis. Thank you all for being sunshine in my cloudy days, indeed you were my

inspiration.

5

TABLE OF CONTENTS

DECLARATION………………………………………………………..………………i

DEDICATION…………………………………………………………..……………....ii

ACKNOWLEDGEMENT…….………………………………...……………………..iii

LIST OF TABLES………………...………………..…………….….…………...……iv

LIST OF FIGURES…………………………………………..…………………………v

LIST OF APPENDICES………………………………………….……………………vi

ABBREVIATIONS AND ACRONYMS………………………………….………….vii

ABSTRACT……………………………….…….…………………………………….viii

CHAPTER ONE ... 1

1.0 Introduction ... 1

1.1 Background …………………………………………………………………………… 1

1.2 Fundamentals of transaction management .. 3

1.3 Atomic commit protocols .. 4

1.4 Problem statement ... 5

1.5 Objectives of the study .. 6

1.6 Research Questions ... 6

1.6 Justification ... 6

1.8 Scope of the study ... 7

1.9 Limitations of the study .. 7

CHAPTER TWO .. 8

2.0 Literature Review.. 8

6

2.1 Introduction ... 8

2.2 Overview of transactions ... 8

2.3 Theoretical analysis of distributed transaction failure in 2PC .. 10

 2.3.1 Two-Phase Commit protocol scenario ... 10

 2.3.1 Two-Phase Commit protocol variants ... 12

2.4 Types of failures introduced in 2PC distributed transactions ... 17

 2.4.1 Site failure .. 18

 2.4.2 Network partitioning failure ... 18

 2.4.3 Coordinator failure ... 19

2.5 Failure handling principles in distributed systems .. 20

 2.5.1 Fault tolerance .. 20

 2.5.2 Monitoring .. 21

2.6 Three-Phase Commit protocol scenario .. 22

2.7Atomic Commitment .. 23

2.8Summary of commit protocols ... 24

CHAPTER THREE .. 26

3.0 Methodology……. .. 26

3.1 Introduction ... 26

7

3.2 Analaysis of distributed transaction failure in Two-Phase Commit protocol 26

 3.2.1 General requirements of a commit protocol .. 26

3.3 Tools and specifications .. 27

 3.3.1 Bitronix Transaction Manager(BTM) .. 27

 3.3.2 Bitronix JTA Transaction manager with MySql .. 27

3.4 Simulation of a 2PC coordinator failure ... 28

 3.4.1 Procedure ... 28

3.5 Simulation of a transaction connectivity based clustering algorithm 33

 3.5.1 Connectivity based transaction clustering algorithm Architecture 33

 3.5.2 Procedure .. 36

3.6 Data Collection and analysis ... 38

CHAPTER FOUR ... 39

4.0 Results Discussion and Analysis .. 39

4.1 Introduction ... 39

4.2 Analysis of distributed transaction failure in 2PC protocol ... 41

 4.2.1 Demonstration of coordinator failure in 2PC protocol 42

 4.2.2 Demonstration of Three-Phase Commit protocol ... 42

4.3 Simulation of a connectivity based transaction clustering algorithm 43

 4.3.1 Source Code for Connectivity-based clustering algorithm in 2PC 50

8

 4.3.2 Connectivity based clustering algorithm in 2PC ... 57

 4.3.3 Setup .. 58

4.4 Comparison of the transaction clustering algorithm with the current 2PC 59

CHAPTER FIVE ... 60

5.0 Summary,Conclusions and Recommendations .. 62

5.1 Introduction ... 62

5.2 Summary ... 63

5.3 Conclusions ... 64

5.4 Recommendations and future work ... 64

References ... 66

9

LIST OF TABLES

Table3.0:Structure of the database tables,bankcustomers………………...….....31

Table 3.1:Snippet of the current Two-Phase Commit protocol…………………32

Table 3.2:Snippet of the 2PC with transaction clustering………..………..……37

Table 4.0:Demonstration of 2PC site failure……………...…….……….……...39

Table 4.1:Coordinator failure-Distributed transactions and a single data ……...40

Table 4.2:Coordinator failure-Distributed transactions and distributed ……….41

Table4.3:HeadOffice site initial status…………………………………….……44

Table4.4:Snippet of the insert and update transactions………………..………..44

Table 4.5:Two-Phase Commit protocol for transaction algorithm output….......46

Table 4.6:HeadOffice site final status after commit…………...……………..…47

Table 4.7: KsiiBranch site final status after commit………… ……..……...….47

Table 4.8: NairobiBranch site final status after commit……...…………………48

Table 4.8.1: NairobiBranch Modification procedure……………..……….…....49

Table4.9:Concurrency control & blocking in transaction clustering algorithm...49

10

LIST OF FIGURES

Figure 1.0: Abort and commit transactions………………………………………4

Figure 2.0: Two-Phase Commit protocol architecture………………..………...11

Figure 2.1: Three-Phase Commit protocol architecture………………...………22

Figure 3.0: Relationship among distributed system entities……………...…….30

Figure 3.1: Overall simulation architecture……………………………….…….35

 Figure 3.2: Transaction clustering algorithm package diagram………….……..35

 Figure 4.0: Coordinator and site failure in 2PC diagram………….…….……..42

 Figure 4.1: Three-Phase commit overheads……….………..…………………..43

Figure 4.2: Connectivity based clustering algorithm………….………………..57

Figure 4.3: practical implementation……………………………..……………..58

11

LIST OF APPENDICES

Appendix I: Current 2PC code to insert and retrieve data from the database…………67

Appendix II: Coordinator Failure-Distributed Transactions And Distributed Data

 Resource…………………………………………………………………75

Appendix III: Two Phase Commit Protocol With Transaction Clustering…………….83

12

ABBREVIATIONS AND ACRONYMS

2PC: Two-Phase Commit

3PC: Three-Phase Commit

TM: Transaction Manager

DM: Data Manager

DDS: Distributed Database System

DDBMS: Distributed Database Management System Software

BTM: Bitronix Transaction Manager

API: Application Porgramming Interface

13

ABSTRACT

The purpose of this research was to simulate two phase commit protocol connectivity

based clustering algorithm for overcoming distributed transaction failure. The important

issue in transaction management is that if a database was in a consistent state prior to

the initiation of a transaction, then the database should return to a consistent state after

the transaction is completed. This should be done irrespective of the fact that

transactions were successfully executed simultaneously or there were failures during

execution. The research objectives were: To analyze the distributed transaction failures

in two-phase commit protocol; to simulate a transaction clustering algorithm for

overcoming distributed transactions failure in two phase commit protocol; and to

compare the performance of the transaction clustering algorithm with the current two

phase commit protocol. The experimental research design was adopted as it involved the

practical design of the transaction clustering algorithm. This algorithm was simulated in

Jcreator, with mySQL acting as the backend data manager. The data was collected using

Java Integrated Development Environment, which was Jcreator, with Bitronix

transaction manager providing the required management of distributed transactions. It

was then analyzed using the same software. The results obtained indicated that by using

a clustering algorithm, the transaction failures associated with the current Two-Phase

Commit can be reduced. This was achieved by eliminating transaction partitioning that

is an inherent feature of the current two phase commit protocol. In a partitioned

environment, blocking caused by the failure of the coordinator when participants are in

uncertain state is a common problem. Instead, all sub-transactions were clustered in a

single sub-class and used the principle of inheritance to obtain variables and methods

from the main super-class, which was the coordinator. The transaction manager was then

employed to coordinate the execution activities of the coordinator. Transaction commit

or transaction roll back was then reported by the transaction manager. In so doing, all the

transactions in the sub-class either commit in their entirety or fail in their entirety which

is in line with the principles of a Two-Phase Commit protocol.

14

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background Information

Distributed database systems pose different problems when accessing distributed data.

An important issue in transaction management is to ensure consistency of database

despite failures during execution (Krishna & Masaru, 2011).

A transaction consists of a series of operations performed on a database and the

important issue in transaction management is that, if a database was in a consistent

state prior to the initiation of a transaction, then the database should return to a

consistent state after the transaction is completed. This should be done irrespective

of the fact that transactions were successfully executed simultaneously or there were

failures during execution. Transactions communicate with Transaction Managers(TM)

and TMs communicate with Data Managers (DM) and DMs manage the data being

committed (peng-yeng et.al, 2006).

A Distributed database system (DDSs) implements a transaction commit protocol to

ensure transaction atomicity. Several sites need to update their databases with the same

information. One client requests information to be uploaded and a site receive the

request and start a procedure where he becomes the coordinator of this request. The

other sites become participants of the particular request.

 Over several decades a variety of protocols have been proposed by researchers. To

achieve their functionality these protocols require exchange of multiple messages in

multiple phases between client and coordinator where distributed transaction is done. A

failure of one site in committing its part of the transaction could cause the entire system

to be inconsistent. Thus some form of control is necessary to ensure that concurrent

execution of transactions in a distributed environment does not jeopardize the integrity

of the system as well as its data consistency. The performance factor of concurrency

15

control algorithms depends on systems throughput and transaction response time. Four

cost factors influence the performance: local processing, inter-site communication,

transaction restarts and transaction blocking (Taibi et.al,2009)

Concurrency control uses two types of commit protocols which include the Two Phase

Commit (2PC) and Three-Phase Commit (3PC) protocols.2PC protocol is of prime

importance to many distributed transaction processing applications used by financial

institutions and other applications that fall within the spectrum of enterprise computing.

These types of applications are increasingly being used to harness the availability of

commodity processing power scattered in many sites of medium to large scale

organizations. Only two phases are executed in 2PC .The prepare and commit phase but

it has a blocking disadvantage in which either the coordinator or some participating site

is blocked.

Amir et.al (2010), said that 3PC protocol was introduced as a remedy to the blocking

disadvantage of 2PC protocol. It introduced an extra phase called the pre-commit phase

which ensured the non-blocking property of this protocol. Although 3PC protocol

overcomes blocking problem, it involves an additional round of message transmission to

achieve non-blocking property. If 3PC protocol is implemented to eliminate the blocking

problem, an extra round of message transmission further reduces the system‟s

performance as compared to 2PC protocol. Especially in DDBS environments, in which

frequent site failures and longer message transmission times occur, neither 2PC protocol

with blocking problem nor 3PC protocol with performance degradation problem is

suitable for the commit processing.

Recently commit processing has attracted a strong attention due to its effect on the

performance of the transaction processing. In Tarekhelmy and Fahd(2011),it has been

shown that using simulation in distributed commit processing can have more influence

than distributed data processing on throughput performance.

16

Two-Phase Commit(2PC) protocol has a blocking problem when coordinator fails. The

blocking problem in 2PC is one of the main issue to solve when designing an efficient

distributed system. To solve the blocking problem and show the effectiveness of 2PC, a

transaction clustering algorithm is simulated in Two-Phase commit protocol to

demonstrate how transactions are committed and how data consistency is maintained in

a distributed system with concurrent execution of randomly generated transactions.

Several possible failure cases are identified and created to test its integrity, showing how

it responds to different failure scenarios and recovery from failures. The 2PC simulator

was achieved using Bitronix transaction manager(BTM),which allows applications to

perform distributed transactions, to access and update systems having multiple

transaction resources ,databases, message queues and resources accessed from multiple

processes or on multiple hosts as participants in a single transaction.

1.2 Fundamentals of transaction management

The concept of a database transaction or atomic transaction has evolved in order to

enable both a well understood database system behavior in a faulty environment where

crashes can happen any time, and recovery from a crash to a well understood database

state. A database transaction is a unit of work, typically encapsulating a number of

operations over a database. Each transaction has well defined boundaries in terms of

which program/code executions are included in that transaction determined by the

transaction's programmer via special transaction commands.

Each transaction has to terminate. The outcome of the termination depends on the

success or failure of the transaction. When a transaction starts executing, it may

terminate with one of the two possibilities:

i. The transaction aborts if a failure occurred during its execution.

ii. The transaction commits if it was completed successfully.

Part a of figure 1.0 below shows an example of a transaction that aborts during process 2

(p2).On the other hand part b of figure 1.0 shows an example of a transaction that

commits since all of its processes are successfully completed.

17

 Figure 1.0 Abort and commit transactions

Every database transaction obeys the following rules in a database system: (Coulouris

et.al, 2007). Atomicity: Atomicity guarantees that many operations are bundled together

and appear as one contiguous unit of work, operating under an all-or-nothing paradigm.

Either all of the data updates are executed or nothing happens if an error occurs at any

time. In other words, in the event of failure in any part of the transaction, all data will

remain in its former state as if the transaction was never attempted. In transactional

terminology, this is referred to as rolling back the transaction.

Consistency: Every transaction must leave the database in a consistent state, i.e.,

maintain the predetermined integrity rules of the database like constraints upon and

among the database's objects. A transaction must transform a database from one

consistent state to another consistent state. Since a database can be normally changed

only by transactions; all the database's states are consistent. An aborted transaction does

not change the database state it has started from, as if it never existed. For example dirty

data, is data that has been modified by a transaction that has not yet committed. Thus the

function of concurrency control is to disallow transactions from reading or updating

dirty data.

Isolation: This property in distributed systems protects concurrently executing

transactions from seeing each other‟s incomplete results. Isolation allows multiple

transactions to read or modify data without knowing about each other because each

18

transaction is isolated from the others. Each transaction should see a consistent database

at all times. Providing isolation is the main goal of concurrency control.

Durability: This property ensures that once a transaction commits, its results are

permanent and cannot be erased from the database. This means that whatever happens

after the COMMIT of a transaction, whether it is a system crash or aborts of other

transactions, the results already committed are not modified or undone.

1.3 Atomic commit protocols

Atomic commit protocols are used in distributed systems when several sites need to

update their databases with the same information. One client requests information to be

uploaded and a site receive the request and start a procedure where he becomes the

coordinator of this request. The other sites in the system will then become participants of

the particular request. The atomicity property of the protocol means that the transaction

must be performed at all sites or not at all; this is achieved by letting all participants vote

YES or NO to the particular transaction depending if they can commit it or not. Only

when all sites are ready to commit, the coordinator sends a GLOBAL_COMMIT to the

participants as confirmation that they can commit the transaction. A site can be both

coordinator and participant at the same time but for different transactions. If a

coordinator site crashes and a participants waits for a final answer from the coordinator,

if he should commit the transaction or not, the participants is blocked as long as the

coordinator is down(Groote et.al, 2008). This is the problem with the 2PC algorithm,

while 3PC have more communication between the coordinator and the participants, and

can therefore avoid this problem. Though, all communication takes valuable time in a

distributed system where the sites can be far away from each other, a 2PC-protocol is to

prefer. This study analyses 2-Phase Commit and 3-Phase Commit protocols. It looks at

the types of failures introduced by a distributed system (Kumar et.al, 2011).

19

1.4 Problem statement

The world is moving towards a trend where tasks are performed in a distributed manner.

Goebel(2011), noted that the main aim of distributed transaction management is to

achieve atomicity across all sites and reduce transaction failure. Distributed database

systems like airline reservation systems, banking applications, credit card systems

widely use these protocols for their transactions over the network. According to Helmy

and Alotaibi(2011), Two-Phase Commit and Three-Phase Commit protocols have been

researched on in as far as concurrency control is concerned. 2PC protocol has a problem

of blocking caused by the failure of the coordinator when participants are in uncertain

state. Similarly 3PC was employed to deal with blocking since it is a non-blocking

algorithm but it is complicated to implement, has more communication overheads and

maintaining inconsistency towards network partitioning problems (Tabassum et.al,

2011). Therefore, to improve the concurrency control and blocking problems in 2PC, a

transaction connectivity based clustering algorithm is proposed which reduces

transaction blocking considerably, while at the same time enhancing concurrency control

thus increasing the efficiency of transaction processing.

1.5 Objectives of the study

1.5.1 General Objective

The general objective of this study was to simulate a Two-phase commit protocol

connectivity based clustering algorithm for overcoming distributed transaction failure.

1.5.2 Specific Objectives

i) To analyze distributed transaction failures in Two-phase commit protocol.

ii) To simulate a connectivity-based clustering algorithm for overcoming distributed

transactions failure in two phase commit protocol.

iii) To compare the performance of connectivity based clustering algorithm with the

current two phase commit protocol.

20

1.6 Research questions

1. How do distributed transaction failures occur in two-phase commit protocol?

2. What will be the effect of connectivity based clustering algorithm in overcoming

failures in distributed transactions in two phase commit protocol?

3. How does the connectivity based clustering algorithm perform in comparison

with the current two phase commit protocol?

1.7 Justification

A distributed database combines two different technologies used for data processing:

database systems and computer networks. Query processing from different sites is more

complex and difficult in distributed environment. This study attempts to achieve good

transaction and concurrency control performance of the two phase commit protocol.

Utilization of the connectivity based transaction clustering algorithm on a 2PC protocol

minimizes the response time, improves concurrency control in 2PC protocols, reduce

transaction inconsistency, eliminate transaction blocking and reduce high

communication overheads. This will go along way in maximizing transaction

throughput.

1.8 Scope of the study

The study focused on connectivity based transaction management in a concurrent

distributed systems environment. In connectivity based clustering algorithms, the

concept of object oriented objects is used. In this perspective, objects are more related

to nearby objects than to objects farther away. The intention of this approach was to

determine how commit protocols are used in executing transaction requests and address

challenges faced in transaction execution to achieve atomicity property.

1.9 Limitations of the study

This research thesis was limited to addressing distributed transaction failures

experienced in Two Phase Commit protocols during transaction processing.

21

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Introduction

This literature looks at different protocol frameworks developed to address existing

problems in distributed processing.ACID(Atomicity,Consistency,Isolation,Durability)

properties of transactions have been visited and various commit protocols have been

discussed like, Two Phase Commit and Three Phase Commit protocols with an aim of

identifying their shortcomings. The efficiency of a commit protocol is associated with

the number of communication steps, the number of log writes and its execution time,

and the coordinator and each participant. The Blocking or non- blocking nature and

difference in recovery procedures are other important factors that have a vital impact on

the overall commit protocol performance (Reddy & Kitsuregawa, 2006).

2.2 Overview of transactions

A transaction is defined to provide the properties of atomicity, consistency, integrity and

durability (ACID) for any operation it performs. In order to ensure the atomicity of

distributed transactions, an atomic commit protocol needs to be followed by all sites

participating in a transaction execution to agree on the final outcome, that is, commit or

abort. A variety of commit protocols have been proposed that either enhance the

performance of the classical two-phase commit protocol during normal processing or

reduce the cost of recovery processing after a failure.

In this study we survey Two-Phase Commit(2PC) and Three-Phase Commit(3PC)

protocols and optimizations providing an insight in the performance trade-off between

normal and recovery processing. We analyze the performance of a representative set of

commit protocols analytically using simulation(Kotla et.al, 2010).

22

Transactions are powerful abstractions that facilitate the structuring of database systems

and in distributed systems in general in a reliable manner. Each transaction represents a

task or a logical function that involves access to a shared database and assumes as it

executes as if no other transactions were executing concurrently and as if there were no

program and system failures. In this way programmers are relieved from dealing with

the complexity of concurrent programming and failures, and can focus on designing the

applications and developing correctly the individual transactions of the applications.

A transaction provides reliability guarantee by implementing a state transformation with

four important properties, commonly known as ACID properties.

Atomicity ensures that either all or none of the transaction's operations are performed.

Thus, all the operations of a transaction are treated as a single, indivisible, atomic unit.

Similarly consistency requires that a transaction maintains the integrity constraints on

the database. Isolation on the other hand demands that a transaction executes without

any interference from other concurrent transactions. Finally durability ensures that all

the changes made by a successfully terminated transaction become permanent in the

database, surviving any subsequent failure.

The ACID properties are usually ensured by combining two different sets of algorithms.

The first set, referred to as concurrency control protocols, ensures the isolation property,

whereas the second one, referred to as recovery protocols, ensures atomicity and

durability properties. Commonly consistency is satisfied by designing transactions such

that each transaction preserves the consistency of the database at its boundaries and is

enforced by specifying integrity constraints on a database using triggers and

alerters(Parul et.al,2011)

In a distributed database system (DDBS) in which the data items are stored at multiple

sites interconnected via a communication network, transactions are executed in a

distributed fashion at different sites based on the location of the data that they require to

access. Since sites and communication links can fail independently, the atomicity

23

property of a distributed transaction cannot be guaranteed without taking additional

measures besides concurrency control and recovery protocols. Specifically, for a

distributed transaction that executes across multiple sites, the sites need to agree about

when and how the transaction should terminate. That is, all the sites participating in a

transaction execution need to (1) eventually reach an agreement; and(2) all agree to

either commit the transaction, making all its effects persistent, or abort the transaction,

obliterating all its as if the transaction had never executed. A protocol that achieves this

kind of agreement is called an atomic commit protocol (ACP).

2.3 Theoretical Analysis of distributed transaction failures in Two-Phase

 Commit Protocol (2PC)

A commit protocol is an algorithm to ensure atomicity in a distributed transaction with

the help of synchronized locking. According to Tannenbaum (2007), Atomic commit

protocols are used in distributed systems when several sites need to update their

databases with the same information. Several protocols exist that have been used to

address atomicity in different protocol platforms. The following are some of the

protocols discussed:

 2.3.1 Two-Phase Commit (2PC) Protocol scenario

The atomic Two-Phase Commit Protocol (2PC) is a typical distributed commit algorithm

used in computer networks and distributed database systems. It has two phases i.e the

prepare and commit phase. It is used when a simultaneous data update should be applied

within a distributed database. In this protocol, one node acts as the coordinator, which is

also called master and all the other nodes in the network are called participants or slaves.

The prepare messages from a participant to a coordinator are YES or No depending on

the decision at the participant whether to vote yes or no to the requested transaction.

The commit messages from a coordinator to the participant are GLOBAL_COMMIT or

GLOBAL_ABORT depending if all participants have voted yes or not. All decisions at

each site are logged in their respective write-ahead-log along with the transaction. The

24

write-ahead-log must be in a stable storage to ensure that data is not lost during a site

failure. In its first phase, all these participants agree or disagree with the coordinator to

commit, i.e., vote yes‟s or no‟s and in 2nd phase they complete the transaction

simultaneously by getting the commit or the abort signal from the coordinator.

Global commit or abort means all participants must commit or abort, even if there is

failure or timeout at any one of the nodes. Timeout means the failure of the other site.

The coordinator plays the central role and flags either global commit or global abort.

The former is only shown if all the participants vote to commit and the latter is shown if

at least one of the participants votes to abort or the coordinator decides to abort the

current transaction. In case there is no failure at any site, the protocol is correct but it is

highly desirable to consider the functionality in the presence of failure of any site at any

state(Cowling et.al, 2010).

Figure 2.0 below shows a Two-Phase Commit (2PC) protocol scenario.

Figure 2.0 Two Phase Commit Protocol architecture (Jumna et.al, 2012)

Can

commit?

Yes

Do

commit

Committed

Transaction
Coordinator

Prepared to
commit
(waiting for
votes)

Committed

Done

Participant

Prepared to

commit

Committed

Prepare
phase

Commit
Phase

25

Consider the scenario that 2PC protocol does not have any failures and the operations

are as follows:

a) Prepare phase

Coordinator: Initially the coordinator will broadcast the Begin_commit request

message to all participants and enters into wait state.

Participant: When the participant receive the request message, If the participant want to

commit the transaction means it respond with the Vote_commit message(Yes) to the

coordinator and enters into ready state. Otherwise, the participant responds with the

Vote_abort message (No) to the coordinator.

Coordinator: When the coordinator receives the reply from participant it starts 2nd

phase.

b) Commit phase

Coordinator: If the participants reply with Vote_commit message(Yes), the coordinator

decided to commit the transaction or abort the transaction and it will inform the

participant about the outcome of the transaction.

Participant: The Participant follows the coordinator‟s command and it will

acknowledge the coordinator.

However 2PC protocol having less communication overhead and less expensive, it

has a main drawback that is blocking transaction problem(Jamunaet.al, 2012).

2.3.2 Two-Phase Commit protocol variants

There are three main variants of 2PC which deal with how to handle recovery and vary

on how recovery data is logged.They include:-

a)Presumed Nothing (PrN)

b)Presumed Abort (PrA)

c)Presumed Commit (PrC)

26

a) Presumed Nothing(PrN)

This is the basic version of Two-Phase Commit andin this the coordinator requires very

explicit information which forms the word “Presumed nothing” or protocol.

The Protocol Messages for PrN

To commit a distributed transaction, PrN requires two messages from coordinator to

cohort and two messages from cohort to coordinator, or four messages in all. The

protocol has the following steps:

i. The coordinator sends PREPARE messages to all cohorts to notify them that the

transaction is to be terminated.

ii. Each cohort then sends a vote message either a COMMIT-VOTE or an ABORT-

VOTE on the outcome of the transaction. A cohort responding with a COMMIT-VOTE

is now prepared.

iii. The coordinator commits the transaction if all cohorts send COMMIT-VOTES. If

any cohort sends an ABORT-VOTE or the coordinator times out waiting for a vote,

the coordinator aborts the transaction. The coordinator sends outcome messages i.e.

COMMIT or ABORT to all cohorts.

iv. The cohort terminates the transaction according to its outcome, either committed

or aborted, and then ACKs the outcome message(Samaras et.al, 2003)

Cohort Activity

A cohort must log enough information stably so that it can tolerate failures both

before the commit protocol begins and during the commit protocol. If a cohort

fails, it‟s necessary to abort every transaction that has had any activity there and is

not yet prepared there. Otherwise updates might be lost, or serializability might be

compromised because read locks are released prematurely as a result of the failure.

27

Hence the cohort must vote to abort a transaction if the cohort has failed since the

first time it saw any activity for the transaction. Two ways to ensure this which do

not require any logging are given below.

i. The client marks the first action of a transaction that it sends to each cohort. The

cohort records a transaction as active when it sees an action marked as first, and votes

to abort a transaction unless it‟s recorded as active.

ii. The cohort counts the number of actions it has seen for each transaction, and the

client counts the number of actions it has sent to each cohort. The client passes all

the counts to the coordinator with the commit request and the coordinator passes

each count on to the proper cohort. The cohort votes to abort if its count is different.

Before responding with a COMMIT-VOTE, a cohort must stably record that it is

prepared. This makes it possible for it to commit the transaction even if it is later

interrupted by a crash. If a prepared cohort does not receive a transaction outcome

message promptly, or crashes without remembering the outcome, the cohort asks the

coordinator for the outcome. It keeps on asking until it gets an answer. This is the

blocking aspect of 2PC(Grey & Reuter, 2001)

b) Presumed Abort

In the absence of information about a transaction in its protocol database, a

presumed abort (PrA) coordinator presumes the transaction has aborted. This abort

presumption was already made occasionally by PrN. PrA makes it systematically to

further reduce the costs of messages and logging. Once a transaction has aborted, its

entry is deleted since a missing entry denotes the same outcome. No information need

be logged about such transactions because their protocol database entries need not be

recovered. We must guarantee that the protocol database always contains entries for

committed transactions which have not yet completed all phases of 2PC.

28

These entries must be recoverable across coordinator crashes. This means that as in

PrN, the coordinator must make transaction commit stable before sending a

COMMIT message, by forcing this outcome to its log. PrA deletes the protocol

database entries for committed transactions when 2PC completes in order to limit the

size of the database, just as PrN does. And the same garbage collection strategies are

also possible.

A coordinator need not make a transaction‟s entry stable before its commit because

an earlier crash aborts the transaction, and that is the presumed outcome in the

absence of information. Only a commit outcome needs to be logged with a forced

write. Since there is no entry in the protocol database for an aborted transaction,

there is no entry in need of deletion, and hence no need for an ACK of the ABORT

outcome message.

In summary, PrA aborts a transaction more cheaply than PrN, and it commits one

in exactly the same way.

c) Presumed Commit

For presumed commit (PrC), the coordinator explicitly documents which transactions

have aborted. While this has some apparent symmetry with PrA, which explicitly

documents committed transactions, in fact there is a fundamental difference. With

PrA, we can be very lazy about making the existence of a transaction stable in the log.

If there is a failure first, we presume it has aborted. But PrC needs a stable record of

every transaction that has started to prepare because missing transactions are

presumed to have committed, and a commit presumption is wrong for a transaction

that fails early. Traditionally this has meant that at the time 2PC is initiated and a

transaction is entered into the protocol database, the coordinator forces a transaction

initiation record to the log to make its database entry stable. This entry can then be

recovered after a coordinator crash, so that an uncommitted transaction is aborted

rather than presumed to have committed. With PrC, a transaction‟s entry is removed

29

from the protocol database when it commits, because missing entries are presumed

to have committed. If Cohorts subsequently inquire, they are told the transaction

committed by presumption. Thus, PrC avoids ACK messages for committed

transactions, which is the common case and hence a significant saving much more

important than avoiding acknowledgements(ACKs)s for aborted transactions(Lomet

& Salzberg, 2003).

We must ensure that a committed transaction‟s entry is not re-inserted into the

protocol database when the coordinator recovers from a crash. If this happened, we

might think the transaction should be aborted. Hence, like PrN and PrA, PrC forces

commit information to the log before sending the COMMIT message. Logically, this log

write erases the initiation log record, since lack of information implies commit.

However, given the nature of logs, it is easier to simply document the commit by

forcing a commit record to the log tail. The commit log record tells us not to

include the transaction in the protocol database of aborted transactions.

With PrC, both the protocol database entry and the initiation log record list all

cohorts from which ACKs are expected if the transaction aborts. When all the ACKs

have arrived, the entry can be garbage collected from the protocol database. Like PrN,

PrC writes a non-forced end record to the log at this point to keep the transaction

from being re-entered into the protocol database. No separate abort record is needed.

In summary, PrC commits a transaction with two forced log writes, the initiation

record and the commit record. In addition, it sends two messages to each cohort,

PREPARE and COMMIT. In response, each cohort forces a prepare log record and

writes a commit log record. The commit record need not be forced because a prepare

record without a commit record causes the cohort to inquire about the outcome.

The coordinator, not finding the transaction in its protocol database, will respond with a

COMMIT message.

30

The coordinator removes read-only cohorts from the list of cohorts that should

receive the transaction outcome message. If every cohort sends a READ- ONLY-

VOTE, then the coordinator sends no out- come message. In addition, it no longer

matters whether the transaction is considered committed or aborted. Hence the

coordinator can choose whichever outcome permits the least logging. This is not a good

transaction management mechanism (Manikandan et.al, 2012)

Blocking problem in 2PC

The Blocking problem is described with the given circumstances that, if the coordinator

fails to operate and at the same time some participant has confirmed itself to

commit state. The participants keep locks on resources until they receive the next

message from the coordinator after its recovery. For instance consider a situation that a

participant has sent VOTE-COMMIT message to the coordinator and has not received

either GLOBAL-COMMIT or GLOBAL-ABORT message due to the coordinator‟s

failure. In this case, all such participants are blocked until the recovery of the

coordinator to get the termination decision. The blocked transactions continue to keep all

the resources until they obtain the final decision from the coordinator after its recovery

(Schapiro & Milistein, 2012).

2.4 Types of failures introduced in distributed transactions

From the literature above, 2PC and 3PC commit protocols have been discussed and it

has been established that circumstances under which distributed transactions are

committed or undone under 2PC include:

 When application instructs the transaction to rollback, then the transaction will

be undone.

 When process failure occurs before all participant votes, then transaction will be

undone.

 If any participant votes no, then transaction will be roll backed.

 If all participants vote yes, transaction will be committed.

31

 If Process failure occurs after all participants have voted and the transaction

coordinator has received all voters as yes, then transaction will be committed but

is unresolved.

It is noted that the 2PC goes to a blocking state by the failure of the coordinator when

the participants are in uncertain state. The participants keep locks on resources until they

receive the next message from the coordinator after its recovery (Manikandan et.al,

2012). Thus, all such participants are blocked until the recovery of the coordinator get a

termination decision. Although 3PC protocol eliminates the blocking problem, it

involves an extra overhead of one more cycle and in turn increases time taken for the

transaction to complete (Singh et.al, 2011).

Three types of failures are introduced in distributed transaction environment as proposed

by Byun and Moon(2012).They include:-

 2.4.1 Site Failure

A failure of any type is normally detected by the absence of an expected message. Site

failures are usually due to software or hardware failures. These failures result in the loss

of the main memory contents. In distributed database, site failures are of two types:

i. Total Failure where all the sites of a distributed system fail

ii. Partial Failure where only some of the sites of a distributed system fail.

Site failures are modeled by a failure transition, which is a special kind of local state

transition. Such a transition occurs at the failed site the instant that it fails. The resulting

local state is the state initially occupied by the failed site upon recovering. An

underlying assumption is that a site can detect when it has failed.

 2.4.2 Network partitioning failure

A network failure results in at least two sites that cannot communicate with each other.

Research done on network partitioning proposed to model such a partition in two ways.

The first model is a pessimistic model where all messages are lost at the time

partitioning occurs. The second model is an optimistic model where no messages are lost

at the time partitioning occurs; instead, undeliverable messages are returned to the

32

sender. While the pessimistic model is more realistic, the optimistic model is

theoretically interesting since it yields upper bounds on the achievable resiliency.

A simple partitioning occurs when the sites are partitioned into exactly two sets with no

communication possible between the sets. A multiple partitioning occurs when the sites

are partitioned into k sets. A multiple partitioning can be viewed as simultaneous

occurrences of two or more simple partitioning. A protocol is resilient to a network

partitioning only if it is non-blocking, that is, the protocol must ensure that each isolated

group of sites can reach a commit decision consistent with the remaining groups. Unless

otherwise stated, we will assume that partitions are caused by link failures rather than

site failures (Taranum et.al, 2011)

2.4.3 Coordinator Failure

The 2PC protocol is the simplest and the best known protocol which serves as an object

to ensure the atomic commitment of a distributed transaction. It is a centralized control

mechanism based on the coordinator, which coordinates the actions of the others called

participants. A coordinator sends transaction request to participants and waits for their

replies in the first phase. After receiving all replies, the coordinator sends a final

decision to participants in the second phase.

The atomicity property of the protocol means that the transaction must be performed at

all sites or not at all; this is achieved by letting all participants vote YES or NO to the

particular transaction depending if they can commit it or not. Only when all sites are

ready to commit, the coordinator sends a GLOBAL-COMMIT to the participants as

confirmation that they can commit the transaction. A site can be both coordinator and

participant at the same time but for different transactions. If a coordinator site crashes

and participants waits for a final answer from the coordinator, if he should commit the

transaction or not, the participants are blocked as long as the coordinator is down. This is

the problem with 2PC algorithm which reduces high degree of data availability.

33

2.5 Failure handling principles in distributed systems

When it comes to failures most of it fall into one of the two buckets: Hardware or

software failure.

Hardware failure: It used to be more common, but with all of the recent innovations in

hardware design and manufacturing they tend to be fewer and far between with , most of

these physical failures tending to be network or drive-related.

Software failure: It comes in many more varieties and software bugs in distributed

systems can be difficult to replicate and consequently fix.There are two important

techniques of handling failure which includes:-

 2.5.1 Fault tolerance

 An important part of service based architecture is to set up each service to be fault

tolerant, such that in the event of one of its dependencies are unavailable or return an

error it is able to handle those cases and degrade gracefully. There are many methods of

achieving fault tolerance in a distributed system and these includes:

Standbys: This is exactly that a redundant set of functionality or data waiting on

standby that maybe swapped to replace another failing instance. Replication can be

utilized to maintain real time copies of master database so that data may be replaced

without loss or disruption.

Feature flags: It‟s used to enable or disable functionality in a production system. In the

event of failure of a particular system features that depend on that system can be turned

off and be made unavailable until that system comes back online.

Asynchrony: Its one of the most important design considerations in any distributed

applications. Each service or functional piece of a system communicates with each of its

external dependencies asynchronously so that slow or unavailable services do not

directly impact the primary functioning of the application. This also implies typically

that operations aren‟t tightly coupled requiring the success of one operation for another

to succeed like a transaction and don‟t require services to be available to handle

requests(Dollmore et.al, 2007)

34

 2.5.2 Monitoring

Extensive monitoring and logging is essential to nay complex distributed system.

Having many services each with a different purpose yet still interacting with one another

can lead to highly unusual bugs when they occur. It can be hard to tell where the

problem lies and where the issue need to be resolved. One of the best ways to mitigate

this confusion and help diagnose problems quickly is to be sure that all system interfaces

and APIs are monitored. However, monitoring in large scale web systems can be

challenging. Separation and services adds complexity.

There many different points to control and they don‟t necessarily operate in sync with

one another and communication between these systems can be delayed and

complicated through mechanisms like retries which only compounds the problem of

tracing sequential events.

A big challenge is that too much monitoring or logging can cause delays, take up space

and potentially interfere with normal operations.

2.6 Three-Phase Commit(3PC) scenario

A 3PC is a non-blocking protocol which eliminates the blocking problem faced by 2PC

protocol. Three Phase Commit protocol operations is similar with the two phase commit

protocol, only difference is it has extra phase called Pre_commit phase where it takes the

preliminary decision. The Three Phase Commit protocol (3PC) performs the operation in

three phases are Prepare phase, Pre-commit phase, Commit/Abort phase. Among the

three phases Pre-Commit phase eliminates the blocking problem but it comes with an

extra cost of message transfers.

35

It‟s represented in the diagram below;

Figure 2.1 Three-Phase Commit Protocol architecture(Jamuna et.al, 2012)

a) Prepare phase

Coordinator: Initially the coordinator will broadcast the Begin_commit request

message to all participants and enters into wait state.

 Participant: When the participant receive the request message, If the participant want

to commit the transaction means it respond with the Vote_commit message(Yes) to the

coordinator and enters into ready state. Otherwise, the participant responds with the

Vote_abort message(No) to the coordinator(Jamuna et al, 2012).

Coordinator: When the coordinator receives the reply from participant it starts 2nd

phase.

b) Pre-Commit phase

Coordinator: When the coordinator receives Vote_commit message within the time

from the participant, the coordinator broadcast the Pre-Commit message to all

Coordinator

Prepared to commit

(waiting for votes)

Prepared to

Pre_commit

Committed

Done

Participants

Prepared to Commit

Prepared to

pre_commit

Committed

Can Commit?

Yes

Pre_commit

ACK

K

Do commit

Committed

36

participants .At this phase preliminary decision can be made and it moves to prepared

state.

Participant: When the participant accepts the Pre_commit message it will send

acknowledge message the coordinator.

Coordinator: When the Coordinator receive ACK message from participant it starts 3rd

phase.

c) Commit/Abort phase

Coordinator: The coordinator decided to commit the transaction or abort the transaction

and it will inform the participant about the outcome of the transaction.

Problems with 3PC

Three-Phase Commit Protocol is problematic only when there are multiple site failures.

For example, let‟s consider a case where the coordinator is in pre-commit state and fails

just after sending a commit message and the slave also fails just before or after receiving

this message as So by its failure, the slave moves to the aborted state but according to

the protocol specifications, the coordinator goes to the committed state, either it fails or

receives acknowledgement. Hence, the coordinator moves to the committed state

without receiving acknowledgement and the failed slave moves to the aborted state

without sending the acknowledgement. In this way, coordinator and participant show

different final states due to their failures. Although 3PC protocol eliminates the blocking

problem, it involves an extra overhead of one more cycle and in turn increases time

taken for the transaction to complete (Singh et.al, 2011).Because of high communication

overhead 3PC has not been implemented so far.

2.7 Atomic commitment

Atomic commitment in 2PC is an essential demand for the algorithm. It means that

every transaction must be handled the same way at all sites, either commit the

transaction or abort it. According to Syam (2005),to achieve atomic commitment we

need to fulfill the following conditions:

C1.Every participant and the coordinator must reach the same decision.

37

C2. A GLOBAL_COMMIT will be reached only if all participants and the coordinator

have voted commit.

C3.When every participant and the coordinator votes commit and there are no failures

the result must be GLOBAL_COMMIT.

C4.A reached decision by a participant or coordinator is not reversible.

C5.If tolerated failures occur and get repaired in a reasonable short time, then all

participants and coordinator finally will reach a decision.

2.8 Summary of commit protocols

From the analysis of commit protocols the following points have been noted: That the

2PC has a blocking problem when participants are in uncertain state, and that 3PC

though a non-blocking protocol has more communication overheads which hinders

performance of distributed transactions

In 2PC protocol, consider a situation that a participant has sent VOTE_COMMIT

messages to the coordinator and has not received either GLOBAL_COMMIT or

GLOBAL_ABORT message due to coordinator‟s failure. In this case all such participants

are blocked until the recovery of the coordinator to get the termination decision.

Typically one coordinator node has all the information necessary to determine whether a

transaction should commit or rollback. Therefore if the coordinator node fails during a

distributed transaction, all the participants in the transaction must wait for the

coordinator to recover before completing the transaction. Thus significant delays may be

caused when the coordinator fails.

To minimize the delay caused by the failed coordinator, this study simulated a 2PC

protocol clustering algorithm to optimize distributed transaction failure in improving

reliability of distributed transactions.

38

Transaction processing must ensure transaction atomicity and consistency for

transactions that involve databases. Transactions often involve multiple steps all of

which must be completed before a database commit can be executed.

Different transaction failure scenarios have been visited. Site failure happens due to

software or hardware failures which result in the loss of the main memory contents and

in partial or total failure. Network partitioning results in at least two sites that cannot

communicate with each other. Coordinator failure in 2PC brings about blocking problem

and 3PC doesn‟t solve it either as it degrades system performance. To address these

problems this study used a transaction clustering algorithm on 2PC protocol to minimize

transaction failure by eliminating blocking problem in 2PC and increase system

performance to achieve high transaction throughput(Fahd et.al,2011)

39

CHAPTER THREE

3.0 METHODOLOGY

3.1 Introduction

This chapter describes steps adopted to design and simulate a connectivity based

transaction clustering algorithm for overcoming distributed transaction failure in two-

phase commit protocol. This study used an experimental research design that involved

the practical design of the transaction clustering algorithm using Jcreator IDE. This

algorithm was simulated with mySQL acting as the backend data manager. The data was

collected using Bitronix transaction manager which provided the required management

feedback information on distributed transactions. This involved the designation of

transaction manager, coordinator, sub-transactions, data managers and participants. This

is outlined in the sub-sections below.

3.2 Analysis of distributed transaction failures in Two-Phase Commit protocol

3.2.1 General Requirements of a commit protocol

The general requirements of a commit protocol are presented below:-

R1.The coordinator aborts the transaction if at-least one participant votes to abort.

R2. The coordinator commits a transaction only if all the participants vote to commit.

R3.All non-faulty participants including the coordinator should eventually decide to

abort or commit.

R4.If any one of the participants including the coordinator decides to abort or commit

then no other participant will decide to commit or abort.

40

3.3 Tools and Specifications

In order that the researcher shows the coordinator and site failure in two-phase commit

protocol, the following tools and specifications were adopted:-

i) Britonix Transaction Manager (BTM) - Is a simple but complete implementation of

the Java Transaction API (JTA) 1.1 API(application programming interface). It is a

fully working XA transaction manager that provides all services required by the JTA

API while trying to keep the code as simple as possible for easier understanding of

the XA semantics.

ii) MySQL database Management System - to act as the backend data resource

manager. This should be MySQL 5.1 or higher version.

iii) Java Development environment – to provide the virtual machine environment for

simulation purpose.

3.3.1 Bitronix Transaction Manager(BTM)

The BTM is a simple but complete implementation of Java transaction applications

whose goal is to provide a fully working transaction manager that provides all services

required by the Java applications while trying to keep the code as simple as possible for

easier understanding of semantics. BTM is such important in transaction management in

that it has useful error reporting and logging methods which make it easier to know

when an error occurs. BTM configuration settings are stored in a Configuration object. It

can be obtained by calling TransactionManagerServices.getConfiguration().

BTM is a perfect choice for a project using transaction capabilities by using Java

Transfer manager (JTM) facade. It is possible to integrate BTM in web containers like

Tomcat or Jetty and get raw access to a JTA implementation.. BTM has proved to be

stable and mature enough to be used in production. Currently BTM is very stable and

usable. JDBC resources are working pretty well and recovery of crash works fine.

3.3.2 Bitronix JTA Transaction Manager With MySQL

The Java Transaction API (JTA) allows applications to performs distributed

transactions, to access and update systems having multiple transaction resources:

41

databases, message queues, custom resource, or resources accessed from multiple

processes or on multiple hosts as participants in a single transaction.

3.4 Simulation of 2PC Coordinator Failure

To demonstrate the fact that the Two –phase is blocking, the researcher used Bitronix

transaction manager, mySQL server and Jcreator IDE to simulate a two-phase commit

protocol failure. Two practical implementations of coordinator failures were carried out.

The first one demonstrated coordinator failure for distributed transactions on a single

database while the second one demonstrated coordinator failure for distributed

transactions on distributed data resources. In both cases:

i) The mySQL database acted as resource manager.

ii) The JDBC driver, in this case, mySQL-connector-java-5.1.10-bin.jar, acted as

Resource Adapter.

iii) The main Java classes in the projects, acted as Coordinators. Two main classes,

were used, namely, the TwoPCCoordinatorFailureClass and

TwoPCCoordinatorFailureClass1. The first main

class,TwoPCCoordinatorFailureClass was to show the coordinator failure for

distributed transactions involving one database while the second class,

TwoPCCoordinatorFailureClass1 was to show coordinator failure for distributed

transactions on distributed databases.

iv) Bitronix Transaction Manager (BTM) was used as a Transaction Manager. Its

function was to receive messages from the coordinator and participant and

forwards the messages to the corresponding participants and coordinators.

v) The transaction classes, keep transaction ID. For example, in Appendix I, the

code

“bitronix.tm.BitronixTransactionManager.<init>(BitronixTransactionManager.j

ava:64)” has transaction ID of 64.

vi) The transaction sub-classes send a request for the transaction to the transaction

manager-through message calling. For example, in Appendix II, the code

42

“btm.commit();”, is a call made to the Bitronix transaction manager to commit a

transaction.

vii) A transaction branch- is associated with a request to each resource manager

involved in the distributed transaction. Each transaction branch must be

committed or rolled back by the local resource manager. For example, in

Appendix II, the code,

 “catch (Exception ex) {

 ex.printStackTrace();

try {

 btm.rollback();

 } catch (Exception e) {

 e.printStackTrace();

 }”

Is a transaction branch that results when the transaction class cannot commit a

transaction.

The relationships among these entities are shown Figure 3.1 below. The transaction

manager was responsible for making the final decision either to commit or rollback any

distributed transaction. A commit decision should have lead to a successful transaction;

rollback leaves the data in the database unaltered. JTA specified standard Java interfaces

between the transaction manager and the other components in a distributed transaction:

the application, the application server, and the resource managers.

43

`

 Figure 3.0 Relationship among Distributed System Entities

The numbered boxes, 1, 2 and 3 around the transaction manager correspond to the three

interface portions of JTA. The box number 1 is the userTransaction, which is an

interface that provides the application the ability to control transaction boundaries

programmatically. The second (2) is the transaction manager, which is an interface that

allows the application server to control transaction boundaries on behalf of the

application being managed. Lastly, the XAResource is box number 3, and is a Java

mapping of the industry standard XA (extended Architecture). XA is used for

communication with the transactional resources. The two databases were created in

MySQL and were named KisiiBranch and NairobiBranch.

 3.4.1 Procedure

1. Two databases were created in MySQL server. These were given names

KisiiBranch and NairobiBranch.

2. Two tables were created, one in each of these databases, with the name

bankcustomer.

JTA

Java application

Application server

JDBC Driver Manager

 JDBC Driver

2

 1

 3

 Database Database

44

3. Table bankcustomer had five columns, namely CustomerID, CustomerName

,Address, City and AccountBalance. Table 3.0 below shows the structure of these

tables.

Table 3.0: Structure of the database Tables, Bankcustomers

The two phase commit connectivity based clustering algorithm to insert and retrieve the

data into these tables was written. Table 3.1 below shows a snippet of this algorithm.

45

Table 3.1: Snippet of the current Two Phase Commit Protocol

The above algorithm was compiles and run in Jcreator IDE.

As shown in the table, the algorithm consisted of three queries, two for inserting while

the other one for retrieving records from the database. In this algorithm transaction

partitioning is used. This consisted of the nested statements below;

private static final String INSERT_QUERY="insert into,CustomerName,Address,City,AccountBalance)values

(2356,Teresa,Kisii,Nairobi,25000)";

private static final String INSERT_QUERY1="insert into Bankcustomers(CustomerID,CustomerName,Address,City

,AccountBalance)values (50, Susan,Nakuru,Nairobi,25000)";

private static final String SELECT_QUERY="select * from bankcustomers";

try {btm.begin();

for(int index = 1; index <= 5; index++) {

 pstmt.setInt(1,index);

 pstmt.setString(2, "Customers_" + index);

 pstmt.setString(3, "" + (4 + index));

 pstmt.setString(4, "Nairobi");

 pstmt.executeUpdate(); }

 pstmt.close();

 connection.close();

Connection connection =mySQLDS.getConnection(USER_NAME, PASSWORD);

PreparedStatement pstmt =connection.prepareStatement(INSERT_QUERY1);

for(int index = 1; index <= 5; index++) {

 pstmt.setInt(1,index);

 pstmt.setString(2, "Customers_" + index);

 pstmt.setString(3, "" + (4 + index));…………………………………………………

 pstmt.setString(4, "Nairobi");

 pstmt.executeUpdate(); btm.commit();

46

 try {……..}

 catch {….}

Observation of this algorithm reveals that it consists of six of these nested statements,

three for inserting and retrieving data and the three for error handling when errors are

detected in the algorithm or the data resources. This is the root of the concurrency and

blocking problems in two phase commit protocol. This is because these transactions are

partitioned; hence each of them is transmitted to the data resources independent of each

other. Hence if one of them fails to respond, the others are blocked, waiting for its

recovery.

3.5 Simulation of a transaction Connectivity Based Clustering Algorithm

To address the concurrency and blocking problem in two phase commit protocol, the

researcher designed and simulated transaction connectivity based clustering algorithm

for optimizing distributed transactions.

Connectivity-based node clustering is an important network structure that can be

employed in various ways to improve the quality of service of applications running on

distributed system. A connectivity-based node clustering is the partitioning of network

nodes into one or more groups based on their connectivity. In this setup, nodes were

grouped into three sites: NairobiBranch, HeadOffice and KisiiBranch. However, the two

branches (NairobiBranch and KisiiBranch) have connectivity to the HeadOffice. The

communication among the partitioning was done by method calling.

3.5.1 Connectivity Based Transaction Clustering Algorithm Architecture

 The algorithm consisted of the following components:

i) Transaction manager- the purpose of this component was to send and receive

messages from the coordinator and participant. It also contains the recovery

procedures to deal with transaction failures. Bitronix Transaction Manager

was taken to be the transaction manager.

47

ii) Coordinator- its function is to monitor and execute atomic transactions. The Java

main class, Coordinator was taken to be the coordinator, which was declared

as follows:

public class Coordinator {

…………………………

}

iii) Resource manager- its function was to keep a record of stable committed

transactions in storage. MySQL database was used for this perspective.

iv) Resource Adapter- The function of this component was to provide database

connectivity. It was taken to be the mySQL-connector-java-5.1.10-bin.jar .

v) Participants-the function of these components was to take part in the voting

process and take appropriate actions locally, which could be transaction

commit or transaction abort. These were taken to be the three sub-

transactions, two of which were to insert data into the database (KisiiBranch

and NairobiBranch), while the remaining one was to update the HeadOffice

database

vi) Data managers- the function of these components was to manage data transfer

between its replica and other sites. These were taken to be the Connection

constructs that provided the path to the databases. These were declared as

follows:

Connection connection = DriverManager.getConnection(

 "jdbc:mySQL://localhost:3306/NairobiBranch", "root", "");

……………………………………………………………………………………………

.

Connection connection1 = DriverManager.getConnection(

 "jdbc:mySQL://localhost:3306/KisiiBranch", "root", "");

Connection connection2 = DriverManager.getConnection(

 "jdbc:mySQL://localhost:3306/HeadOffice", "root", "");

48

Figure 3.2 below shows the overall simulation architecture. Its shows the relationships

among the above mentioned entities. As shown, the bitronix transaction manager

directly communicates with the coordinator, which in turn communicates with data

managers. The data managers communicate with participants. The participants

communicate with the resource managers via the resource adapter.

 Figure 6.0 Overview of system architecture

Fig 3.1 Overall simulation architecture

The diagram below shows the class diagram for the package TwoPCCoordinator

package. Coordinator is the main class in the TwoPCCoordinator package. Its main

function initiates Coordinator and Participant and to keep a list of them when a

transaction occurs. The Participant thread will execute, redo or undo a sub-transaction.

It carries out the proper procedures of the 2PC as participant by following instruction

from the coordinator. It carries out

recovery in case of failures.

 Figure 3.2 Transaction Clustering Algorithm Package Diagram

Bitronix

Transaction

Manager

Coordinator

MySQL

Server

NairobiBranch

KisiiBranch

HeadOffice

 mysql-connector-java-

5.1.10-bin.jar

pstmt.executeUpdate();

pstmt1.executeUpdate();

pstmt2.executeUpdate();

Connection……………..

Connection1……………

Connection2……………

TwoPCCoordinator Coordinator

DataLocking

49

The datalocking component is responsible for locking data so that only one transaction

have access to it at any particular moment. This is important if database inconsistency in

distributed databases is to be avoided.

 3.5.2 Procedure

1. Three databases were created in MySQL server. These were given names

KisiiBranch and NairobiBranch and HeadOffice.

2. Three tables were created, one in each of these databases, with the name

bankcustomer.

3. Table bankcustomer had five columns, namely CustomerID, CustomerName

,Address, City and AccountBalance.

4. The two phase commit protocol, with transaction clustering algorithm to insert the

data into these tables was written. Table 3.2 below shows a snippet of this

algorithm.

50

Table 3.2: Snippet of the Two-Phase Commit Protocol with Transaction Clustering

private static final String INSERT_QUERY="insert into

Bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values (?,?,?,?,?)";

private static final String INSERT_QUERY1="insert into

bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values (?,?,?,?,?)";

private static final String UPDATE_QUERY="Update bankcustomers SET AccountBalance='25000'";

BitronixTransactionManager btm =TransactionManagerServices.getTransactionManager();

 try {

 btm.begin();

Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/NairobiBranch", "root", "");

 PreparedStatement pstmt =connection.prepareStatement(INSERT_QUERY);

 Connection connection1 = DriverManager.getConnection("jdbc:mysql://localhost:3306/KisiiBranch", "root", "");

 PreparedStatement pstmt1 =connection1.prepareStatement(INSERT_QUERY1);

 Connection connection2 = DriverManager.getConnection("jdbc:mysql://localhost:3306/HeadOffice", "root", "");

 PreparedStatement pstmt2 =connection2.prepareStatement(UPDATE_QUERY);

 for(int index = 1; index <= 5; index++) {

System.out.println("---");

System.out.println("NAIROBI_BRANCH_VOTE :TRANSACTION_COMMIT");

 //Sub-transaction-2: Inserting data into Table bankcustomers, residing in Database KisiiBranch

pstmt1.setInt(1,index);//Inserting data into first_column, CustomerID

pstmt1.setString(2, "Customer_" + index);//Inserting data into Second_column, CustomerName

 pstmt1.setString(3, "" + (4 + index));//Inserting data into Third_column,

Address……………………………………………

…….

 pstmt1.setString(5, "25000");//Inserting data into

Fifth_column, AccountBalance

 pstmt1.executeUpdate();// Executing the INSERT_QUERY1

 pstmt1.close();//Terminating Sub-Transaction-2

 connection1.close(); //Terminating database connection for Sub-Transaction-2

 //

 //Status of the voting in Database located at site, KisiiBranch

 //

 System.out.println("---

51

The above algorithm was compiled and run in Jcreator IDE.

As shown in the table, the algorithm consisted of three queries, two for inserting while

the other one for updating records from the database. It shows that transaction

partitioning has not been used. This consisted of only one statement.

 try {……..}

 catch {….}

Observation of this algorithm reveals that it consists of only one branch of operation.

Part one of this algorithm consist of sub-transactions that were meant to insert and

update the databases, while the other part was for error handling. Hence there is a better

concurrency control and sub-transactions do not block one another because all of them

are executed at ago, simultaneously. Hence if they fail, they do so in a group and the

transaction manager initiates a roll back as will be demonstrated in chapter four.

3.6 Data Collection and Analysis

In this research an experiment was designed to compare the performance of the

transaction connectivity based clustering algorithm with the current Two-Phase Commit

Protocol focusing on site and coordinator failure of distributed transactions. The data

was collected using Bitronix transaction manager, which provided the required

management feedback information on distributed transactions. It was then analyzed

using the same software and the status of database manipulations.

52

CHAPTER FOUR

4.0 RESULTS DISCUSSION AND ANALYSIS

4.1 Introduction

This chapter gives an explanation for the results that were obtained from the experiment

that was carried out. The probable explanations of the observed results and their analysis

forms the basis of this chapter as discussed in the subsections below.

4.2 Analysis of distributed transaction failures in Two-Phase Commit(2PC)

Protocol

The first objective of the researcher was to carry out an analysis of the two-phase

commit protocol in order to identify its flaws. The researcher identified two major forms

of 2PC failures, that is, site failure and coordinator failure.

The bitronix output below demonstrates a site failure. Table 4.0 below is a snippet of

the bitronix transaction manager output that gives a clear indication of site failure.

Table 4.0: Demonstration of Two-Phase Commit Site Failure

The first line of this table gives an overview of the obtained results, that is, the

information shown is the one contained in bitronix transaction log file. The second line

is the initialization of the bitronix transaction manager, which has been given a unique

ID of 64. The third line initializes the transaction manager services, and has been

assigned a unique ID of 62. The „TwoPCProtocol‟, is the package name while

„TwoPCCoordinatorFailure‟, is the name of the main class, which became our

 ………… Feb 5, 2015 6:27:39 AM bitronix.tm.BitronixTransactionManager logVersion…………………

 at bitronix.tm.BitronixTransactionManager.<init>(BitronixTransactionManager.java:64)

 at bitronix.tm.TransactionManagerServices.getTransactionManager(TransactionManagerServices.java:62)

 at TwoPCProtocol.TwoPCCoordinatorFailure.main(TwoPCCoordinatorFailure.java:32)

Caused by: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure

The last packet sent successfully to the server was 0 milliseconds ago. The driver has not received any packets from
the server.

…………………………………

53

coordinator. This was given a unique ID of 32. The next line gives information on the

status of the communication link to the data resource. It is evident here that the data

resource is down, as indicated by the statement, „Caused by:

com.mySQL.jdbc.exceptions.jdbc4.CommunicationsException: Communications link

failure‟. The last line further explains that Bitronix, through the JDBC driver, which was

„mySQL-connector-java-5.1.10-bin.jar‟, had sent a packet successfully. However, the

data resource could not give any response. This was because the researcher intentionally

put the mySQL server offline.

To demonstrate coordinator failure, the researcher put the data resource online and ran

the source codes of coordinator failure involving distributed transactions directed

towards a single data resource. Table 4.1 below gives a snippet of the source code for

distributed transactions directed towards a single data resource.

Table 4.1: Coordinator Failure - Distributed Transactions and a Single Data

Resource

As shown in the table, the first line is the main class that acts as a coordinator for the

distributed transactions that are found within it. The next three lines initializes the

………………………………………………………………………..

public class TwoPCCoordinatorFailure {

private static final String DATABASE="TwoPCDistributedTransaction";

 private static final String USER_NAME="root";

 private static final String PASSWORD="";

 private static final String INSERT_QUERY="insert into

bankcustomers(CustomerID,CustomerName,Address,City)values (2356,Teresa,Kisii,Nairob, 25000)";

 private static final String SELECT_QUERY="select * from bankcustomers";

…………………………………………………………………………………………..

54

database, whose name was „TwoPCDistributedTransaction‟ , residing in Wamp Server,

the user name, whose name was „root‟ , and the password of the user, which was set to

be null. This was followed by the insert query, which if it committed, was to insert the

values „2356,Teresa,Kisii,Nairobi, 25000‟, into the table, whose name was

bankcustomers, residing in database „TwoPCDistributedTransaction‟. This was followed

by another query to the same database, which if it could have committed, would have

seen this transaction display all the records from the table named above.

The next table below gives a snippet of the output of the Bitronix transaction manager

log file, where there is coordinator failure in distributed transactions and distributed data

resource.

Table 4.2: Coordinator Failure-Distributed Transactions and Distributed Data

 Resource

As shown in the table, the Bitronix transaction manager starts by obtaining the Java

Virtual Machine unique ID, which is the address of the localhost, that is, 127.0.0.1.

Line three of the snippet above clearly indicates that „TwoPCCoordinatoFailureClass1‟,

which was our main class in the Java application and hence our coordinator, has failed.

This is evident by Bitronix output statement, „resource marked as failed (background

recoverer will retry recovery)‟.

WARNING: error running recovery on resource 'TwoPCCoordinatoFailureClass1', resource marked as failed
(background recoverer will retry recovery)

bitronix.tm.recovery.RecoveryException: cannot start recovery on a PoolingDataSource containing an XAPool of

resource TwoPCCoordinatoFailureClass1 with 0 connection(s) (0 still available)

 at bitronix.tm.resource.jdbc.PoolingDataSource.startRecovery(PoolingDataSource.java:227)

 at bitronix.tm.recovery.Recoverer.recover(Recoverer.java:253)

55

 4.2.1 Demonstration of Two-Phase Commit Coordinator and Site Failures

Fig 4.0: 2PC Coordinator & Site Failures

In Figure 4.0 above, suppose the coordinator sends COMMIT decision to Nairobi

Branch, which upon receiving it, commits and unfortunately, goes down together with

the coordinator. In such a scenario, even though Head office and Kisii Branch voted yes,

they have to wait for either Nairobi branch or the coordinator to be up. They can‟t

commit or abort, because they do not know the response of the Nairobi Branch (this

decision was supposed to be communicated by the coordinator, which unfortunately, is

also down). If that takes a long time (For example, a human must replace hardware),

then availability suffers. This is why 2 phase commit is called a blocking protocol. 2PC

suffers from allowing nodes to irreversibly commit an outcome before ensuring that the

others know the outcome, too.

4.2.2 Demonstration of Three-Phase Commit

The 3PC turns 2PC into a non-blocking protocol – 3PC should never block on node

failures as 2PC did. This protocol splits the commit/abort phase into two phases. It first

communicates the outcome to every participant and then let them commit only after

everyone knows the outcome.

Coordinator

Participants

Nairobi Branch Head Office Kisii Branch
Yes

Yes

Yes

56

 Fig.4.1 Three-Phase Commit overheads

Suppose the coordinator sends COMMIT decision to Nairobi Branch, which upon

receiving it, commits and unfortunately, goes down together with the coordinator. In

3PC, if one of the three branches has received preCommit, they can all commit, meaning

that Head office and Kisii Branch can go ahead and commit. If none of them has

received preCommit, they can all abort. Therefore, 3PC doesn‟t block, it always makes

progress by timing out. As evident above, there is so much overhead generated by 3PC

compared to 2PC and this is the challenge for 3PC.

4.3 Simulation of a connectivity based transaction Clustering Algorithm

The second research objective was to simulate a transaction clustering algorithm for

optimizing distributed transactions failure in two phase commit protocol. The results

obtained indicate that site failure results were similar to the one obtained in Table 3.2.

Nairobi, Head Office, Kisii Branch

57

The algorithm was modified such that all sites were TRUNCATED off their data except

the HeadOffice, which remained with the data shown below and it was then run.

Table 4.3: HeadOffice Site Initial Status

This figure shows that CustomerID was 1, CustomerName was Customer_1, address was

5, City was Nairobi and AccountBalance was 75000. The algorithm in Appendix V was

meant to insert some data into the KisiiBranch and NairobiNranch databases, in their

bankcustomers tables, while at the same time updating site HeadOffice, so that it could

display 25000 as the AccountBalance.

This is evident from the snippet in Table 4.4 below.

Table 4.4: Snippet of the Insert and Update Transactions

private static final String INSERT_QUERY="insert into

Bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values (?,?,?,?,?)";

private static final String INSERT_QUERY1="insert into

bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values (?,?,?,?,?)";

private static final String UPDATE_QUERY="Update bankcustomers SET AccountBalance='25000'";

pstmt.setInt(1,index);//Inserting data into first_column, CustomerID

pstmt.setString(2, "Customer_" + index);//Inserting data into Second_column, CustomerName

pstmt.setString(3, "" + (4 + index));//Inserting data into Third_column, Address

pstmt.setString(4, "Nairobi");//Inserting data into Fourth_column, City

pstmt.setString(5, "25000");//Inserting data into Fifth_column, AccountBalance

58

Sure enough, when the algorithm was run, all these sites voted

TRANSACTION_COMMIT, and the coordinator decision was, GLOBAL_COMMIT, as

shown in Table 9 below. Note the lines:

NAIROBI_BRANCH_VOTE :TRANSACTION_COMMIT

KISII_BRANCH_VOTE :TRANSACTION_COMMIT

HEAD_PFFICE_VOTE :TRANSACTION_COMMIT

COORDINATOR_DECISION :GLOBAL_COMMIT

59

Table 4.5 below shows a Two-Phase Commit Protocol transaction clustering algorithm

when all the three transactions have committed as a cluster.

Table 4.5 : Two Phase Commit Protocol Transaction Clustering Algorithm Output

A check on the three sites confined that these transactions had actually committed as

shown in table 4.6, 4.7 and 4.8 below.

--------------------Configuration: <Default>--------------------

Feb 15, 2015 8:39:42 PM bitronix.tm.BitronixTransactionManager logVersion

INFO: Bitronix Transaction Manager version 2.1.0

Feb 15, 2015 8:39:42 PM bitronix.tm.Configuration buildServerIdArray

WARNING: cannot get this JVM unique ID. Make sure it is configured and you only use ASCII characters. Will use IP

address instead (unsafe for production usage!).

Feb 15, 2015 8:39:42 PM bitronix.tm.Configuration buildServerIdArray

INFO: JVM unique ID: <127.0.0.1>

Feb 15, 2015 8:39:42 PM bitronix.tm.recovery.Recoverer run

INFO: recovery committed 0 dangling transaction(s) and rolled back 0 aborted transaction(s) on 0 resource(s) []

(restricted to serverId '127.0.0.1')

NAIROBI_BRANCH_VOTE :TRANSACTION_COMMIT

KISII_BRANCH_VOTE :TRANSACTION_COMMIT

HEAD_PFFICE_VOTE :TRANSACTION_COMMIT

COORDINATOR_DECISION :GLOBAL_COMMIT

Feb 15, 2015 8:39:42 PM bitronix.tm.twopc.Preparer prepare

WARNING: executing transaction with 0 enlisted resource

60

Table 4.6: HeadOffice Site Final Status After Commit

Table 4.7. KisiiBranch Site Final Status After Commit

61

Table 4.8 . NairobiBranch Site Final Status After Commit

To investigate how this new algorithm handles site failures, one of the sites, the

NairobiBranch was intentionally modified by setting the fifth column to be

AccountBalance1, instead of AccountBalance as contained in the algorithm. Table 4.8.1

below shows how this modification was done.

Table 4.8.1: NairobiBranch Modification Procedure

The algorithm was then re-run. Table 4.9 shows the Bitronix Transaction Manager

output.

62

Table 4.9: Concurrency Control and Blocking in Transaction Clustering

Algorithm Output

The concurrency and blocking control in the new clustered algorithm is demonstrated in

this table. If the coordinator poorly managed the transactions, the other two sites would

have voted, TRANSACTION_COMMIT, since their sites were never affected by the

changes that were carried out. However, none voted, and hence the developed algorithm

can manage concurrency access to distributed databases. Moreover, since none of the

sites voted TRANSACTION_COMMIT, they cannot claim to have been blocked by the

failure of the site, NairobiBranch. Had they voted, TRANSACTION_COMMIT, they

could have claimed to have been blocked by NairobiBranch, since they belonged to the

same coordinator and therefore according to the two phase commit protocol requirement

of atomicity, they were expected to commit together as a group.

WARNING: cannot get this JVM unique ID. Make sure it is configured and you only use ASCII characters. Will use

IP address instead (unsafe for production usage!).

Feb 15, 2015 9:56:32 PM bitronix.tm.Configuration buildServerIdArray

INFO: JVM unique ID: <127.0.0.1>

Feb 15, 2015 9:56:32 PM bitronix.tm.recovery.Recoverer run

INFO: recovery committed 0 dangling transaction(s) and rolled back 0 aborted transaction(s) on 0 resource(s) []

(restricted to serverId '127.0.0.1')

Feb 15, 2015 9:56:32 PM bitronix.tm.BitronixTransactionManager shutdown

INFO: shutting down Bitronix Transaction Manager

Feb 15, 2015 9:57:32 PM bitronix.tm.BitronixTransaction timeout

WARNING: transaction timed out: a Bitronix Transaction with GTRID

[3132372E302E302E310000014B8E99657300000000], status=MARKED_ROLLBACK, 0 resource(s) enlisted

(started Sun Feb 15 21:56:32 EAT 2015)

63

4.3.1 Source code for Connectivity-Based Clustering algorithm

/*Author: Teresa Abuya, Msc (Computer Systems), Jkuat*/

 import java.sql.DriverManager;

 import java.sql.Connection;

 import java.sql.PreparedStatement; Java imports for database

 import java.sql.SQLException; connectivity

 import java.text.DateFormat;

 import java.text.SimpleDateFormat;

 import java.sql.Statement;

 import java.sql.Connection;

 import java.sql.PreparedStatement;

 import java.sql.ResultSet;

 //Bitronix Transaction manager imports for database transactions

monitoring and control

 import bitronix.tm.BitronixTransactionManager;

 import bitronix.tm.TransactionManagerServices;

 import bitronix.tm.resource.jdbc.PoolingDataSource;

//end of imports

 //Declaration of the class, "Coordinator"

 public class Coordinator {

 //Constant constructs declaration and instantiation

 private static final String DATABASE="KisiiBranch";

 private static final String DB_DRIVER =

"com.mysql.jdbc.Driver";

 private static final String DB_CONNECTION =

"jdbc:mysql://localhost:3306/customerdetails";

 private static final String DB_USER = "root";

 private static final String DB_PASSWORD = "";

 private static final String USER_NAME="Teresa";

64

 private static final String PASSWORD="Abuya";

//Database querries instantiation

private static final String INSERT_QUERY="insert into

Bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values

(?,?,?,?,?)";

private static final String INSERT_QUERY1="insert into

bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values

(?,?,?,?,?)";

private static final String UPDATE_QUERY="Update bankcustomers SET

AccountBalance='25000'";

// Beginning of main class

 public static void main(String[] argv) {

 //Setting of the database parameters

 PoolingDataSource mySQLDS=new PoolingDataSource();

 mySQLDS.setClassName("com.mysql.jdbc.jdbc2.optional.MysqlXADataSource";

 mySQLDS.setUniqueName("Coordinator");

 mySQLDS.setMaxPoolSize(3);

 mySQLDS.getDriverProperties().setProperty("databaseName", DATABASE);

 //Bitronix transaction manager initialization

 BitronixTransactionManager btm

=TransactionManagerServices.getTransactionManager();

 //Transaction Clustering for Coordinator and site failure circumvention

 try {

 //Starting Bitronix transaction manager

 btm.begin();

 //Three Distributed databases are assumed, residing in Nairobi, Kisii and Head Office

 // Initializing JDBC Drivers and Database site NairobiBranch, with user as root

 Connection connection = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/NairobiBranch", "root", "");

65

 //Assigning INSERT_QUERRY to pstmt construct, an insert querry directed to

Nairobi site

 PreparedStatement pstmt =connection.prepareStatement(INSERT_QUERY);

 //Initializing JDBC Drivers and Database site KisiiBranch, with user as root

 Connection connection1 = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/KisiiBranch", "root", "");

 // Assigning INSERT_QUERRY1 to pstmt construct, an insert querry directed to

Kisii site

 PreparedStatement pstmt1

=connection1.prepareStatement(INSERT_QUERY1);

 // Initializing JDBC Drivers and Database site KisiiBranch, with user as root

 Connection connection2 = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/HeadOffice", "root", "");

 //Assigning UPDATE_QUERY to pstmt construct, an update querry

directed to Head office site

 PreparedStatement pstmt2

=connection2.prepareStatement(UPDATE_QUERY);

 //The for--loop, acting as a Data Manager

 for(int index = 1; index <= 5; index++) {

 //Sub-transaction-1: Inserting data into Table bankcustomers, residing in

Database NairobiBranch

pstmt.setInt(1,index);//Inserting data into first_column, CustomerID

66

pstmt.setString(2, "Customer_" + index);//Inserting data into Second_column,

CustomerName

pstmt.setString(3, "" + (4 + index));//Inserting data into Third_column, Address

pstmt.setString(4, "Nairobi");//Inserting data into Fourth_column, City

pstmt.setString(5, "25000");//Inserting data into Fifth_column, AccountBalance

pstmt.executeUpdate();// Executing the INSERT_QUERY

 pstmt.close();//Terminating Sub-Transaction-1

 connection.close();//Terminating database connection for Sub-Transaction-

 //Status of the voting in Database located at site, NairobiBranch

 System.out.println("--

-----------------------------");

 System.out.println("NAIROBI_BRANCH_VOTE

:TRANSACTION_COMMIT")

 //Sub-transaction-2: Inserting data into Table bankcustomers, residing in Database

KisiiBranch

pstmt1.setInt(1,index);//Inserting data into first_column, CustomerID

pstmt1.setString(2, "Customer_" + index);//Inserting data into Second_column,

CustomerName

 pstmt1.setString(3, "" + (4 + index));//Inserting data into Third_column, Address

pstmt1.setString(4, "Nairobi");//Inserting data into Fourth_column, City

pstmt1.setString(5, "25000");//Inserting data into Fifth_column, AccountBalance

pstmt1.executeUpdate();// Executing the INSERT_QUERY1

 pstmt1.close();//Terminating Sub-Transaction-2

connection1.close(); //Terminating database connection for Sub-Transaction-2

//Status of the voting in Database located at site, KisiiBranch

 System.out.println("---

--");

 System.out.println("KISII_BRANCH_VOTE :TRANSACTION_COMMIT");

67

 //Sub-transaction-3: Update data in Table bankcustomers, residing in Database

HeadOffice

 pstmt2.executeUpdate();// Executing the UPDATE_QUERY

 pstmt2.close();//Terminating Sub-Transaction-3

 connection2.close(); //Terminating database connection for Sub-Transaction-3

//Status of the voting in Database located at site, HeadOffice

 System.out.println("--

---");

 //

System.out.println("HEAD_PFFICE_VOTE :TRANSACTION_COMMIT");

 System.out.println("--

---------------------------------------");

 //Status of the Coordinator Decision

System.out.println("COORDINATOR_DECISION :GLOBAL_COMMIT");

 System.out.println("--

---------------------------------------");

btm.commit();//Transaction Manager Commits the Group of 3-Sub-Transactions

 System.out.println("---

--");

 btm.rollback();//Transaction Manager rollsback the Group of 3-Sub-Transactions

 }

 //Error_Handling if commit of the 3-Sub-Transactions is not possible

 }catch (Exception ex)

 {

 //ex.printStackTrace();

 btm.shutdown();//Transaction Manager is ShutDown

System.out.println("--

-----------------"); }}}

68

The above algorithm explains how a clustering algorithm is used to improve the

performance of 2PC.

To demonstrate the working of a clustering algorithm in Two-Phase Commit Protocol,

the above code was inserted with relevant fields like updating the three databases with

the same name such that they read the same information.

 To test their working all the five fields namely CustomerID, Costomer Name,address,

City and account balance was fed with information ,but initially they were inconsistent

with Nairobibranch and KisiiBranch having no account balance while headquarters had

accountbalance of Kshs. 7500.

This was achieved by creating an algorithm that would INSERT_QUERY in the two

branches.Thus Nairobibranch and Kisii branches used INSERT-QUERY AND INSERT-

QUERY1 to insert data to the fields and accountbalance to read Kshs.25000.

UPDATE_QUERY was used for headoffice to change the current balance of

Kshs.75000 to Kshs.25000.

For all the databases to read the same data information…the algorithm was run and all

the databases had the same account balance of Kshs.25000.

After running the file at bironix output indeed showed that transactions were

COMMTTED and all of them voted and it resulted to coordinator decision making a

GLOBAL COMMIT message as shown in the snippet below:-

INFO: recovery committed 0 dangling transaction(s) and rolled back 0 aborted transaction(s) on 0

resource(s) [] (restricted to serverId '127.0.0.1')

NAIROBI_BRANCH_VOTE :TRANSACTION_COMMIT

KISII_BRANCH_VOTE :TRANSACTION_COMMIT

HEAD_PFFICE_VOTE :TRANSACTION_COMMIT

COORDINATOR_DECISION :GLOBAL_COMMIT

Feb 15, 2015 8:39:42 PM bitronix.tm.twopc.Preparer prepare

69

From the above snippet it shows that all transactions agrred to vote as a group and voted

COMMIT therefore resulting to a GLOBAL-COMMIT.The above output was used to

demonstrate atomicity whereby only one table was used for all the three sites for

demonstration of what happens when a transaction is carried out on one person‟s

account. The Bankcustomer table had five fields namely CustomerID, Costomer

Name,address, City and Accountbalance with the same information across all sites,hence

the GLOBAL –COMMIT decision.

Had any of the sites or all of the sites failed to COMMIT the decision from the

coordinator would have been a GLOBAL-ABORT and the transactions would have been

“marked-rollback” by the birtonix transaction manager as shown in the snippet below.

This explains the clustering algorithm such that all sites agree to commit then they

commit as a group and if any of the sites has inconsistent data then all sites will agree to

rollback.This improves the efficiency of the current 2PC.

It is important to note that in a clustering algorithm all the transactions are grouped

together in one single coordinator and the coordinator decides whether to commit or

abort a transaction depending on the decision at participant‟s site. The transactions

commit or abort as a group.

The benefit of this is that it minimizes blocking of transactions that is the case in 2PC

whereby they keep waiting for coordinator to give direction on the next course of action.

If the coordinator is down participants will keep waiting until its recovery. This is

Feb 15, 2015 9:56:32 PM bitronix.tm.BitronixTransactionManager shutdown

INFO: shutting down Bitronix Transaction Manager

Feb 15, 2015 9:57:32 PM bitronix.tm.BitronixTransaction timeout

WARNING: transaction timed out: a Bitronix Transaction with GTRID

[3132372E302E302E310000014B8E99657300000000], status=MARKED_ROLLBACK, 0 resource(s) enlisted

(started Sun Feb 15 21:56:32 EAT 2015)

70

inefficient management of transactions. This has been overcome by making a common

decision as a group either to commit or abort. This does not leave participants in

uncertain state as demonstrated in fig 4.5.However in the current two-phase it is not

clear how two-phase commit is done as bitronix transaction manager only reports a

shutdown and no further information is provided as shown in appendix 1.

4.3.2 Connectivity based clustering algorithm in Two-Phase Commit Protocol

The approach adopted was the clustering of the nodes based on their connectivity. This

was done to address the extra overheads generated in 3PC while at the same time

addressing the blocking problem in 2PC caused by either coordinator or site failure,

which occasion network partitioning. The participants were designed as sub-classes and

the coordinator as the main Java class. The transaction manager was the Bitronix

transaction manager (BTM).

 Fig.4.2: Connectivity based clustering algorithm

In this approach, Java was used as the programming language because of its support for

inheritance and polymorphism, a key concept that was needed in distributed transactions

Yes

Coordinator

Nairobi Branch
Head Office

Kisii Branch

Participants

Method calling

Method calling

 Method calling

Main class

Sub-class Sub-class

Sub-class

71

handling. The sub-classes were designed for the three branches with the main class

being the coordinator. The concept of method calling was used by the main class to

execute the relevant participant transaction. Inheritance and polymorphism ensured that

the coordinator decisions were implemented differently by the participants (for example

the updating of different customer tables in distributed databases-Kisii, Nairobi and

Head office). In this arrangement, the participants need not wait for the other site(s) or

coordinator that is down. Instead, they either perform GLOBAL_COMMIT or

GOBAL_ABORT depending on the participant votes. This reduces communication

overheads due to the utilization of method calling and polymorphism which reduces

replication of the implementation process. In so doing, this approach brings in the 3PC

concept of non-blocking as a result of site or coordinator failure while at the same time

addressing the challenges of communication overheads.

The sub-section that follow give illustrations of how the model components

represented above were employed to achieve connectivity-based clustering algorithm

two phase commit protocol for optimizing distributed transactions failure.

4.3.3 Setup

Three laptop computers and an Ethernet switch were used to simulate the

developed connectivity-based clustering algorithm two phase commit protocol for

optimizing distributed transactions failure. The connections were done as demonstrated

in Figure 4.3 below.

72

Figure 4.3: Practical Implementation

As this figure above shows, one machine was designated as the Head office , another

one was designated as the Nairobi branch while the remaining one was designated as the

Kisii branch. The transaction manager, coordinator, resource adapter and resource

manager were all running in the head office, while data managers were executing in each

of the three branches. The procedures below were then used to achieve the efficient

distributed transactions handling.

4.4 Comparison of the transaction clustering algorithm with the current 2PC

To carry out a performance comparison between the current two phase commit protocol

and the developed transaction clustering algorithm, six parameters were used. These

included concurrency, blocking, coordinator failure, site failure, inconsistency and

efficiency.

Concurrency control was achieved in the new algorithm because it was demonstrated by

the results in Table 4.5 and Table 4.9 above. In table 4.5, all the sites voted

TRANSACTION_COMMIT, while in Table 4.9, none of the sites voted

TRANSACTION_COMMIT, implicitly meaning that they voted

TRANSACTION_ABORT. In fact, the line,

Head Office

Kisii Branch Nairobi Branch

73

WARNING: transaction timed out: a Bitronix Transaction with GTRID

[3132372E302E302E310000014B8E99657300000000],

status=MARKED_ROLLBACK, 0 resource(s) enlisted (started Sun Feb 15 21:56:32

EAT 2015)

Stresses this point, that is, the Bitronix Transaction Manager initiated a rollback. With

the current two phase commit protocol, it is not clear whether the sites voted

TRANSACTION_COMMIT or otherwise. The Bitronix Manager only indicates a

shutdown and no further information is given concerning the fate of these transactions.

One has therefore to manually check the databases to establish what transpired. This

observation can be made in the snippet taken below:

at

bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:123)

 at

bitronix.tm.resource.jdbc.PoolingDataSource.startRecovery(PoolingDataSource

.java:223)

 ... 6 more

Feb 15, 2015 8:01:14 PM bitronix.tm.BitronixTransactionManager shutdown

INFO: shutting down Bitronix Transaction Manager

Process completed.

This is a poor management of concurrent processes. There would have been a

communication whether it was a rollback, a commit or an abort.

Blocking was avoided in the new algorithm by having transactions clustered together

instead of partitioning them by use of the nested statement as evidenced in above

algorithms.

74

Try {……

 …} catch {……

 …}

When nested statements are used, there is a probability of one or more of the sites

committing or aborting independently. That is, the nested statement may turn true and

proceed to commit. Hence if rollback is not initiated properly, the other sites will be

blocked by this inconsistent state of this site, in their quest to obey the two phase commit

protocol requirement of atomicity. As it has already been stated, in the new algorithm,

all the transactions are clustered together, so that they either commit or abort as a single

entity, in line with the 2PC requirement of atomicity.

Moreover, efficiency is improved with the new transaction clustering approach. By

having sites taking a common decision via communication from the coordinator, there is

no need to wait for sites that are down or network partitioned. This was demonstrated by

the uniform TRANSACTION_COMMIT decisions and the implicit

TRANSACTION_ABORT. However, in the current 2PC that was demonstrated, it was

not clear how the voting happened; Bitronix transaction manager only reported a

shutdown and no further information is provided.

This could cause inefficiency as users need to struggle trying to figure out what might

have happened as even Bitronix never reported a rollback. Databases have to be checked

to see if commits or rollbacks happened. This is a typical inefficiency.

75

CHAPTER FIVE

5.0 SUMMARY CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter provides the summary, conclusions and recommendations emanating from

the research study findings. The possible future research areas in this field are also

given, which are believed, if properly implemented will seal the research gaps that were

identified in this research study.

5.2 Summary

The research on the simulation of a two phase commit protocol clustering algorithm for

optimizing distributed transaction failure was a success. The research objectives were:

To analyze the distributed transaction failures in two-phase commit protocol; to simulate

a transaction clustering algorithm for optimizing distributed transactions failure in two

phase commit protocol; and to compare the performance of the transaction clustering

algorithm with the current two phase commit protocol. All these objectives were

effectively achieved. To start with, distributed transaction failures in two-phase commit

protocol were demonstrated using Bitronix transaction manager. It was observed that

both site failure and coordinator failures are common in two-phase commit protocol. Site

failure occurred when a site was intentionally brought down so that it does not provide

in the voting process.

On the other hand, coordinator failure occurred when the coordinator poorly managed

the various transactions that it was meant to monitor to ensure their successful commit

or rollback. Secondly, a transaction clustering algorithm for overcoming distributed

transactions failure in two phase commit protocol was simulated using Jcreator IDE and

Bitronix transaction manager. It was shown to successfully solve the problem with the

current two-phase commit protocol, in that the sites committed and aborted as a group,

which is in line with the objectives of the two-phase commit protocol. It was shown that

when one site is down, the rest of the sites implicitly vote quit, hence no database

modification happens. However, when all sites are up, each one of them voted and the

three transactions committed successfully, modifying the database contents. With the

76

clustering algorithm, the coordinator was efficient in its transactions, in that all the

transactions either committed or aborted as a group. The last objective was to compare

the performance of the transaction clustering algorithm with the current two phase

commit protocol. It was shown that with the clustering algorithm, all the transactions are

grouped under a single coordinator. With this mechanism, all the transactions either

commit or rollback as a group. However with the current two phase commit protocol,

the transactions are partitioned in that in some situations, the various transactions may

commit as others abort, hence bringing on the problem of inconsistence.

The experimental research design, which was adopted for this study, proved successful.

It involved the practical design of the transaction clustering algorithm, using Jcreator

IDE. This algorithm was simulated, with mySQL acting as the backend data manager.

The data was Bitronix transaction manager, which provided the required management

feedback information on distributed transactions. It was then analyzed using the same

software and the status of database manipulations. The results obtained indicated that by

using the proposed algorithm, the site and coordinator transactions failures associated

with the current Two-Phase Commit can be sreduced. This was achieved by eliminating

transaction partitioning, which is an inherent feature of the current two phase commit

protocol. In a partitioned environment, blocking caused by the failure of the coordinator

when participants are in uncertain state is a common problem.

To counter this, the researcher clustered all the sub-transactions in a single sub-class and

used the principle of inheritance to obtain variables and methods from the main super-

class, which was the coordinator, by message passing and message calling. The

transaction manager was then employed to coordinate the execution activities of the

coordinator. Transaction commit or transaction roll back was then reported by the

transaction manager. By suing this approach, all the transactions in the sub-class either

commit in their entirety or fail in their entirety, which is in line with the principles of a

two phase commit protocol.

77

5.3 Conclusions

This research focused on site and coordination failures as common drawbacks in the

two-phase commit protocol. The developed algorithm had four distinct steps. The first

step was for the Coordinator to send a VOTE_REQUEST message to all participants, in

this case, all the data resources that were to be manipulated by the coordinator

transactions. When a participant received a VOTE_REQUEST message, it returned either

a VOTE_COMMIT message to the coordinator telling the coordinator that is prepared to

commit or a VOTE_ABORT message. Each participanst that voted for a commit waited

for the final reaction by the coordinator. If a participant received a GLOBAL_COMMIT

message, it locally committed the transaction else it aborted the local transaction. The

commit process was characterized by database update while the abort process left the

database unaltered, in accordance with the atomicity principle. All these were

accomplished in Jcreator IDE and mySQL database. The research objectives were

achieved as already stated above. The new algorithm had an improved performance in as

far as site failure and coordinator failures were concerned. It was shown that all

transactions committed or aborted and the databases were left in a consistency state after

a commit, or in unchanged state in case of a transaction abort process.

5.4 Recommendations and future works

Coordinator and site failure are common problems in the current two phase commit

protocol. As such, several efforts have been made to overcome them. The design of the

three phase commit protocol was meant to overcome these challenges by introducing an

extra phase, called the pre-commit phase. However, this approach is complicated to

implement, has more communication overheads and maintaining inconsistency towards

network partitioning is a serious problem. The developed algorithm has been shown to

solve the coordinator failure and site failures without introducing extra overheads, which

is a serious problem in three phase commit protocol. Moreover, the algorithm has been

shown to be ideal in maintaining consistency of the database and chances of partitioning

are rare because all transactions are clustered and hence either commit or rollback as a

78

group. Therefore the researcher recommends it adoption in distributed transaction

handling. The possible improvement areas include the design of this algorithm so that

the explicit TRANSACTION_COMMIT voting can be part of the responses received from

the participants. Moreover, there is need to implement this algorithm in other backbends,

such as SQL and oracle servers.

79

REFERENCES

Al-Houmaily, J. & Yousef , P. K.(2004). Chrysanthis:1-2 PC: The one-two phase atomic

commit protocol.

Amir, Y., Coan, B.A., Kirsch, J.& Lane, J.(2010). Byzantine Replication under Attack,

Proc. IEEE Int‟l Conf. Dependable Systems and Networks, pp. 105-144.

Andrew, S. & Tanenbaum, M. (2006). Distributed Systems: Principles and

Paradigms,2
nd

 ed. Maarten Van Steen.

Byun, T. & Moon, S.(2012). Non-blocking two-phase commit protocol to avoid

unnecessary transaction abort for distributed systems. Cheongryang 130-012

Seoul South Korea. Journal of Systems Architecture, 43(5), 245-254.

Cowling, J., Myers, D., Liskov, B., Rodrigues, R. & Shri, L.(2010). HQ Replication: A

Hybrid Quorum Protocol for Byzantine Fault Tolerance, Proc. Seventh Symp.

Operating Systems and Implementation, pp. 177-190.

Dollimore, J. G. Coulouris,, Kindberg T. (2007)”Distributed systems – Concepts and

Design”, fourth edition.

Fahd,S. Tarek, H. & Al-Otaibi, (2011). Dynamic Load-Balancing Based on a

Coordinator and Backup Automatic Election in Distributed Systems”,

International Journal of Computing and Information Sciences 9(1).

Gray, J. and Reuter, M.(2001)Minimizing the Number of Messages in Commit

 Protocols. Worhahop on Fundamental 1.v dues in Distributed Computing,

 Pala Mesa. 90-92.

Goebel, V. (2011) Distributed Database Systems, Department of Informatics,

University of Oslo.

80

Groote, F., & Willemse, T. A. C., (2005). Parameterized Boolean equation

systems,Theor.Comput. Sci., 343(3), 332–369

Groote, F., Mathijssen, A. ,Weerdenburg, M. & Usenko, S.(2008) From µCRL to

mCRL2: motivation and outline Electr. Notes Theor.Comput. Sci., 162, 191–196.

Jamuna, P., Sathiyadevi, S. & Tamilarasi, S. (2012). Backup Two Phase Commit

Protocol(B2PC)renders trustworthy coordination problem over distributed

transactions, International Journal for Advanced Research in Computer Science

and Software Engineering, 2(9).

Kitsuregawa, M. & Reddy, K. (2006) Reducing the blocking in two-phase commit with

backup site. Information Processing Letters, 86(1), 39-47.

Kotla, R., Alvisi, L., Dahlin,M., Clement, A. & Wong, E. (2010). Zyzzyva: Speculative

Byzantine Fault Tolerance, Proc. 21st ACM Symp. Operating Systems

Principles,pp. 45-58,Oct.2010.

Kumar, A, Y. & Ajay A. (2011). A Distributed Architecture for Transactions

Synchronization in Distributed Database Systems, International Journal on

Computer Science and Engineering 2(6).

Lomet, D. and Salzberg, B.(2003) Transaction-tirnc Databases. In Temporal

 Databases: Theory, UC- sign, and Implementation.89-99.

Manikandan, V., Ravichandran, R., Suresh, R., & Sagayaraj, F.(2012). An efficient Non-

blocking Two Phase Commit Protocol for Distributed Transactions 2(3), 778-

791.

MengQingyuan, W. & Haiyang, X. (2008). A New Model for Maintaining Distributed

Data Consistence, International Conference on Computer Science and Software

Engineering, IEEE 6(14).

81

Parul, Y., Singh,P., Amal S. & Sanchit L.(2011). An Extended Three Phase Commit

Protocol for concurrency control in Distributed Systems. International Journal

for computer applications, 21(10) .

Peng-Yeng Yin, P., Shiuh-Sheng, Y., Pei-Pei, W. & Yi-Te, W. (2006). A hybrid particle

swarm optimization algorithm for optimal task assignment in distributed

systems. Computer Standards & Interfaces, 28(4), 441-450.

Samaras, G., Britton, K., Citron, A., and Mo- han, C.(2003) Two-Phase Commit

 Optimirations and Tradeoffs in the Commercial Environment. Proc. Data

 Engineering Conference, Vienna,67-90.

Schapiro, R. & Milistein, R. (2012). Failure recovery in a distributed database system,"

in Proc. 1978COMPCONConf.,23(6)213-310

Syam Menon, S.(2005). Allocating fragments in distributed databases. IEEE

Transactions on Parallel and Distributed Systems16, 577-585.

Taibi, T., Abdelouahab, A., Wei Jiann, L., Yeong, F.& Ting Ng, C. (2006). Design and

Implementation of a Two-Phase Commit Protocol Simulator, The

international Arab Journal of Information Technology, 3(1).

Tanenbaum A, Van Steen M. (2007). Distributed systems – Principles and Paradigms,

2
nd

 ed.Armsterdam, The Netherlands: John Wiley and sons.

Taranum, F. Tabassum,K. & Damodaram A (2011). A Simulation of Performance of

Commit Protocols in Distributed Environment. in PDCTA, CCIS 203, pp. 665–

681, Springer.

82

APPENDICES

Appendix I:Current 2PC code to insert and retrieve data from the database

package TwoPCCoordinator;

 /*

 Author: Teresa Abuya, Msc (Computer Systems), Jkuat

 */

//Java imports for database connectivity

 import java.sql.DriverManager;

 import java.sql.Connection;

 import java.sql.PreparedStatement;

 import java.sql.SQLException;

 import java.text.DateFormat;

 import java.text.SimpleDateFormat;

 import java.sql.Statement;

 import java.sql.Connection;

 import java.sql.PreparedStatement;

 import java.sql.ResultSet;

//Bitronix Transaction manager imports for database transactions monitoring and control

 import bitronix.tm.BitronixTransactionManager;

 import bitronix.tm.TransactionManagerServices;

 import bitronix.tm.resource.jdbc.PoolingDataSource;

//end of imports

 //Declaration of the class, "Coordinator"

 public class Coordinator {

 //Constant constructs declaration and instantiation

83

 private static final String DATABASE="KisiiBranch";

 private static final String DB_DRIVER = "com.mysql.jdbc.Driver";

 private static final String DB_CONNECTION =

"jdbc:mysql://localhost:3306/customerdetails";

 private static final String DB_USER = "root";

 private static final String DB_PASSWORD = "";

 private static final String USER_NAME="Teresa";

 private static final String PASSWORD="Abuya";

 //Database querries instantiation

 private static final String INSERT_QUERY="insert into

Bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values (?,?,?,?,?)";

 private static final String INSERT_QUERY1="insert into

bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values (?,?,?,?,?)";

 private static final String UPDATE_QUERY="Update

bankcustomers SET AccountBalance='25000'";

// Beginning of main class

 public static void main(String[] argv) {

 //Setting of the database parameters

 PoolingDataSource mySQLDS=new PoolingDataSource();

mySQLDS.setClassName("com.mysql.jdbc.jdbc2.optional.MysqlXADataSource");

mySQLDS.setUniqueName("Coordinator");

mySQLDS.setMaxPoolSize(3);

 mySQLDS.getDriverProperties().setProperty("databaseName", DATABASE);

 //Bitronix transaction manager initialization

84

 BitronixTransactionManager btm

=TransactionManagerServices.getTransactionManager();

 //Transaction Clustering for Coordinator and site failure circumvention

 try {

 //Starting Bitronix transaction manager

 btm.begin();

 //Three Distributed databases are assumed, residing in Nairobi, Kisii and Head Office

 // Initializing JDBC Drivers and Database site NairobiBranch, with user as root

 Connection connection = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/NairobiBranch", "root", "

 //Assigning INSERT_QUERRY to pstmt construct, an insert querry directed to Nairobi

site

 PreparedStatement pstmt =connection.prepareStatement(INSERT_QUERY);

 //Initializing JDBC Drivers and Database site KisiiBranch, with user as root

 Connection connection1 = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/KisiiBranch", "root"

 // Assigning INSERT_QUERRY1 to pstmt construct, an insert querry directed to Kisii site

 PreparedStatement pstmt1 =connection1.prepareStatement(INSERT_QUERY1);

 //

 // Initializing JDBC Drivers and Database site KisiiBranch, with user as root

 Connection connection2 = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/HeadOffice", "root", "");

 //Assigning UPDATE_QUERY to pstmt construct, an update querry directed to

Head office site

 PreparedStatement pstmt2 =connection2.prepareStatement(UPDATE_QUERY);

85

 //The for--loop, its sub-transactions acting as Participants

 for(int index = 1; index <= 5; index++) {

 //Sub-transaction-1: Inserting data into Table bankcustomers, residing in

Database NairobiBranch

 pstmt.setInt(1,index);//Inserting data into first_column, CustomerID

pstmt.setString(2, "Customer_" + index);//Inserting data into Second_column, CustomerName

pstmt.setString(3, "" + (4 + index));//Inserting data into Third_column, Address

pstmt.setString(4, "Nairobi");//Inserting data into Fourth_column, City

pstmt.setString(5, "25000");//Inserting data into Fifth_column, AccountBalance

pstmt.executeUpdate();// Executing the INSERT_QUERY

pstmt.close();//Terminating Sub-Transaction-1

connection.close();//Terminating database connection for Sub-Transaction-1

 //Status of the voting in Database located at site, NairobiBranch

System.out.println("--

-------");

System.out.println("NAIROBI_BRANCH_VOTE :TRANSACTION_COMMIT");

 //Sub-transaction-2: Inserting data into Table bankcustomers, residing in Database

KisiiBranch

pstmt1.setInt(1,index);//Inserting data into first_column, CustomerID

pstmt1.setString(2, "Customer_" + index);//Inserting data into Second_column, CustomerName

 pstmt1.setString(3, "" + (4 + index));//Inserting data into Third_column, Address

pstmt1.setString(4, "Nairobi");//Inserting data into Fourth_column, City

pstmt1.setString(5, "25000");//Inserting data into Fifth_column, AccountBalance

pstmt1.executeUpdate();// Executing the INSERT_QUERY1 pstmt1.close();//Terminating Sub-

Transaction-2

86

connection1.close(); //Terminating database connection for Sub-Transaction-2

 //Status of the voting in Database located at site, KisiiBranch

 // System.out.println("--

---------------------------------");

 System.out.println("KISII_BRANCH_VOTE :TRANSACTION_COMMIT");

 //Sub-transaction-3: Update data in Table bankcustomers, residing in Database HeadOffice

 pstmt2.executeUpdate();// Executing the UPDATE_QUERY

 pstmt2.close();//Terminating Sub-Transaction-3

 connection2.close(); //Terminating database connection for Sub-Transaction-3

 //Status of the voting in Database located at site, HeadOffice

 System.out.println("--

---------------------------------");

 System.out.println("HEAD_PFFICE_VOTE :TRANSACTION_COMMIT");

 System.out.println("--

-------------------------------");

 //Status of the Coordinator

DecisionSystem.out.println("COORDINATOR_DECISION :GLOBAL_COMMIT");

 System.out.println("--

-------------------------------");

 btm.commit();//Transaction Manager Commits the Group of 3-Sub-Transactions

 btm.rollback();//Transaction Manager rollsback the Group of 3-Sub-Transactions

 //Error_Handling if commit of the 3-Sub-Transactions is not possible

 }catch (Exception ex) {

 //ex.printStackTrace();

 btm.shutdown();//Transaction Manager is ShutDown

 System.out.println("---

--");}}}

87

Appendix II: Coordinator Failure-Distributed Transactions And Distributed Data

Resource

Feb 15, 2015 8:01:13 PM bitronix.tm.BitronixTransactionManager logVersion

INFO: Bitronix Transaction Manager version 2.1.0

Feb 15, 2015 8:01:14 PM bitronix.tm.Configuration buildServerIdArray

WARNING: cannot get this JVM unique ID. Make sure it is configured and you only use ASCII

characters. Will use IP address instead (unsafe for production usage!).

Feb 15, 2015 8:01:14 PM bitronix.tm.Configuration buildServerIdArray

INFO: JVM unique ID: <127.0.0.1>

Feb 15, 2015 8:01:14 PM bitronix.tm.recovery.Recoverer recoverAllResources

WARNING: error running recovery on resource 'TwoPCCoordinatoFailureClass1', resource

marked as failed (background recoverer will retry recovery)

bitronix.tm.recovery.RecoveryException: cannot start recovery on a PoolingDataSource

containing an XAPool of resource TwoPCCoordinatoFailureClass1 with 0 connection(s) (0 still

available)

 at bitronix.tm.resource.jdbc.PoolingDataSource.startRecovery(PoolingDataSource.java:227)

 at bitronix.tm.recovery.Recoverer.recover(Recoverer.java:253)

 at bitronix.tm.recovery.Recoverer.recoverAllResources(Recoverer.java:223)

 at bitronix.tm.recovery.Recoverer.run(Recoverer.java:138)

 at bitronix.tm.BitronixTransactionManager.<init>(BitronixTransactionManager.java:64)

 at

bitronix.tm.TransactionManagerServices.getTransactionManager(TransactionManagerServices.j

ava:62)

88

 at TwoPCProtocol.TwoPCCoordinatorFailure1.main(TwoPCCoordinatorFailure1.java:31)

Caused by: java.sql.SQLException: Access denied for user ''@'localhost' (using password: NO)

 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1055)

 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:956)

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3558)

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3490)

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:919)

 at com.mysql.jdbc.MysqlIO.secureAuth411(MysqlIO.java:3996)

 at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:1284)

 at com.mysql.jdbc.ConnectionImpl.createNewIO(ConnectionImpl.java:2142)

 at com.mysql.jdbc.ConnectionImpl.<init>(ConnectionImpl.java:781)

 at com.mysql.jdbc.JDBC4Connection.<init>(JDBC4Connection.java:46)

 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)

 at

sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:3

9)

 at

sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorIm

pl.java:27)

 at java.lang.reflect.Constructor.newInstance(Constructor.java:513)

 at com.mysql.jdbc.Util.handleNewInstance(Util.java:406)

 at com.mysql.jdbc.ConnectionImpl.getInstance(ConnectionImpl.java:352)

89

 at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:284)

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:439)

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:137)

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:107)

 at

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource.getXAConnection(MysqlXADataSource.ja

va:47)

 at

bitronix.tm.resource.jdbc.PoolingDataSource.createPooledConnection(PoolingDataSource.java:

274)

 at bitronix.tm.resource.common.XAPool.createPooledObject(XAPool.java:283)

 at bitronix.tm.resource.common.XAPool.grow(XAPool.java:400)

 at bitronix.tm.resource.common.XAPool.getInPool(XAPool.java:379)

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:123)

 at bitronix.tm.resource.jdbc.PoolingDataSource.startRecovery(PoolingDataSource.java:223)

 ... 6 more

Feb 15, 2015 8:01:14 PM bitronix.tm.recovery.Recoverer run

INFO: recovery committed 0 dangling transaction(s) and rolled back 0 aborted transaction(s) on

0 resource(s) [] (restricted to serverId '127.0.0.1')

90

java.sql.SQLException: unable to get a connection from pool of a PoolingDataSource containing

an XAPool of resource TwoPCCoordinatoFailureClass1 with 0 connection(s) (0 still available) -

failed-

 at bitronix.tm.resource.jdbc.PoolingDataSource.getConnection(PoolingDataSource.java:201)

 at bitronix.tm.resource.jdbc.PoolingDataSource.getConnection(PoolingDataSource.java:207)

 at TwoPCProtocol.TwoPCCoordinatorFailure1.main(TwoPCCoordinatorFailure1.java:35)

Caused by: bitronix.tm.internal.BitronixRuntimeException: incremental recovery failed when

trying to acquire a connection from failed resource 'TwoPCCoordinatoFailureClass1'

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:103)

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:91)

 At bitronix.tm.resource.jdbc.PoolingDataSource.getConnection(PoolingDataSource.java:197)

... 2 more

Caused by: bitronix.tm.recovery.RecoveryException: cannot start recovery on a

PoolingDataSource containing an XAPool of resource TwoPCCoordinatoFailureClass1 with 0

connection(s) (0 still available)

 at bitronix.tm.resource.jdbc.PoolingDataSource.startRecovery(PoolingDataSource.java:227)

 at bitronix.tm.recovery.IncrementalRecoverer.recover(IncrementalRecoverer.java:62)

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:100)

 ... 4 more

Caused by: java.sql.SQLException: Access denied for user ''@'localhost' (using password: NO)

 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1055)

 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:956)

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3558)

91

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3490)

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:919)

 at com.mysql.jdbc.MysqlIO.secureAuth411(MysqlIO.java:3996)

 at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:1284)

 at com.mysql.jdbc.ConnectionImpl.createNewIO(ConnectionImpl.java:2142)

 at com.mysql.jdbc.ConnectionImpl.<init>(ConnectionImpl.java:781)

 at com.mysql.jdbc.JDBC4Connection.<init>(JDBC4Connection.java:46)

 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)

 at

sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:3

9)

 at

sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorIm

pl.java:27)

 at java.lang.reflect.Constructor.newInstance(Constructor.java:513)

 at com.mysql.jdbc.Util.handleNewInstance(Util.java:406)

 at com.mysql.jdbc.ConnectionImpl.getInstance(ConnectionImpl.java:352)

 at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:284)

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:439)

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:137)

92

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:107)

 at

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource.getXAConnection(MysqlXADataSource.ja

va:47)

 at

bitronix.tm.resource.jdbc.PoolingDataSource.createPooledConnection(PoolingDataSource.java:

274)

 at bitronix.tm.resource.common.XAPool.createPooledObject(XAPool.java:283)

 at bitronix.tm.resource.common.XAPool.grow(XAPool.java:400)

 at bitronix.tm.resource.common.XAPool.getInPool(XAPool.java:379)

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:123)

 at bitronix.tm.resource.jdbc.PoolingDataSource.startRecovery(PoolingDataSource.java:223)

 ... 6 more

java.sql.SQLException: unable to get a connection from pool of a PoolingDataSource containing

an XAPool of resource TwoPCCoordinatoFailureClass1 with 0 connection(s) (0 still available) -

failed-

 at bitronix.tm.resource.jdbc.PoolingDataSource.getConnection(PoolingDataSource.java:201)

 at bitronix.tm.resource.jdbc.PoolingDataSource.getConnection(PoolingDataSource.java:207)

 at TwoPCProtocol.TwoPCCoordinatorFailure1.main(TwoPCCoordinatorFailure1.java:62)

Caused by: bitronix.tm.internal.BitronixRuntimeException: incremental recovery failed when

trying to acquire a connection from failed resource 'TwoPCCoordinatoFailureClass1'

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:103)

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:91)

93

 at bitronix.tm.resource.jdbc.PoolingDataSource.getConnection(PoolingDataSource.java:197)

 ... 2 more

Caused by: bitronix.tm.recovery.RecoveryException: cannot start recovery on a

PoolingDataSource containing an XAPool of resource TwoPCCoordinatoFailureClass1 with 0

connection(s) (0 still available)

 at bitronix.tm.resource.jdbc.PoolingDataSource.startRecovery(PoolingDataSource.java:227)

 at bitronix.tm.recovery.IncrementalRecoverer.recover(IncrementalRecoverer.java:62)

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:100)

 ... 4 more

Caused by: java.sql.SQLException: Access denied for user ''@'localhost' (using password: NO)

 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1055)

 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:956)

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3558)

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3490)

 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:919)

 at com.mysql.jdbc.MysqlIO.secureAuth411(MysqlIO.java:3996)

 at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:1284)

 at com.mysql.jdbc.ConnectionImpl.createNewIO(ConnectionImpl.java:2142)

 at com.mysql.jdbc.ConnectionImpl.<init>(ConnectionImpl.java:781)

 at com.mysql.jdbc.JDBC4Connection.<init>(JDBC4Connection.java:46)

 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)

94

 at

sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:3

9)

 at

sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorIm

pl.java:27)

 at java.lang.reflect.Constructor.newInstance(Constructor.java:513)

 at com.mysql.jdbc.Util.handleNewInstance(Util.java:406)

 at com.mysql.jdbc.ConnectionImpl.getInstance(ConnectionImpl.java:352)

 at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:284)

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:439)

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:137)

 at

com.mysql.jdbc.jdbc2.optional.MysqlDataSource.getConnection(MysqlDataSource.java:107)

 at

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource.getXAConnection(MysqlXADataSource.ja

va:47)

 at

bitronix.tm.resource.jdbc.PoolingDataSource.createPooledConnection(PoolingDataSource.java:

274)

 at bitronix.tm.resource.common.XAPool.createPooledObject(XAPool.java:283)

 at bitronix.tm.resource.common.XAPool.grow(XAPool.java:400)

 at bitronix.tm.resource.common.XAPool.getInPool(XAPool.java:379)

95

 at bitronix.tm.resource.common.XAPool.getConnectionHandle(XAPool.java:123)

 at bitronix.tm.resource.jdbc.PoolingDataSource.startRecovery(PoolingDataSource.java:223)

 ... 6 more

Feb 15, 2015 8:01:14 PM bitronix.tm.BitronixTransactionManager shutdown

INFO: shutting down Bitronix Transaction Manager

Process completed.

96

Appendix III: Two Phase Commit Protocol With Transaction Clustering

package TwoPCCoordinator;

// Author: Teresa Abuya, Msc (Computer Systems), Jkuat

//Java imports for database connectivity

 import java.sql.DriverManager;

 import java.sql.Connection;

 import java.sql.PreparedStatement;

 import java.sql.SQLException;

 import java.text.DateFormat;

 import java.text.SimpleDateFormat;

 import java.sql.Statement;

 import java.sql.Connection;

 import java.sql.PreparedStatement;

 import java.sql.ResultSet;

 //Bitronix Transaction manager imports for database transactions monitoring

and control

 import bitronix.tm.BitronixTransactionManager;

 import bitronix.tm.TransactionManagerServices;

 import bitronix.tm.resource.jdbc.PoolingDataSource;

//end of imports

 //Declaration of the class, "Coordinator

97

 public class Coordinator {

 //Constant constructs declaration and instantiation

 private static final String DATABASE="KisiiBranch";

 private static final String DB_DRIVER = "com.mysql.jdbc.Driver";

 private static final String DB_CONNECTION =

"jdbc:mysql://localhost:3306/customerdetails";

 private static final String DB_USER = "root";

 private static final String DB_PASSWORD = "";

 private static final String USER_NAME="Teresa";

 private static final String PASSWORD="Abuya";

 //Database querries instantiation

 private static final String INSERT_QUERY="insert into

Bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values (?,?,?,?,?)";

 private static final String INSERT_QUERY1="insert into

bankcustomers(CustomerID,CustomerName,Address,City,AccountBalance)values (?,?,?,?,?)";

 private static final String UPDATE_QUERY="Update

bankcustomers SET AccountBalance='25000'";

 // Beginning of main class

 public static void main(String[] argv) {

 //Setting of the database parameters

 PoolingDataSource mySQLDS=new PoolingDataSource();

 MySQLDS.setClassName("com.mysql.jdbc.jdbc2.optional.MysqlXADataSource");

 mySQLDS.setUniqueName("Coordinator");

98

 mySQLDS.setMaxPoolSize(3);

 mySQLDS.getDriverProperties().setProperty("databaseName", DATABASE);

//Bitronix transaction manager initialization

 BitronixTransactionManager btm

=TransactionManagerServices.getTransactionManager();

 //Transaction Clustering for Coordinator and site failure circumvention

 try {

 //Starting Bitronix transaction manager

 btm.begin();

 //Three Distributed databases are assumed, residing in Nairobi, Kisii and Head Office

 // Initializing JDBC Drivers and Database site NairobiBranch, with user as root

 Connection connection = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/NairobiBranch", "root", "");

 //Assigning INSERT_QUERRY to pstmt construct, an insert querry directed to Nairobi site

 PreparedStatement pstmt =connection.prepareStatement(INSERT_QUERY);

//Initializing JDBC Drivers and Database site KisiiBranch, with user as root

 Connection connection1 = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/KisiiBranch", "root", "");

 // Assigning INSERT_QUERRY1 to pstmt construct, an insert querry directed to Kisii site

 PreparedStatement pstmt1 =connection1.prepareStatement(INSERT_QUERY1);

 // Initializing JDBC Drivers and Database site KisiiBranch, with user as root

 Connection connection2 = DriverManager.getConnection(

99

 "jdbc:mysql://localhost:3306/HeadOffice", "root", "");

 //Assigning UPDATE_QUERY to pstmt construct, an update querry directed to Head office

site

 PreparedStatement pstmt2 =connection2.prepareStatement(UPDATE_QUERY);

 //The for--loop, its sub-transactions acting as Participants

 for(int index = 1; index <= 5; index++) {

//Sub-transaction-1: Inserting data into Table bankcustomers, residing in Database

NairobiBranch

 pstmt.setInt(1,index);//Inserting data into first_column, CustomerID

pstmt.setString(2, "Customer_" + index);//Inserting data into Second_column, CustomerName

 pstmt.setString(3, "" + (4 + index));//Inserting data into Third_column, Address

 pstmt.setString(4, "Nairobi");//Inserting data into Fourth_column, City

 pstmt.setString(5, "25000");//Inserting data into Fifth_column, AccountBalance

 pstmt.executeUpdate();// Executing the INSERT_QUERY

 pstmt.close();//Terminating Sub-Transaction-1

 connection.close();//Terminating database connection for Sub-Transaction-1

 //Status of the voting in Database located at site, NairobiBranch

 System.out.println("--

-------------------");

 System.out.println("NAIROBI_BRANCH_VOTE

:TRANSACTION_COMMIT");

100

 //

 //Sub-transaction-2: Inserting data into Table bankcustomers, residing in Database

KisiiBranch

 //

 pstmt1.setInt(1,index);//Inserting data into first_column,

CustomerID

 pstmt1.setString(2, "Customer_" + index);//Inserting data into

Second_column, CustomerName

 pstmt1.setString(3, "" + (4 + index));//Inserting data into

Third_column, Address

 pstmt1.setString(4, "Nairobi");//Inserting data into

Fourth_column, City

 pstmt1.setString(5, "25000");//Inserting data into Fifth_column,

AccountBalance

 pstmt1.executeUpdate();// Executing the INSERT_QUERY1

 pstmt1.close();//Terminating Sub-Transaction-2

 connection1.close(); //Terminating database connection for Sub-Transaction-2

 //

 //Status of the voting in Database located at site, KisiiBranch

 //

 System.out.println("--

---------------------------------");

101

 System.out.println("KISII_BRANCH_VOTE :TRANSACTION_COMMIT");

 //

 //Sub-transaction-3: Update data in Table bankcustomers, residing in Database HeadOffice

 //

 pstmt2.executeUpdate();// Executing the UPDATE_QUERY

 pstmt2.close();//Terminating Sub-Transaction-3

 connection2.close(); //Terminating database connection for Sub-Transaction-3

 //Status of the voting in Database located at site, HeadOffice

System.out.println("HEAD_PFFICE_VOTE :TRANSACTION_COMMIT");

 //Status of the Coordinator Decision

 System.out.println("COORDINATOR_DECISION :GLOBAL_COMMIT");

 btm.commit();//Transaction Manager Commits the Group of 3-Sub-Transactions

 btm.rollback();//Transaction Manager rollsback the Group of 3-Sub-Transactions{

 //Error_Handling if commit of the 3-Sub-Transactions is not possible

 }catch (Exception ex){

 //ex.printStackTrace();

 btm.shutdown();//Transaction Manager is ShutDown

 System.out.println("---

--")}}}

