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ABSTRACT 

Computational Fluid Dynamics (CFD) based simulation procedures are considered to be 

an indispensable analysis and design tool in a wide and ever-increasing range of 

applications involving fluid flow. This work presents computational investigation of 

turbulent flow inside pipes of varying diameters. A computational fluid dynamics model 

of turbulent flow in the pipes is implemented with the help of ANSYS FLUENT 6.3.26 

software. Two Reynolds Averaged Navier Stokes Turbulent models; the k and k  

models are used for the simulation and the variation of axial velocity, skin friction 

coefficient and turbulent intensity along the length of the pipes is analyzed. The viscous 

boundary layer is expected to grow along the pipe starting at the inlet. It will eventually 

grow to fill the pipe completely (provided that the pipe is long enough). When this 

happens, the flow becomes fully-developed and there is no variation of the velocity profile 

in the axial direction. A closed-form solution to the governing equations can be obtained 

in the fully-developed region. The fluid used for this purpose is air and the pipe material is 

aluminium. The Reynold’s number is based on the pipe diameter and average velocity at 

the inlet and is taken as 10,000 for fully turbulent flow. The numerical results obtained 

from two models are compared with each other and validated against experimental data 

from the literature. Between the two models, the k-epsilon model was found to give better 

results.   
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CHAP TER ONE 

INTRODUCTION AND LITERATURE REVIEW 

1.0   INTRODUCTION  

Fluid flow is classified as external or internal depending on whether the fluid is 

forced to flow over a surface or in a conduit. The transport of fluid in a closed 

conduit is extremely important in daily operations. There is a wide variety of 

applications of flow in a pipe. For instance the hot and cold water used in our 

homes is pumped through pipes. Water in a city is distributed by extensive piping 

networks. Oil and natural gas are transported hundreds of miles through large 

pipelines. Blood is transported throughout our bodies by arteries and veins. In an 

engine, the cooling water is transported by hoses to the pipes in the radiator where 

it is cooled as it flows. Thermal energy in a hydronic space heating system is 

transferred to the circulating water in the boiler, and then it is transported to the 

desired locations through pipes. The analysis of pipe flow is also very important 

from the engineering point of view. 

Due to rigorous engineering application and implications, it is necessary to carry 

out an analysis on the nature of flow inside pipes and tubes. The objective of the 

present work is to investigate the nature of fully developed turbulent flow in a 

pipe computationally and to determine the various parameters such as skin 

friction coefficient, axial velocity, turbulent intensity and centerline velocity 

associated with it.  The fluid used for this purpose is air with Pr = 0.7. 



1.1  Turbu lence 

Turbulence is a phenomenon of fluid flow that occurs when momentum effects 

dominate viscous effects high Reynolds number Jurij (2007). Turbulence is 

characterized by random fluctuating motion of the fluid masses in three dimensions 

and is characterized by randomly fluctuating velocity fields at many distinct length 

and time scales. The fluctuating velocity fields manifest themselves as eddies or 

regions of swirling motion, Wilcox (2004). The free surface flow occurring in nature 

is almost always turbulent. Turbulent flow is irregular, random and chaotic. The 

flow consists of a spectrum of different scales (eddy sizes) where largest eddies are of 

the order of the flow geometry, Launder and Spalding (1972). At the other end of the 

spectra we have the smallest eddies which are by viscous forces dissipated into 

internal energy. Turbulent flow is dissipative, which means that kinetic energy in the 

small (dissipative) eddies are transformed into internal energy. The small eddies 

receive the kinetic energy from slightly larger eddies. The slightly larger eddies 

receive their energy from even larger eddies and so on. The largest eddies extract their 

energy from the mean flow. This process of transferred energy from the largest 

turbulent scales (eddies) to the smallest is called cascade process. 

1.2 Mechanism of internal flow 

The fluid body is of finite dimensions and is confined by the pipe walls. At the 

entry region to a pipe, the fluid develops a boundary layer next to the pipe walls, 

while the central "core" of the fluid may remain as a uniform flow. Within the 

boundary layer viscous stresses are very prominent, slowing down the fluid due to 
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its friction with the pipe walls. This slowdown propagates away from the walls. As 

the fluid enters the pipe the fluid particles immediately next to the walls are slowed 

down, these particles then viscously interact with and slow down those in the 

second layer from the wall, and so on. Downstream, the thickness of this boundary 

layer increases in the flow direction until the boundary layer reaches the pipe 

center and thus fills the entire pipe. The region from the pipe inlet to the point at 

which the boundary layer merges at the centerline is called the hydrodynamic 

entrance region, and the length of this region is called the hydrodynamic entry 

length. In the region beyond the entrance region, the velocity profile is fully 

developed and remains unchanged. The velocity assumes some average profile 

across the channel which is no longer influenced by any edge effects arising from 

the entrance region (see Figure 1).  

 

 

                              Figure1: Mechanism of internal flow 

 

 

 



1.3 Review of Literature 

In recent years, a large number of research analyses has been carried out on the 

internal flows. Taylor (1984) modeled the airflow through sampling pipes.  The 

study found out that for a steady incompressible fluid flow through a smooth pipe, 

the energy conservation equation can be used.  This equation is applicable to either 

laminar or turbulent flow. Cole (1999) investigated the disturbances to pipe flow 

regimes by jet induction to improve the available techniques to mathematically 

model the performance of aspirated smoke detection systems. The study showed 

that there is a significant area of uncertainty in determining the friction factor. He 

suggested that the assumption that the flow regime can be regarded as fully 

developed may not be true. Similar to the work carried out by Taylor (1984), Cole 

(1999) suggested that the energy losses in any pipe fitting can be broken down into 

three components: entry loss, exit loss and friction losses. Bloor (1964) investigated 

the flow around a circular cylinder between Reynolds’ number of 200 to 400 when 

turbulent motion starts to develop in the wake region of the flow. He observed that 

the transition of flow in the wake region is triggered by large-scale three-

dimensional structures. 

 Several studies have been done on the flow patterns in pipes by Mullin and 

Peixinho (2006), Sahu et al (2009), Willis et al (2008). Saho et al (2009) 

investigated the accuracy of numerical modelling of the laminar equation to 

determine the friction factor of pipe. . They found the friction factor to be 0.0151 

at the entrance length of 2.7068m. Banfi et al (1981) used a laser-Doppler 

velocimeter to investigate transitional pipe flow, in particular the behavior of the 
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velocity fluctuations as the Reynolds number was increased from 1500 to 4000. It 

was noted that the velocity fluctuations reached a maximum at a Reynolds number 

of about 2800 (in the transition region). Rudman et al (2002) compared results 

from experimental and numerical investigations of non–Newtonian fluids at 

transition to turbulence and in weakly turbulent flows. Experimental results 

showed flow features similar to turbulent puffs and slugs observed in Newtonian 

transitional flows. Numerical results showed some quantitative discrepancies with 

the experimental results but did show turbulence suppression, drag reduction and 

delayed transition as observed experimentally. Yogini (2010) carried out a 

numerical simulation of flow past a circular cylinder with large eddy simulation 

(LES) and RANS Shear-Stress Transport (SST) approaches for Reynolds 1000 and 

3900. The numerical results extracted from these simulations have good agreement 

with the experimental data of Zdravkovich (1997). ). Analysis of fully developed 

turbulent flow in a pipe using computational fluid dynamics was carried out by 

Bhandari D. and Singh S. (2012) and the results obtained computationally were in 

agreement with analytical results. 

The historical overview of the study of turbulence, begins with Leonardo da Vinci in 

the fifteenth Century. The first turbulence modelling is traced back to his drawings. 

Boussinesq (1877) introduced the idea of an eddy viscosity in addition to molecular 

viscosity. The hypothesis that ’turbulent stresses are linearly proportional to mean 

strain rates’ is still the cornerstone of most turbulence models.  



Reynolds’ Osborne (1895) experiments led to identification of the Reynolds number 

as the only physical parameter involved in transition to turbulence in a simple 

incompressible flow over a smooth surface. Following Reynolds’ introduction of the 

random view of turbulence and proposed use of statistics to describe turbulent flows, 

essentially all analyses are along these lines. Prandtl (1925) introduced the idea of a 

mixing length for determining the eddy viscosity. Taylor (1935) was the first 

researcher to utilize a more advanced level of mathematical rigor, and he introduced 

formal statistical methods involving correlations, Fourier transforms and power 

spectra tools for the analysis of homogeneous isotropic turbulence. 

Kolmogorov (1941) published three papers that provide some of the most important 

and most often quoted results of turbulence theory now referred to as the “K41 

theory”. The K41 theory provides two specific, testable results: the 3
2   law which 

leads directly to the prediction of a 3
5

K  decay rate in the inertial range of the 

energy spectrum, and the 5
4 law that is the only exact results for turbulence at high 

Re. Kolmogorov scale is another name for dissipation scales. These scales were 

predicted on the basis of dimensional analysis as part of the K41 theory. In addition, 

Kolmogorov (1942) developed the k  concept which provides the turbulent 

length scale, 


2
1k where 

1  is the turbulent time scale. Prandtl (1945) theorized an 

eddy viscosity which is dependent on turbulent kinetic energy. 

A number of new techniques were introduced beginning in the late 1950s with the 

work of Kraichnan (1958) who utilized mathematical methods from quantum field 

theory in the analysis of turbulence. Lorenz (1963) presented a deterministic solution 
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to a simple model of the Navier-Stokes equations By the beginning of the 1970s 

attention began to focus on more practical flows such as wall-bounded shear flows 

(especially boundary-layer transition), flow over and behind cylinders and spheres, 

jets, plumes, etc. From the standpoint of present-day turbulence investigations the 

most important advances of the 1970s and 80s were the computational techniques. 

The first of these was large-eddy simulation (LES) as proposed by Deardorff (1970). 

This was rapidly followed by the first direct numerical simulation (DNS) by Orszag 

and Patterson (1972), and introduction of a wide range of Reynolds-averaged Navier–

Stokes (RANS) approaches by Launder and Spalding (1972). By the beginning of the 

1990s computing power had reached a level to allow consideration of using LES for 

some practical problems involving sufficiently simple geometry.  

Many new approaches are being explored, especially for construction of the required 

subgrid-scale models. These include the dynamic models of Germano et al (1991) 

and Piomelli (1993). By far the most extensive work on two-equation models has 

been done by Launder and Spalding (1972). Launder’s k   model is the most 

widely used two-equation model. Launder and Sharma (1974) improved the k  

model and called it the standard k  model.  The first two-equation k   model 

was proposed by Kolmogorov (1942). After the initial development, many versions of 

the k  model were devised with some improvements by Saffman (1970), Wilcox 

and Alber (1972), Saffman and Wilcox (1974), Wilcox and Traci (1976), Wilcox 

and Rubesin (1980) and Wilcox (1998), Speziale et al (1990), Menter (1992) and 

Peng et al (1997). The k  model enjoys advantages over the k  model,  



especially for integrating through the viscous sub layer and for predicting effects of 

adverse pressure gradient.  

1.4 Statement of the problem 

In the studies cited above, one of the problems in fluid mechanics is the 

determination of the flow field represented by a circular cylinder. The study of 

wall shear turbulent velocity profiles is a basic subject in fluid mechanics. In 

particular, the study of turbulent velocity profiles in a pipe is one of the most 

important subjects in industrial flow applications. In this study we want to 

investigate the velocity profiles in different pipes and how the pipe diameter 

affects the velocity profile at a constant Reynolds number.  

1.5 General Research objectives 

To simulate and assess the performance of two-equation RANS models; k  and 

 k  model in predicting turbulent flow inside pipes of different diameters at a 

constant Reynolds’s number. 

1.6 Specific objectives 

(i).To computationally investigate the effect of turbulent flow inside pipes of      

different diameters for two models; k  and k  while maintaining a Reynolds’ 

number at 10,000. 

(ii).To investigate the effects of variation of centerline velocity, skin friction 

coefficient and turbulent intensity along the length of the pipes of different diameters 

for the two models on velocity profile. 
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(iii).To establish the relationship between turbulent intensity and axial velocity along 

pipes of different diameters. 

(iv).To obtain the best model for simulating turbulent pipe flow. 

1.7 Justification 

The flow in circular cylinders has been extensively studied due to its importance in 

many practical applications, such as fluid in body transport, pipelines, coolers, air 

conditioning systems, etc. The study of turbulent pipe flow is useful to engineers 

partly because most flows encountered in engineering practice and in nature are 

turbulent. Therefore it is a major goal for the industry to understand the fluid 

behavior and accurately predict the flow regime of fluids. In some situations the 

velocities in the whole enclosure are important in order to ascertain how flow 

conditions deviate with varying diameters. Accurate prediction is helpful for the 

analysis of pipe flow in industrial applications. The outcome of the present study 

will make a significant contribution to the theory of turbulent pipe flow by 

identifying the most suitable model for predicting the velocity of flow regime 

inside a circular pipe.    

1.8 Outline 

Chapter one briefly introduces the mechanism of internal flow and states the 

objectives and justification of the work. It also gives the literature review and history 

of Turbulence. 



Chapter two discusses the theoretical background of basic equations describing fluid 

motion. It  explains how CFD formulates these equations. By using those equations, 

the Navier-Stokes equations are derived. It also gives the definition of turbulence. 

In chapter three, the model description is presented. The classification of the models 

are discussed based on space filtering and time averaging. Different turbulence 

models such as the LES and the RANS models are explained with the suitability of 

each model in the applications of the flow in a circular cylinder. The last part of this 

chapter contains the information about law of the wall. 

Chapter four presents the numerical method used to solve the governing equations. It 

gives an overview of CFD. The method of solution for the overall solution is 

outlined. 

Chapter five presents work done on the flow in pipes of different diameters using 

RANS k and k  models at a constant Reynolds number. The results obtained 

are presented and discussed in this chapter. 

Chapter six focuses mainly on the conclusions, recommendations and 

suggestions for further study based on the objectives of the work. Titles and 

names of journals where this work has been published are also given.The list 

of references arranged in alphabetical order by name of the authors is given.  

The next chapter presents the equations fundamental to the analysis of fluid 

flow phenomena. 
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CHAPTER TWO 

GOVERN ING EQUATIONS   

2 .0  In troduction  

This chapter gives the general equations governing turbulent fluid flow. The Navier-

Stokes equations governing the flow have been used. In mid-18th century, the French 

engineer Claude Navier and the Irish mathematician George Stokes derived the well-

known equations of fluid motion, known as the Navier-Stokes equations. These 

equations have been derived based on the fundamental governing equations of fluid 

dynamics, called the continuity, the momentum and the energy equations, which 

represent the conservation laws of physics, Anderson (1995). 

2 . 1 Continuity equation 

The equation of continuity also known as the equation of conservation of mass is 

derived based on two fundamental principles namely; 

    i). that the rate of increase of mass in fluid element is equal to the net rate of      

flow of mass into the fluid element, White (1974);   

   ii).The continuum hypothesis which states that there are no empty spaces 

between particles that were in contact and that the fluid volume is not 

affected by an increase in pressure, that is, the flow is continuous.  



The equation can be expressed as: 

      0

















z
w

y
v

x
u

t


                                                                 (2.1) 

 or in vector notation 

  0

 udiv

t
                                 (2.2) 

Equation (2.2) is the unsteady, three-dimensional mass conservation or continuity 

equation at a point in a compressible fluid, Versteeg and Malalasekera (2007).  

For an incompressible fluid the density is constant and equation (2.2) 

becomes 

0udiv                                                                                                   (2.3) 

2.2 Momentum equation 

Equation of conservation of momentum is derived from Newton’s second law 

of motion which states that the net rate of momentum must be equal to the net 

forces acting on the fluid particle, Versteeg and Malalasekera (2007) 

The rates of increase of x-, y- and z-momentum are given by 

  

 
Mx

zxyxxx S
zyx

p
Dt
Du
















                                                   (2.4)    
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 

My
zyyyxy S
zy

p
xDt

Dv

















   

                                                    (2.5) 

 
Mz

yzzzxz S
yz

p
xDt

Dw

















                                                         (2.6)                   

2.3 Navier-Stokes equations for a Newtonian fluid 

The most useful forms of the conservation equation for fluid flows are obtained by 

introducing a suitable model for the viscous stresses ij . In many fluid flows the 

viscous stresses can be expressed as functions of the local deformation rate or strain 

rate, Versteeg and Malalasekera (2007).  In three dimensional flows, the local rate 

of deformation is composed of the linear deformation rate and the volumetric 

deformation rate. The rate of linear deformation of a fluid element has nine 

components in three dimensions, six of which are independent in isotropic fluid. 

They are denoted by the symbol ijs .In a Newtonian fluid the viscous stresses are 

proportional to the rates of deformation White (1974).  

The Navier-stokes equations can be written as 

  NxSugraddiv
x
p

Dt
Du





                                                                    (2.7)   

  NySvgraddiv
y
p

Dt
Dv





                                                               (2.8) 



  NzSwgraddiv
z
p

Dt
Dw





                                                 (2.9)  

Here the source terms NxS , NyS , and NzS  in the above equations include 

contributions due to body forces. By solving these equations, the pressure and 

velocity of the fluid can be predicted throughout the flow. 

To obtain the equations that govern the current problem, the following 

assumptions are made for the analysis: 

(i). steady flow 

(ii). Constant transport properties of fluid 

(iii). Incompressible fluid flow 

(iv). Newtonian fluid 

(v). continuum fluid. 

Turbulent models may be computed using several approaches: either by solving 

RANS equations with suitable models for turbulent quantities or by computing them 

directly. The main approaches are summarized in the next chapter. 
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CHAPTER THREE 

MATHEMATICAL FORMULATION 

3.0 Overview 

The equations presented in chapter two are general and can be applied to most 

fluid flow problems. However, before solving these equations a specific problem is 

posed and boundary conditions for the numerical procedure are presented. 

3.1 Model description 

In this chapter the set-up of a two-dimensional turbulent fluid flow in a pipe using 

fluent is illustrated. 

         

                          Fig ure 3 .1 :  Geometry o f th e probl em.   

Consider fluid (air) flowing through a circular pipe of varying diameters as 

illustrated in figure 3.1 above and a length of 20 m. The geometry is symmetric 

therefore only half portion of the pipe is modelled. Air enters from the inlet 

boundary with a constant velocity of 1 m/s, density ρ = 1 kg/ m3  and coefficient 



of viscosityµ (depending on pipe diameter).The fluid exhausts into the 

ambient atmosphere which is at a pressure of 1 atm. The Reynolds number based 

on the pipe diameter and average velocity at the inlet is: 

        Re 10000


uD  

where u is the average velocity at the inlet, which is 1 m/s in this case, D is the 

pipe diameter, ρ is the density and µ the fluid viscosity. At this Reynolds number, 

the flow is usually completely turbulent. 

Turbulent flows may be computed using several different approaches. Either 

by solving the Reynolds-averaged Navier-Stokes equations with suitable 

models for turbulent quantities or by computing them directly. The main 

approaches are summarized below. 

3.2 Classification of Turbulence models. 

Turbulent flows are characterized by velocity fields which fluctuate rapidly 

both in space and time. Since these fluctuations occur over several orders of 

magnitude it is computationally very expensive to construct a grid which directly 

simulates both the small scale and high frequency fluctuations for problems of 

practical engineering significance. Two methods can be used to eliminate the 

need to resolve these small scales and high frequencies: Filtering and Time 

averaging Jones and Clarke (2008) 
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Figure 3.2 (a): Turbulence models classification 

Figure 3.2 (a) presents the overview of turbulence models commonly 

available in CFD. Generally, simulations of flow can be done by filtering or 

averaging the Navier-Stokes equations. 

3 . 2 . 1  S pa ce  F i l t e r in g  

The main idea behind this approach is to filter the time-dependent Navier-

Stokes equation in either Fourier space or configuration space. A simulation 

using this approach is known as a Large Eddy Simulation (LES).The filtering 

process creates additional unknown terms which must be modeled in order to provide 

closure to the set of equations. These terms are the sub-grid scale stresses and 

several models for these stresses. The simplest of these is the model originally 

proposed by Smagorinsky (1963) in which the sub-grid scale stresses (SGS) are 

computed using an isotropic eddy viscosity approach. The eddy viscosity is then 



calculated from an algebraic expression involving the product of a model 

constant SC , the modulus of the rate of strain tensor, and an expression involving the 

filter width. The problem with this approach is that there is no single value of the 

constant SC  which is universally applicable to a wide range of flows, Jones and 

Clarke (2008). 

3 . 2 . 2  T i m e  a v e ra g i n g  

In the Time averaging or Reynolds averaging approach all flow variables are divided 

into a mean component and a rapidly fluctuating component and then all equations 

are time averaged to remove the rapidly fluctuating components. In the Navier-

Stokes equation the time averaging introduces new terms which involve mean values 

of products of rapidly varying quantities. These new terms are known as the Reynolds 

Stresses, and solution of the equations initially involves the construction of suitable 

models to represent these Reynolds Stresses, Wilcox (2004).  There are two sub 

categories for time averaging approach: Eddy-viscosity models (EVM) and Reynolds 

stress models (RSM). 

3.2.3 Eddy-viscosity models 

One assumes that the turbulent stress is proportional to the mean rate of strain. 

Furthermore eddy viscosity is derived from turbulent transport equations (usually k 

plus one other quantity). 
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 Zero equation model: - The mixing length model is a zero equation models based 

on Reynolds averaged Navier-Stokes equations. It  is one of the oldest turbulence 

model which was developed in the beginning of this century. We assume the 

kinematic turbulent viscosity t , which can be expressed as a product of a turbulent 

velocity scale  and a turbulent length scale  , Zevenhoven (2009). 

 Cvt                                                                                                                  (3.1) 

where C is a dimensionless constant of proportionality. And the dynamics turbulent 

viscosity is given by 

  Ct   

The kinetic energy of turbulence is contained in the largest eddies and turbulence 

length scale  . For such flows it is correct to state that, if the eddy length scale is  , 

y
Uc



                                                                                                               (3.2) 

 Where c is a dimensionless constant and 
y
U

  is the mean velocity gradient. 

Combining equations (3.1) and (3.2) and absorbing the two constants C and c into a 

new length scale m  we obtain   

                
y
U

mt 


 2                                                                                              (3.3)                  



This is Prandtl’s mixing length model. This model is easy to implement and cheap in 

terms of computing resources. Also it is good to predict thin shear layers like jets, 

mixing layers, wakes and boundary layers. The mixing length model is completely 

incapable of describing flows with separation and recirculation. It only calculates 

mean flow properties and turbulent shear stress. 

One equation models: - The Spalart-Allmaras model is one equation turbulence 

model because it solve a single transport equation that determines the turbulent 

viscosity. This is in contrast to many of the early one-equation models that solve an 

equation for the transport of turbulent kinetic energy and require an algebraic 

prescription of a length scale. The Spalart-Allmaras model also allows for reasonably 

accurate predictions of turbulent flows with adverse pressure gradients. Furthermore, 

it is capable of smooth transition from laminar to turbulent flow at user specified 

locations. The Spalart-Allmaras model is an empirical equation that models 

production, transport, diffusion and destruction of the turbulent viscosity, Blazek 

(2001). The Spalart-Allmaras model is suitable for aerospace applications involving 

wall-bounded flows and in the turbo machinery applications. In complex geometries 

it is difficult to define the length scale, so the model is unsuitable for more general 

internal flows. 

Two equation models: - Two equation turbulence models are one of the most 

common type of turbulence models. Models like the k model and the k  

model have become industry standard models and are commonly used for most 

types of engineering problems. By definition, two equation models include two extra 
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transport equations to represent the turbulent properties of the flow. One of the 

transported variables is the turbulent kinetic energy, and the second transport 

variable varies depending on what type of two-equation model it is. Common 

choices are the turbulent dissipation   or the specific dissipation , Wilcox (2004).  

3.2.4 Reynolds stress models 

The Reynolds stress model (RSM) is the most elaborate type of turbulence model. 

The RSM closes the Reynolds-averaged Navier-Stokes equations by solving transport 

equations for the Reynolds stresses, together with an equation for the dissipation 

rate. This means that five additional transport equations are required in 2D flows, in 

comparison to seven additional transport equations solved in 3D. Since the RSM 

accounts for the effects of streamline curvature, swirl, rotation, and rapid changes in 

strain rate in a more rigorous manner than one-equation and two-equation models, it 

has greater potential to give accurate predictions for complex flows, ANSYS 

FLUENT 12.1 Theory Guide, (2010). 

 Extent of modeling for certain CFD approaches for turbulence are illustrated in 

Figure 3.2 (b). It is clearly seen that the DNS and the LES models are computing 

fluctuation quantities resolve shorter length scales than models solving RANS 

equations. Hence they have the ability to provide better results. However they have a 

demand of much greater computer power than those models applying RANS 

methods Bell, (2003).  



   

        Figure 3.2 (b): Extend of modelling for certain types of turbulence models 

3.3 Reynolds averaged Navier-Stokes equations 

The basic tool required for the derivation of the Reynolds-averaged Navier-Stokes 

(RANS) equations from the instantaneous Navier–Stokes equations is the Reynolds 

decomposition. Reynolds decomposition refers to separation of the flow variables 

into the mean component and the fluctuating component. The following rules 

which govern time averages of fluctuating properties    and    

and their summation, derivatives and integrals will be useful while deriving the 

RANS equations: 

0

0











 


 dsds
ss

                             (3.4)
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In addition, div and grad are both differentiations, the above rules can be extended 

to a fluctuating quantity aAa   and its combinations with a fluctuating 

scalar   , ANSYS FLUENT 12.1 Theory Guide, (2010). 

       




graddivgraddiv

adivAdivadivadivAdivadiv



 ;;
                               (3.5) 

Consider the instantaneous continuity and Navier-Stokes equations in a Cartesian 

co-ordinate system so that the velocity vector U has x-component u, y-component 

v and z-component w: 

0udiv                                                                                                               (3.6) 

    ugraddiv
x
puUdiv

t
u










 1

                                                           (3.7) 

    vgraddiv
y
pvUdiv

t
v 









 1

                                                            (3.8) 

    wgraddiv
z
pwUdiv

t
w 









 1

                                                         (3.9) 

This system of equations governs every turbulent flow, but  the effect of 

fluctuations on the mean flow using the Reynolds decomposition in equations 

(3.6), (3.7), (3.8) and (3.9) and replacing the flow variables U and p  by the sum 

of a mean and fluctuating component gives; 



  

Then the time average is taken, applying the rules stated in equations (3.6) and 

(3.7). Considering the continuity equation (3.8), Udivudiv  . This yields the 

continuity equation for the mean flow: 

0Udiv                                                                                                        (3.10) 

A similar process is applied on the x-momentum equation (3.9). The time 

averages of the individual terms in this equation can be written as follows:   

     

     Ugraddivugraddiv
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
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
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,11

,
 

Substitution of these results gives the time-average x-momentum equation 

      Ugraddiv
x
PvudivuUdiv

t
U










 1                                  (3.11) 

Repetition of this process on equations (3.8) and (3.9) yields the time-average y- 

and z-momentum equations: 

      Vgraddiv
y
PuvdivvUdiv

t
V 









 1                                      (3.12) 
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      Wgraddiv
z
PuwdivwUdiv

t
W










 1                                 (3.13) 

The process of time averaging has introduced new terms (the third terms) in the 

resulting time-average momentum equations. These terms are a product of 

fluctuating velocities and are associated with convective momentum transfer due to 

turbulent eddies. Putting these terms on the right hand side of equations (3.11), 

(3.12) and (3.13) reflects their role as additional turbulent stresses on the mean 

velocity components U, V and W: 

                   (3.14) 

                    (3.15) 

                (3.16) 

The extra stress terms have been written out as follows. They result from six 

additional stresses among of three normal stresses    

   
 

 

 

 

; 
 



, ,                                                   (3.17) 

and three shear stresses 

    , ,            (3.18) 

These extra turbulent stresses are called the Reynolds stresses. The normal stresses 

involve the respective variances of the x-, y- and z-velocity fluctuations. They are 

always non-zero because they contain squared velocity fluctuations Wilcox (2004).  

The shear stresses contain second moments associated with correlations between 

different velocity components, Wilcox (2004). If two fluctuations velocity 

components, e.g. u and v  are independent random fluctuations, the time average 

vu   would be zero. The equation set (3.10), (3.14), (3.15) and (3.16) is called the 

Reynolds-averaged Navier-Stokes equations. 

3.3.1 Standard k model 

The Standard  k  model, Launder and Spalding (1974) is the most widely used 

complete RANS model and it is incorporated in most commercial CFD codes, 

Tannehill et al (1997). In this model, the model transport equations are solved for 

two turbulence quantities i.e. k  and . 

The k  turbulence model solves the flow based on the assumption that the rate of 

production and dissipation of turbulent flows are in near-balance in energy transfer, 
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Ferrey and Aupoix (2006).  k  and  is used to define velocity scale  and length 

scale   representative of the large scale turbulence as follows: 

                                             


2
3

2
1 kk    

where k  is turbulent kinetic energy and   is the dissipation of turbulent kinetic 

energy. This is then related to the turbulent viscosity t  based on the Prandtl mixing 

length model, ANSYS FLUENT 12.1 Theory Guide, (2010). 


 

2kCCt                                                                                             (3.19) 

The governing transport equations for k  and  of the standard k -  model are as 

follows: 
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                (3.21)    

where the first term denotes the rate of change of k  or . The second and third terms 

display the transport of k or   by convection and diffusion respectively, Versteeg 

and Malalasekera (2007). The last two terms describe the rate of production and 

destruction of k  or   respectively. 



Physically, the rate of change of kinetic energy in equation (3.20) is related to the 

convection and diffusion of the mean motion of the flow. The diffusion term can be 

modeled by the gradient diffusion assumption as turbulent momentum transport is 

assumed to be proportional to mean gradients of velocity. The production term, 

which is responsible for the transfer of energy from the mean flow to the turbulence, 

is counterbalanced by the interaction of the Reynolds stresses and mean velocity 

gradient. The destruction term deals with the dissipation of energy into heat due to 

viscous nature of the flow Zevenhoven Ron (2009).The equations (3.19) to (3.21) 

contains five adjustable constants:   21 ,,,, CandCC k . Based on extensive 

examination of a wide range of turbulent flows, the constant parameters used in the 

equations take the following values; 

92.1;44.1,;30.1,;00.1;09.0 21    CandCC k         (3.22) 

where  Prandtl numbers  andk  connect to diffusivities of andk . According 

to ANSYS FLUENT 12.1 Theory Guide (2010), the standard k model has 

gained popularity among RANS models due to the following; 

Robust formulation, it is one of the earliest two-equation models widely 

documented, reliable and affordable, has lower computational overhead and 

excellent performance for many industrially relevant flows. However, the model 

encounters some difficulties in failing to resolve flows with large strains such as 

swirling flows and curved boundary layers flow. It also has poor performance in 

rotating flows. 
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 3.3.2 Standard k  model 

Wilcox (1988) developed the standard k  two-equation model. The standard 

k  model is very similar in structure to the k  model but the variable   is 

replaced by the dissipation rate per unit kinetic energy . The length scale is 

/k , Wilcox (2004). The eddy viscosity is given as; 

 kt                                                                                                               (3.23) 

The transport equations for andk  in standard k  model are 
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where term the first term denotes the rate of change of ork  in the both 

equation (3.24) and equation (3.25). In addition, the second and third terms 

display the transport of ork  by convection and diffusion respectively, Wilcox 



(2004). The fifth and sixth terms describe the rate of production and destruction of 

ork  respectively. 

The model constants are as follows; 

09.0075.0;533.0;0.2;0.2 11    andk            (3.26) 

The replacement with the variable   allows better treatment in solving the flow 

near wall. Near to the wall, the boundary layer is affected by viscous nature of the 

flow. A very refined mesh is necessary to appropriately resolve the flow, ANSYS 

FLUENT 12.1 Theory Guide, (2010). Although the near wall treatment of 

standard k model saves a vast amount of computer power, it is not sufficient 

to represent complex flow accurately. In the standard k  formulation, the 

flow near wall is resolved directly through the integration of the   equation. The 

advantage of the standard k  model compared to the standard k model is 

that the   equation is more robust and easier to integrate compared to the   

equation without the need of additional damping functions. 

3.3.3 Shear-Stress Transport (SST) k  model 

The Shear-Stress Transport (SST) k  model was developed to effectively 

blend the robust and accurate formulation of the k  model in the near-wall 

region with the free-stream independence of the k  model in the far field, 

Menter (1994). To achieve this, the k  model is converted into a k  

formulation, ANSYS FLUENT 12.1 Theory Guide, (2010). The SST k  
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model is similar to the standard k  model, but includes the following 

refinements: 

The standard k  model and the transformed k  model are both multiplied 

by a blending function and both models are added together. The blending function 

is designed to be one in the near-wall region, which activates the standard k  

model, and zero away from the surface, which activates the transformed k  

model. The SST model incorporates a damped cross-diffusion derivative term in 

the   equation. The definition of the turbulent viscosity is modified to account for 

the transport of the turbulent shear stress and the modelling constants are different. 

The Reynolds stress computational and the k equation are the same as in standard 

k  model, but the   equation is transformed into an   equation by 

substituting  k . This yields 
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                                                                                                                           (3.27) 

These terms are same as those in equation (3.25) in standard k  model except 

the last term. The last term is called the cross-diffusion term, which arises during the 



 k  transformation of the diffusion term in the  equation, Versteeg and 

Malalasekera (2007). The model constants are as follows; 

09.0083.0;44.017.1;0.2;0.1 222,1,    andk
                                                                                                             (3.28) 

Here, blending functions are used to achieve a smooth transition between standard 

k  and transformed k  models. Blending functions are introduced in the 

equation to modify the cross-diffusion term and are also used for model constants 

that take value 1C for the original k  model and value 2C in Menter’s 

transformed k  model. 

  21 1 CFCFC cc                                                                                            (3.29) 

where cF  is the blending function. The functional form of cF  is chosen so that it is 

zero at the wall, tends to unity in the far field and  produces a smooth transition 

around a distance half way between the wall and edge of the boundary layer, 

Versteeg and Malalasekera (2007). The SST k  model is more accurate and 

reliable for a wider class of flows like, adverse pressure gradient flows, airfoils, 

transonic shock waves than the standard k  model, Menter (1994). 

 

3.4 The law of the wall 

Turbulent flows are significantly affected by the presence of walls. Obviously, the 

mean velocity field is affected through the no-slip condition that has to be satisfied at 



 

33 
 

the wall. However, the turbulence is also changed by the presence of the wall in non-

trivial ways. Close to the wall the flow is influenced by viscous effects and does not 

depend on free stream parameters. The mean flow velocity only depends on the 

distance y from the wall, fluid density   and viscosity   and the wall shear stress 

w  , Wilcox (2004).  

So 

 wyfU  ,,,  

Dimensional analysis shows that  
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                                                                              (3.30) 

Equation (3.30) is called the law of the wall and contains the definitions of two 

important dimensionless groups    
u and 

y .   Here  wu  is called friction 

velocity.  

The k  models, the RSM, and the LES model are primarily valid for turbulent 

core flows and will not predict correct near-wall behavior if integrated down to the 

wall. Therefore, it is necessary to make these models suitable for wall-bounded 

flows. The Spalart-Allamas and k  models were designed to be applied 

throughout the boundary layer, provided that the near-wall mesh resolution is 



sufficient. Numerous experiments have shown that the near-wall region can be 

largely subdivided into three layers. 

1. Linear or viscous sub-layer:- the fluid layer i n  contact with  a smooth wall  

At the solid surface the fluid is stationary. Turbulent eddying motions must stop 

very close to the wall and the behavior of the fluid closest to the wall is dominated 

by viscous effects. The viscous sub-layer is in practice extremely thin ( 5y ) and 

assume that the shear stress is approximately constant and equal to the wall shear 

stress w . After some simple algebra and making use of the definitions of  u  and 

y  this leads to 

  yu                                                                                                                 (3.31) 

Due to the linear relationship between velocity and distance from the wall, the fluid 

layer adjacent to the wall is also known as the linear sub-layer. 

2. Log-law layer: - the turbulent region close to a smooth wall 

Outside the viscous sublayer a region exists where viscous and turbulent effects 

are both important. The shear stress  varies slowly with distance from the wall, 

Wilcox (2004) and within this inner region it is assumed to be constant and equal to 

the wall shear stress.  

Relationship between u  and y  that is dimensionally correct is given by: 
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     EyIn
k

ByIn
k

u 11
                                                                            (3.32) 

Here, Von karman’s constant k = 0.4 and the additive constant B = 5.5 or ( E  = 

9.8) for smooth wall, wall roughness cause a decrease in the value of B. The value of 

k and B are universal constants valid for all turbulent flows past smooth walls at high 

Reynolds number. Equation (3.32) is often called the log-law, and the layer where 

y  takes values between 30 and 500 is the log-law layer. 

3. Outer layer: - the inertia-dominated region far from the wall 

Experimental measurements show that the log-law is valid in the 

region 2.002.0  
y

. For larger values of y the velocity-defect law provides the 

correct form, ANSYS FLUENT 12.1 Theory Guide, (2010). In the overlap region 

the log-law and velocity-defect law have to equal and overlap is obtained by 

assuming the following logarithmic form: 

AyIn
ku
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t
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1max
                                                                                  (3.33) 

where A is a constant. The velocity-defect law is often called the law of the wake. 



 

      Figure 3.3: Subdivisions of the Near-Wall region. 

From Fig.3.3 we can say that the turbulent boundary layer adjacent to a solid 

surface is composed of two regions, Versteeg and Malalasekera  (2007): 

(a).The inner region: 10-20% of the total thickness of the wall layer; the shear 

stress is constant and equal to the wall shear stress w . Within this region there 

are three zones: the linear sub-layer: viscous stresses dominate the flow 

adjacent to surface, the buffer layer: viscous and turbulent stresses are of 

similar magnitude, the log-law layer: turbulent stresses dominate. 

(b).The outer region or law-of-the-wake layer: inertia-dominated core flow far 

from wall; free from direct viscous effects. 

In the next chapter, the numerical method used to solve the governing 

equations is presented. The principles of CFD and brief details of the 

simulation are discussed. 
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CHAPTER FOUR 

 METHODOLOGY. 

4.0 INTRODUCTION. 

 Flow in pipes has been the subject of both experimental and numerical studies for 

decades. This flow is very sensitive to the changes of Reynolds number, a 

dimensionless parameter representing the ratio of inertia force to viscous force in a 

flow. To realize the objectives of this work, a computational fluid dynamics (CFD) 

model of fully developed turbulent flow in a pipe is implemented with the help of 

ANSYS FLUENT 6.3.26 software using two turbulence models namely: The k  

and k models. Fluent software was used to plot the characteristics of the flow 

and gambit software was used to design the 2D model. In this section, the principles 

of the CFD with its components are presented. 

4.1 Overview of Computational Fluid Dynamics (CFD) 

CFD uses numerical methods and algorithms to solve and analyze problems that 

involve flows by using computers, Tannel et al (1997). The working principle of 

CFD is based on three elements; the pre-processor, solver and post processor. 

Pre-processor: Pre-processor consists of the input of the flow problem to a CFD 

program by means of an operator friendly interface and the subsequent 

transformation of this input into a form suitable for use by the solver. The region 



of fluid to be analyzed is called the computational domain and it is made up a 

number of discrete elements called the mesh (or grid) 

Solver: Solver calculates the solution of the CFD problem by solving the 

governing equations. The equations governing the fluid motion are Partial 

Differential Equations (P.D.E) made up of combinations of flow variables (e.g. 

Velocity and pressure) and derivatives of these variables. Computers cannot 

directly produce a solution of it. Hence the P.D.E’s must be transformed into 

algebraic equations, Wilcox (2004). This process is known as numerical 

discretization. There are four methods for it; (i). Finite difference (ii) Finite 

element method (iii). Finite volume method and (iv).Spectral method. The finite 

difference and finite volume method both produce solutions to the numerical 

equations at a given point based on the values of the neighboring points, whereas 

the finite element produces equations for each element independently of all other 

elements. In the current work ANSYS FLUENT 6.3.26 which is based on finite 

volume method is used for the simulation. 

Post-processor: It is used to visualize and quantitatively process the results from 

the solver part. In a CFD package, the analyzed flow phenomena can be presented 

in vector plots or contour plots to display the trends of velocity, pressure, kinetic 

energy and other properties of the flow.  

The following figure shows the schematic view of the CFD: 



 

39 
 

 

                          Figure 4.1: Overview of the CFD 

4.1.1 Pre-analysis 

A turbulent flow exhibits small-scale fluctuations in time. It is usually not possible 

to resolve these fluctuations in a CFD calculation. So the flow variables such as 

velocity, pressure, etc. are time-averaged. Unfortunately, the time-averaged 

governing equations are not closed. (that is, they contain fluctuating quantities 

which need to be modeled using a turbulence model.) No turbulence model is 

currently available that is valid for all types of flows and so it is necessary to 

choose and fine-tune a model for particular classes of flows. 



The k-ε and k  models consist of two differential equations: one each for the 

turbulent kinetic energy k, turbulent dissipation ε and specific dissipation . These 

two equations have to be solved along with the time-averaged continuity, 

momentum and energy equations. 

4.1.2 Reynolds number 

This is denoted by Re and is defined as the ratio of inertial to viscous forces. Flow in 

a circular cylinder varies with the Reynolds number. Small Reynolds number 

corresponds to slow viscous flow where frictional forces are dominant. When 

Reynolds number increases, flows are characterized by rapid regions of velocity 

variation and the occurrence of vortices and turbulence. Mathematically, Reynolds 

number of the flow around a circular cylinder is represented by, 

    
uD

Re   

where D is the diameter of the cylinder, u is the inlet velocity of the flow,   is a 

density of fluid and   is the dynamic viscosity of fluid. 

Experimental study of the flow in a circular cylinder has identified regions where 

significant patterns of flow occur as the Reynolds number changes, especially when 

the flow changes from laminar to turbulent state. Generally, the following regimes 

have been identified from experiment, Zdravkovich (1997) as: 

Stable range 40  <  Re  <  150 
Transition range 150  <  Re  <  300 
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Irregular range 300  <  Re  < 200000 
  

 

Flow becomes very irregular with instabilities beyond Reynolds number of 200,000. 

Another dominant feature of the flow in a circular cylinder is the three-dimensional 

nature of the flow.  

4.2. Turbulent velocity profile 

Except for flows of very viscous fluids in small diameter ducts, internal flows 

generally are turbulent. As noted in the relation of shear stress distribution in fully 

developed pipe flow in turbulent flow there is no universal relationship between 

the stress field and the mean velocity field. Thus for turbulent flows, we are forced 

to rely on experimental data. The velocity profile for turbulent flow through a 

smooth pipe may be approximated by the empirical power-law equation 

n

R
r

U
u

1

1 





                                                                                                       (4.1) 

Where the exponent (n) varies with the Reynolds number. Data from Hinze (1984) 

suggests that the variation of power-law exponent n with Reynolds number (based 

on pipe diameter D and centerline velocity U for fully developed flow in smooth 

pipe is given by 

log8.17.1 n Re                                                                                            (4.2) 



for Re > 2x104. 

Velocity profiles for n=6 and n=10 are shown below. The parabolic profile for 

fully developed laminar flow is included for comparison. It is clear that the 

turbulent profile has a much steeper slope near the wall. 

     

 Figure 4.2: velocity profiles for fully developed flow 

4.3 Computational details 

In the current work, RANS models such as the k model and the k  model 

have been chosen to test the suitability and the applicability of the models on the 

flow in pipes for Reynolds number of 10000. The RANS models used here employ a 

finite volume method (FVM). The brief details of the simulations are as follows: 

4.3.1 Mesh definition 

A structured quadrilateral mesh is employed in these simulations. Structured mesh is 

generated using ANSYS GAMBIT 2.3.16, the grid generation component of AN-

SYS Fluent 6.3.26, and then imported into ANSYS Fluent. Figure 4.3 displays the 
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mesh generation in the computational domain. Near to the cylinder wall, very fine 

mesh is required to resolve boundary layer separation. Quadrilateral cells form the 

grid structures around the cylinder. To obtain reason-able mesh size for the 

computational procedure to fully resolve the viscous sub layer, it is necessary to 

place at least a few cells within y+ < 5 and to have y+ ≈ 1 for the first cell adjacent 

to the cylinder, ANSYS FLUENT 12.1 Theory Guide (2010). Accordingly, a block-

structured mesh type is generated in a rectangular domain. 

In order to solve for the flow solution, the geometry is created and meshed in 

Gambit which is the preprocessor for Fluent.  Since the flow is axisymmetric, the 

geometry is a rectangle. A 100 x 60 mesh (i.e. 100 divisions in the axial direction 

and 60 divisions in the radial direction) is used to give a fine meshing and increase 

accuracy. 

A smaller grid spacing near the wall is used to resolve the much higher gradient 

near the wall for a turbulent flow. For each vertical edge, the division length next 

to the wall is specified as 0.001 and the total number of divisions is 60. Part of the 

grid is as shown below; 



 

Figure 4.3:  Grid along the cylinder 

4.4 Boundary conditions 

The boundary types for the solution domain shown in figure 4.4 are as follows: 

Longitudinal uniform velocities of 1m/s are introduced at the inlet to correspond to 

Reynolds number of 10,000. In addition, at the inlet the relative turbulent intensity 

is equal to 5%. The outlet boundary is defined with an average static reference 

pressure of 0 Pa. A stationary wall (no-slip) boundary condition is prescribed on 

the top wall of the cylinder, where velocity increases from zero at the wall surface 

to the free stream velocity away from the surface. On the bottom wall, a symmetry 

boundary condition is applied. In the model, a wall function approach is used for 

near- wall treatment. This is specified in GAMBIT as summarized in figure 4.5 

below: 
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                          Fig 4.4: Boundary types   

4.5 Simulation set-up 

The numerical solution of the flow is obtained using ANSYS Fluent 6.3.26. In  

this 2D-code, discretization is done based on a finite volume approach. In this 

section the various CFD code settings and options are summarized. A steady and 

pressure based solver is used. A least square cell based method is used to calculate 

gradients. Boundary conditions and different discretization schemes are used 

depending on the turbulence model. They are summarized in Table 1 below. A 

convergence criteria of 1 . 0 x10 - 6  is set for these simulations. 

 

 

 

 

 



Table 1: Simulation settings for flow in a pipe with RANS models 

  
 Simulation type                                2D, Steady 

 Space                                                Axisymmetric 

 Solver                                               Double precision, pressure based, and implicit 

 Temporal discretization                     2nd order 

 Turbulence model                            k  / k model 

 Pressure                                            Standard 

 Pressure-velocity coupling               SIMPLE 

 Momentum                                       2nd order upwind 

 Turbulent kinetic energy                  2nd order upwind 

 Turbulent dissipation rate                2nd order upwind 

       (for k model)  

Specific dissipation rate                    2nd order upwind 

       (for k model) 

Convergence criteria                         1x10-6 

 

Boundary conditions: 

 Inlet                                                 Velocity inlet 

 Outlet                                              Pressure outlet 

 Top wall                                          No-slip wall 

 Bottom wall                                    Axis        

 

4.5.1 Wall Functions 

Wall functions are a collection of semi-empirical formulas and functions that in 

effect bridge "or link" the solution variables at the near-wall cells and the 

corresponding quantities on the wall. The wall functions comprise: 
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Laws-of-the-wall for mean velocity and temperature (or other scalars) and 

formulas for near-wall turbulent quantities. Depending on the choice of turbulent 

model, ANSYS FLUENT offers three to four choices of wall-function approaches: 

Standard Wall Functions, Non-Equilibrium Wall Functions, Enhanced Wall 

Functions (as a part of EWT) and User-Defined Wall Functions. 

The standard wall functions in FLUENT are based on the proposal of Launder and 

Spalding (1974), and have been most widely used for industrial flows. They are 

provided as a default option in FLUENT. 

The law-of-the-wall for mean velocity yields 

   EyIn
k

U 1                                                                                                       (4.3) 
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                                                                                              (4.5) 

is the dimensionless distance from the wall and   

k   = von Karman constant (= 0.4187) 

E  = empirical constant 

PU  = mean velocity of the fluid at the near wall node P 

Pk      =   turbulence kinetic energy at the near wall node P 



Py   = distance from point P 

  = dynamic viscosity of the fluid     

The logarithmic law for mean velocity is known to be valid for 30 <   y + < 300. In 

FLUENT, the log-law is employed when y +  > 11:225. 

When the mesh is such that y + < 11:225 at the wall-adjacent cells, FLUENT 

applies the laminar stress-strain relationship that can be written as 

 U + =   y +                                                                                                            (4.6) 

In FLUENT, the laws-of-the-wall for mean velocity and temperature are based on 

the wall unit, y + These quantities are approximately equal in equilibrium turbulent 

boundary layers. 

4.5.2 Enhanced Wall Treatment 

Enhanced Wall Treatment is used to get a more accurate result. In FLUENT’s 

near-wall model, the viscosity-affected near-wall region is completely resolved all 

the way to the viscous sublayer. The two-layer approach is an integral part of the 

enhanced wall treatment and is used to specify both  and the turbulent viscosity in 

the near wall cells. In this approach the whole domain is subdivided into a 

viscosity- affected region and a fully turbulent region. The demarcation of the two 

regions is determined by a wall-distance based, turbulent Reynolds number Re 

defined as 


 kyeR                                                                                                          (4.7)                                 
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where y is the normal distance from the wall at cell centers. In FLUENT, y is 

interpreted as the distance to the nearest wall: 

                                                                                           (4.8) 

where 


r is the position vector at the field point, and wr


 is the position vector on 

the wall boundary. w  is the union of all wall boundaries involved. This 

interpretation allows y to be uniquely defined in flow domains of complex shape 

involving multiple walls. Furthermore, y defined in this way is independent of the 

mesh topology used, and is definable even on unstructured meshes. In the fully 

turbulent region, the k  models or the RSM are employed. In the viscosity-

affected near-wall region the one-equation model is employed. The two-layer 

formulation for turbulent viscosity is used as part of the enhanced wall treatment, 

in which the two-layer definition is smoothly blended with the high-Reynolds-

number t definition from the outer region, as proposed by Jongen (1992) 

    ttt    1                                                                                        (4.9) 

where t  is the high-Reynolds-number definition. A blending function,  , is 

defined in such a way that it is equal to unity far from walls and is zero very near 

to walls. The blending function chosen is 
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                                                                           (4.10) 



The constant A determines the width of the blending function. By defining a width 

such that the value of   will be within 1% of its far-field value given a variation 

of yRe the result is 

 
)98.0tanh(

Re yA


                                                                                                  (4.11) 

Typically, yRe would be assigned a value that is between 5% and 20% of *Re y . 

The main purpose of the blending function   is to prevent solution convergence 

from being impeded when the k  solution in the outer layer does not match 

with the two-layer formulation. 

The  field is computed from 

      





2
3k

                                                                                                         (4.12)   

The length scales that appear in Equation (4.12) are computed from Chen and Patel 

(1988) that is: 

 


Ayeyc /Re1                                                                                     (4.13) 

 If the whole flow domain is inside the viscosity-affected region (Rey < 200),   is 

not obtained by solving the transport equation; it is instead obtained algebraically 

from Equation 4.12, FLUENT uses a procedure for the   specification that is 

similar to the turbulent viscosity blending in order to ensure a smooth transition 

between the algebraically-specified   in the inner region and the   obtained from 

solution of the transport equation in the outer region. 

The constants in the length scale formulas, Equation (4.13) are taken from Chen 

and Patel (1988):  
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 cAkCc 2,4
3

                                                                                      (4.14)  

4.5.3 Standard Wall Functions 

To have a method that can extend its applicability throughout the near-wall region 

(i.e., laminar sublayer, buffer region, and fully-turbulent outer region) it is 

necessary to formulate the law-of-the wall as a single wall law for the entire wall 

region. FLUENT achieves this by blending linear (laminar) and logarithmic 

(turbulent) laws-of-the-wall using a function suggested by Kader (1981): 

  turblam ueueu
1

                                                                                         (4.15) 

where the blending function is given by: 
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where a = 0:01 and b = 5. 

Similarly, the general equation for the derivative 

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This approach allows the fully turbulent law to be easily modified and extended to 

take into account other effects such as pressure gradients or variable properties. 

This formula also guarantees the correct asymptotic behavior for large and small 

values of y+ and reasonable representation of velocity profiles in the cases where 

y+ falls inside the wall buffer region (3 < y+ < 10). 



The enhanced wall functions were developed by smoothly blending an enhanced 

turbulent wall law with the laminar wall law. The enhanced turbulent law-of-the-

wall for compressible flow with heat transfer and pressure gradients has been 

derived by combining the approaches of White and Cristoph (1971) and Huang et 

al (1993): 
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where 
sy  is the location at which the log-law slope will remain  fixed. By default, 


sy  = 60. The coefficient   in Equation (4.20) represents the influences of 

pressure gradients while the coefficients   and   represent thermal effects. 

Equation (4.19) is an ordinary differential equation and FLUENT will provide an 

appropriate analytical solution. If  ,  and   all equal 0, an analytical solution 

would lead to the classical turbulent logarithmic law-of-the-wall. 
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The boundary condition for turbulence kinetic energy is the same as for standard 

wall functions. However, the production of turbulence kinetic energy kG is 

computed using the velocity gradients that are consistent with the enhanced law-

of-the wall ensuring a formulation that is valid throughout the near-wall region. 

4.5.4 Turbulence 

In the k  models and in the RSM (if the option to obtain wall boundary 

conditions from the k equation is enabled), the k equation is solved in the whole 

domain including the wall-adjacent cells. The boundary condition for k imposed at 

the wall is 

0


n
k                                                                                                                (4.23) 

where n is the local coordinate normal to the wall. 

The production of kinetic energy Gk and its dissipation rate   at the wall-adjacent 

cells, which are the source terms in the k equation, are computed on the basis of 

the local equilibrium hypothesis. Under this assumption, the production of k and its 

dissipation rate are assumed to be equal in the wall-adjacent control volume. 

Thus, the production of k is computed from, ANSYS FLUENT 12.1 Theory Guide, 

(2010): 

pp

w
wwk

ykCky
UG

2
1

4
1




 




                                                                          (4.24) 

and  is computed from    
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The   equation is not solved at the wall-adjacent cells, but instead is computed 

using equation (4.25). The wall boundary conditions for the solution variables, 

including mean velocity, temperature, k, and , are all taken care of by the wall 

functions. The standard wall functions described so far are provided as a default 

option in FLUENT. The standard wall functions work reasonably well for a broad 

range of wall-bounded flows. However, they tend to become less reliable when the 

flow situations depart too much from the ideal conditions that are assumed in their 

derivation. Among others, the constant shear and local equilibrium hypotheses are 

the ones that most restrict the universality of the standard wall functions. 

Accordingly, when the near-wall flows are subjected to severe pressure gradients, 

and when the flows are in strong non-equilibrium, the quality of the predictions is 

likely to be compromised. 

4.5.5 Discretization 

FLUENT uses a control-volume-based technique to convert the governing 

equations to algebraic equations that can be solved numerically. This control 

volume technique consists of integrating the governing equations about each 

control volume, yielding discrete equations that conserve each quantity on a 

control-volume basis. Discretization of the governing equations can be illustrated 

most easily by considering the steady-state conservation equation for transport of a 

scalar quantity . This is demonstrated by the following equation written in 

integral form for an arbitrary control volume V as follows: 
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 


V
dVSAdAdv                                                              (4.26) 

where 

  density 




v velocity vector  Dinjviu 2ˆˆ   




A surface area vector 

 diffusion coefficient for   

 gradient of 
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



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 Dinjyix 2ˆˆ   

S source of  per unit volume 

Equation (4.26) is applied to each control volume, or cell, in the computational 

domain. The two-dimensional, triangular cell shown in Figure 4.6 is an example of 

such a control volume. Discretization of equation (4.26) on a given cell yields  
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where 

facesN              = number of faces enclosing cell 

f                   = value of   convected through face f 

fvf Aff




 = mass flux through the face 

fA


               = area of face f,  DinjAiAA yx 2ˆˆ   

 n              = magnitude of   normal to face f  



V                     = cell volume 

The equations solved by FLUENT take the same general form as the one given 

above (4.27) and apply readily to multi-dimensional, unstructured meshes 

composed of arbitrary polyhedra. By default, FLUENT stores discrete values of 

the scalar   at the cell centers (c0 and c1 in Figure 4.6). However, face values f  

are required for the convection terms in Equation (4.27) and must be interpolated 

from the cell center values. This is accomplished using an upwind scheme. 

Upwinding means that the face value f  is derived from quantities in the cell 

upstream, or “upwind," relative to the direction of the normal velocity nv  in 

equation (4.27). The diffusion terms in equation (4.27) are central-differenced and 

are always second order accurate. 

                           

              Figure 4.5: Control Volume used to illustrate Discretization 

4.5.6 Second-Order Upwind Scheme 

When second-order accuracy is desired, quantities at cell faces are computed using 

a multidimensional linear reconstruction approach Barth and Jespersen (1989). In 

this approach, higher-order accuracy is achieved at cell faces through a Taylor 

series expansion of the cell-centered solution about the cell centroid. Thus when 
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second-order upwinding is selected, the face value f  is computed using the 

following expression: 

 

where   and   are the cell-centered value and its gradient in the upstream cell, 

and 


 s  is the displacement vector from the upstream cell centroid to the face 

centroid. This formulation requires the determination of the gradient   in each 

cell. This gradient is computed using the divergence theorem, which in discrete 

form is written as 

                                                                                    (4.28) 

Here the face values f
~  are computed by averaging   from the two cells adjacent 

to the face. Finally, the gradient   is limited so that no new maxima or minima 

are introduced. 

4.5.7 Pressure-Velocity Coupling 

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) family of 

algorithms. Patankar (1980) is used for introducing pressure into the continuity 

equation. Pressure-velocity coupling is achieved by deriving an equation for 

pressure from the discrete continuity equation. The coupled solver in FLUENT 

solves the governing equations of continuity, momentum and (where appropriate) 

energy and species transport simultaneously as a set, or vector of equations. 



The system of governing equations for a single-component fluid, written to 

describe the mean flow properties, is cast in integral, Cartesian form for an 

arbitrary control volume V with differential surface area dA as follows: 

                                                    (4.29) 

where the vectors  W, F and G are defined as: 

                                 (4.30) 

and the vector H contains source terms such as body forces and energy sources. 

Here  , v, E, and p are the density, velocity, total energy per unit mass, and 

pressure of the fluid, respectively.  is the viscous stress tensor, and q is the heat 

flux. 

For all flows, FLUENT uses the gauge pressure internally. Any time an absolute 

pressure is needed, it is generated by adding the operating pressure (101,325 Pa) to 

the gauge pressure. The (absolute) pressure at the outlet is 1 atm. Since the 

operating pressure is set to 1 atm, the outlet gauge pressure = outlet absolute 

pressure - operating pressure = 0. 

4.5.8 Convergence 

Starting with excessively crude initial guesses for mean and turbulence quantities 

may cause the solution to diverge. A safe approach is to start your calculation 
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using conservative (small) under-relaxation parameters and (for the coupled 

solvers) a conservative Courant number, and increase them gradually as the 

iterations proceed and the solution begins to settle down. 

 For faster convergence you start with reasonable initial guesses for the k and   (or 

k and ) fields. Particularly when the enhanced wall treatment is used, it is 

important to start with a sufficiently developed turbulence field in order to avoid 

the need for an excessive number of iterations to develop the turbulence field. The 

convergence criteria has been set for the k and  equations and k and  in addition 

to the equations of continuity and momentum. 

FLUENT reports a residual for each governing equation being solved. The residual 

is a measure of how well the current solution satisfies the discrete form of each 

governing equation. We'll iterate the solution until the residual for each equation 

falls below 1x 10-6.  

4.5.9 Providing an Initial Guess for k -   and k -  

For flows using one of the k  models, or one of the k  models,  the 

converged solutions or (for unsteady calculations) the solutions after a sufficiently 

long time has elapsed should be independent of the initial values for k and   (or k 

and  ). For better convergence, however, it is beneficial to use a reasonable initial 

guess for k and   (or k and ).The initial guess is constant over the flow domain 

and equal to the values at the inlet: axial velocity (1m/s), radial velocity (0 m/s), 

gauge pressure (0 pa). The Turbulent Kinetic Energy and Dissipation rate/Specific 



Dissipation rate are set from prescribed values for the Turbulent intensity (5%) and 

hydraulic/pipe diameter at the inlet.  

In general, it is recommended to start from a fully-developed state of turbulence. 

When using the enhanced wall treatment for the k  model it is important to 

specify fully-developed turbulence fields. Specifying reasonable boundary 

conditions at the inlet, helps in the computation of the initial values for k and   (or 

k and ) in the whole domain from these boundary values. 

Analysis of fluid flow using RANS k  and k models at a constant Reynolds 

number of 10,000 is presented in the next chapter. A comparison of results 

obtained from the CFD simulation are presented and discussed. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.0 Overview 

In this chapter, the results of the simulations are presented followed by a 

discussion at each step. The simulations are carried out for Reynolds number of 

10,000.The solutions of the model are obtained by first converting the Partial 

Differential Equations into algebraic equations. FLUENT is then used to output the 

required profiles. The various parameters such as centerline velocity, skin friction 

coefficient, outlet velocity profile and turbulent intensity and have been 

investigated with each turbulence model for various pipe diameters (D). In the 

present study the simulations are compared against experimental results of 

Bhandari and Singh (2012). Besides these previous works, a number of 

formulations and analytical results have been discussed in various books. The 

expression defining the velocity distribution in a pipe flow across turbulent flow is 

derived and demonstrated in Bejan (1994).  The relationships defining friction in 

pipes have been demonstrated in White (1994). 

In this section results with D = 0.25m, D = 1m, D=5m and D = 10m respectively 

are presented. For this purpose two different models: the k and the k  

model are used.  



5.1 Grid    

Here all simulations have been done using a grid which contains 6000 quadrilateral 

cells. The detailed information is given below:                         

        

                                       Figure 5.1: Grid size                    

     

5.2 Residuals: 

The residual is a measure of how well the current solution satisfies the discrete 

form of each governing equation being solved. We iterate the solution until the 

residual for each equation falls below 1 x 10-6. 
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(i)                              

     

                                                                               (ii) 



 

                                                                                            (iii)                                                                                                                                                                   

 

                                                                                                 (iv) 

Figure 5.2 (a): Residuals: (i) D = 0.25m   (ii) D = 1m (iii) D = 5m and (iv) D = 
10m for k model 
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                                                                                                      (i)    

                

                                                                                     (ii)                                                  



    

                                                                           (iii)   

       

                                                                                (iv)                                                                                                                             

Figure 5.2 (b): Residuals (i) D = 0.25m   (ii) D= 1m   (c) D=5m (iv) D = 10m for 
k model                                                                                                  
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 The residuals fall below the specified convergence criterion of 1 x 10-6 after a 

number of iterations. Actual number of convergence steps varies slightly in the two 

models for the corresponding diameters. In the k model, pipe with diameter 

0.25m converges after 927 iterations, diameter 1m after 691 iterations, diameter 

5m after 781 iterations and diameter 10m after 912 iterations. Using the 

k model they converge after 771, 585, 684 and 756 iterations respectively.  

The number of iterations for the two models shows a similar pattern, but the k  

model converges faster for all the pipes. The small difference between the number 

of iterations in the two models is due to the different value of their diffusion model 

constant. The k  model enjoys advantages over the k  model,  especially for 

integrating through the viscous sub layer and for predicting effects of adverse 

pressure gradient.  

5.3  Plotting  y+ values for wall-adjacent cells 

The wall y+ is a non-dimensional number similar to local Reynolds number, 

determining whether the influences in the wall-adjacent cells are laminar or 

turbulent, hence indicating the part of the turbulent boundary layer that they 

resolve. Figure 5.3 shows the results obtained from the two models. 



   
Figure 5.3 (a): Wall y+: (i) D = 0.25m (blue)   (ii) D = 1m (green) (iii) 
D = 5m (red) and (iv) D = 10m (black) for k model                                                      

 

Figure 5.3 (b): Wall y+: (i) D = 0.25m (blue)   (ii) D = 1m (green) (iii) D = 5m 
(red) and (iv) D = 10m (black) for k model                                                                                    
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There is a sharp drop in the y+ values for all the three pipes at the inlet. In Fig 5.3 

(a), the y+ value of Pipe with diameter 0.25m drops from 2.00 to 1.30 a distance of 

2m from the inlet after which it remains constant up to the outlet. Pipe with 

diameter 1m has a y+ value which drops from 0.7 to 0.35 at the inlet. The y+ values 

for pipe with diameter 5m and 10m drops slightly from 0.2 and 0.1 to 0.05 where it 

is maintained up to the outlet.           

In Fig.5.3 (b), (i), the y+ value of Pipe with diameter 0.25m drops sharply from 2.0 

to 1.2 a distance of 0.5m from the inlet after which it increases slightly and drops 

again to 1.2 up to the outlet. Pipe with diameter 1m has a y+ value which drops 

sharply from 0.7 at the inlet to 0.3 .A slight increase follows 2m away from the 

inlet up to 0.35 where it remains steady throughout the pipe. The y+ values for pipe 

with diameter 5m and 10m drops slightly from 0.22 and 0.12 respectively at inlet 

then it is maintained at 0.05 and 0.07 respectively up to the outlet.  

For all cases the y + is seen to be less than 5, therefore the near-wall grid resolution 

is acceptable. This means that we can resolve the turbulent eddies down into the 

viscous sub layer. For all the four pipes it can be observed that there are no 

changes in these profiles with time, that is away from the inlet. A larger initial y+ 

value is as a result of the role played by distortions of the inlet velocity profile and 

finite amplitude disturbances due to entry effects. Scalable wall functions activate 

the usage of the log law in regions where the y+ is sufficiently small in conjunction 

with the standard wall function approach in coarser y+ regions. A smaller overall 



mesh count in pipes with smaller diameters leads to faster run times and this 

explains the slightly higher y+ values. The cross-stream width of the region over 

which changes take place is small compared to any length scale in the flow 

direction.  

The k  turbulence model is primarily valid away from walls and special 

treatment is required to make it valid near walls. The near-wall model is sensitive 

to the grid resolution which is assessed in the wall unit y+. A very fine mesh is 

require near the wall to resolve the turbulent eddies in the boundary layer. To use a 

wall function approach for a particular turbulence model, we need to ensure that 

our y+ values are within a certain range. For Fluent we select the near-wall 

resolution such that y+ > 30 or < 5 for the wall-adjacent cell.        

5.4 Axial velocity 

Developing length can be determined through the XY plot for centerline velocity. 

The distance from the pipe inlet to the stream wise location where centerline 

velocity does not change anymore is the developing or entry length. Figures 5.4(a) 

and (b) shows graphs of the axial velocity as a function of the distance along the 

centerline of the pipe. 
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 Figure 5.4 (a): Axial velocity (i) D = 0.25m (blue)   (ii) D = 1m (green) (iii) D = 
5m (red) and (iv) D = 10m (black) for k model                                                                                    

 



Figure 5.4 (b): Axial velocity (i) D = 0.25m (blue)   (ii) D = 1m (green) (iii) D = 

5m (red) and (iv) D = 10m (black) for k model   

In fig 5.4 (a), (i) and (ii), the velocity reaches a constant value beyond a certain 

distance from the inlet: x = 6m and x = 11m respectively. This is the fully-

developed flow region where the centerline velocity becomes a constant. Fig (iii) 

and (iv) shows the velocity increasing steadily from 1m/s to 1.11m/s and 1.09m/s 

respectively at the outlet.  

In fig. 5.4 (b) (i), for the first 6m from the inlet, there is an increase in velocity 

from 1m/s to 1.3m/s then it decreases gradually to 1.25m/s and  remains constant 

throughout the pipe. Fig. 5.4 (b) (ii) shows an increase in velocity from 1m/s to 

1.30m/s at the outlet. In figure (iii) and (iv) the velocity increases linearly but 

gradually from 1m/s at the inlet to 1.12m/s and 1.08 respectively at the outlet.  

 From figures 5.4 (a) and (b), it can be observed that the flow rate decreases when 

the diameter is increased. This is as a result of an increase in turbulent intensity. 

Predictions by the two models is good and follows the trend of the experimental 

data by Bhandari and Singh (2012). 

Flow towards center of the pipe tends to flow faster in the flow direction. When a 

fluid enters a circular pipe at a uniform velocity, because of the no-slip condition, the fluid 

particles in the layer in contact with the surface of the pipe come to a complete stop. This 

layer also causes the fluid particles in the adjacent layers to slow down gradually as a 

result of friction. To make up for this velocity reduction, the velocity of the fluid at the 

midsection of the pipe has to increase to keep the mass flow rate through the pipe constant. 
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As a result a velocity gradient develops along the pipe. The k  model gives excellent 

agreement with experimental results for the centerline velocity. The centerline velocity for 

fully developed region is around 1.19m/s while the value calculated analytically is 1.22 

m/s. The k  model is insensitive to grid resolution and over predicts the velocity at the 

centerline. 

As the flow develops downstream of the inlet, the viscous boundary layer grows, and will 

eventually fill the pipe completely (provided that the tube is long enough). When this 

happens, the flow becomes fully developed and there is no variation of the velocity profile 

in the axial direction. The entrance effects become insignificant beyond a pipe length of 10 

diameters and this is called the hydrodynamic entry length approximated as 10D, where D 

is the pipe diameter. That is the reason why the pipes with diameters 5m and 10m have not 

attained a constant value downstream, their length are not long enough. The boundary 

layer builds up much faster in smaller diameters and this explains why the pipes with 

smaller diameters reach a constant velocity after a shorter distance from the inlet. The 

k  model however shows good predictions of the onset of the entry length as 

demonstrated in Bejan (1994). 

The vector plots for the velocity magnitudes are as shown below: 



 

 Figure 5.4 (c): Vector plots for velocity magnitudes for k and k  

The vector magnitudes are minimum at the wall and increase towards the 

centerline This is indicated by the size of the arrows and is true for all pipe 

diameters and both models and is in agreement with no-slip condition along the 

wall and higher velocities at the centerline for conservation of mass. 

5.5  Skin Friction Coefficient 

Skin Friction Coefficient, fC  , is a non-dimensional parameter defined as the ratio 

of the wall shear stress and the reference dynamic pressure (i.e. pressure resulting 

from the conversion of Kinetic Energy of the flow into pressure). It is expressed 

as: 
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2
2
1 v

C w
f 


                                                                                                (5.1) 

where w is the wall shear stress, and  and v  are the fluid density and velocity at 

the inlet respectively. The dynamic pressure is defined by 2
2
1 v . 

 Plotting the friction coefficient along the top wall gives the following results:  

    

 Figure 5.5 (a): Skin Friction Coefficient (i) D = 0.25m (blue)   (ii) D = 1m 
(green) (iii) D = 5m (red) and (iv) D = 10m (black) for k model   



 

Figure 5.5 (b): Skin Friction Coefficient (i) D = 0.25m (blue)   (ii) D = 1m 
(green) (iii) D = 5m (red) and (iv) D = 10m (black) for k model. 

In Fig.5.5 (a) the fC  profiles along the pipes for all the four diameters show 

similar trends .At the inlet, (i) and (ii) drop from 0.016 and 0.0325 respectively to 

0.006 a meter away from the inlet and thereafter it remains steady to the outlet. (iii) 

drops from 0.073 to 0.008  and remains constant 6m away from the inlet. Also, (iv) 

drops sharply from 0.15 then remains constant at 0.009 8m away from the inlet. 

In Fig. 5.5 (b) the fC  profiles along the pipes for all the three diameters are similar 

to those in the k  model. At the inlet, (i) drops from 0.016 to 0.006, and after 

which it remains steady. Curve (ii) drops from 0.03 to 0.005 then slightly increases 

to 0.006, 3 meters away from the inlet where it remains constant. Similarly (iii) 

and (iv) drop from 0.075 and 0.108 respectively to 0.01, a distance 10m away from 

the inlet where it remains constant up to the outlet.  
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No significant differences are observed between results obtained with both models 

with similar corresponding boundary conditions. Results are almost unaffected by 

increasing the pipe diameters. For both models, as shown by figures 5.5 (a) and 

(b), values at the inlet are much higher and profiles have similar shape all along the 

lengths of the pipes. From the Moody chart the friction coefficient is given as 0.01.  

The wall shear stress is the highest at the pipe inlet where the thickness of the 

boundary layer is smallest and decreases gradually to the fully developed value. 

Therefore the pressure drop is higher in the entrance region of a pipe resulting in 

large velocity gradients and consequently larger wall shear stress. This zone is 

sensitive to initial conditions of flow imposed by flow geometry and Reynolds 

number effects.  

Shear stress is caused by momentum flux due to the random motion of molecules 

and is largest at the wall. The shear stress acting between the wall and the first 

layer next to it results in a pressure and energy loss along the length of the pipe. 

The FLUENT near-wall model calculates wall shear stress based on the 

assumption that the law u+ = y+ exists in the viscous sublayer. Therefore, despite 

calculating approximately correct values of the mean velocity, a very minor 

inaccuracy may result in an erroneous local skin friction coefficient, fC . As one 

moves away from the inlet, the fC  value decays exponentially. In a fully 

developed flow, the pressure gradient balances the wall shear stress only and 

attains a constant value as one moves away from the inlet. 

 



5.6 Outlet Velocity Profile 

Figures 5.6 (a) and (b) show the comparison of plotting the velocity at the outlet as 

a function of the distance from the center of the pipe with the following results:   

 

  Figure 5.6 (a); Outlet Velocity Profile (i) D = 0.25m (blue)   (ii) D = 1m 
(green) (iii) D = 5m (red) and (iv) D = 10m (black) for k model   
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Figure 5.6 (b): Outlet Velocity Profile (i) D = 0.25m (blue)   (ii) D = 1m (green) 

(iii) D = 5m (red) and (iv) D = 10m (black) for k model                                                                                                     

The axial velocity profiles in Fig.5.6 (a) for all the four pipes show a similar trend. 

They have a flattened shape at the wall corresponding to 0 velocity. As you move 

away from the wall, there is a slight increase in velocities for figures (i), (ii) up to 

1.19m/s and 1.11m/s, 1.09m/s for figures (iii) and (iv) at the centerline respectively 

In Fig. 5.6 (b),(i), the axial velocity is 0 m/s at the wall and this increases to 

1.25m/s at the centerline. Figure (ii) has a 0 m/s velocity at the wall and this 

increases gradually to 1.3m/s at the centerline. Fig. (iii)  and (iv) have a velocity of 

0m/s at the wall, but this  increases to 1.12m/s and 1.08m/s respectively at the 

centerline. 



The axial velocity is maximum at the centerline and zero at the wall to satisfy the 

no-slip boundary condition for viscous flow. The region very close to the wall 

exhibits a nearly linear velocity profile because viscous effects are so dominant 

within this region. When a fluid is bounded by a solid surface, molecular 

interactions cause the fluid in contact with the surface to seek momentum and 

energy equilibrium with that surface. All fluids at the point of contact take on the 

velocity of that surface. Fluid adjacent to the wall sticks to the wall due to friction 

effect: There is very little activity, they turbulence level is very small and fluid 

velocity is nearly zero. The eddy motion loses its intensity close to the wall and 

diminishes at the wall because of the no-slip condition. 

For both models the velocities at the centerline increase with a decrease in pipe 

diameter. The velocities are higher in the pipes diameter due small cross-sectional 

area and therefore viscous stresses dominate. The k model has a maximum value 

of 1.2m/s towards the centerline approximation compared to the theoretical value of 

1.22 m/s. At the outlet, flow is fully developed and velocity is closer to uniform for 

all pipes. 

5.7 Turbulent Intensity 

 
The turbulence intensity, also often referred to as turbulence level, is defined as: 

 
U
uI


                                                                                                                  (5.2) 

where u  is the root-mean-square of the turbulent velocity fluctuations and U is 

the mean velocity.  
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When setting boundary conditions for a CFD simulation it is often necessary to 

estimate the turbulence intensity on the inlets. For flow in simple devices like large 

pipes, ventilation flows etc. or low speed flows the turbulence intensity is between 

1% and 5%,, ANSYS FLUENT 12.1 Theory Guide, (2010). For fully developed 

pipe flow the turbulence intensity at the core can be estimated as: 

 8
1

Re16.0I                                                                                                        (5.3) 

Based on the Reynolds number, the Turbulent Intensities for the two models was 

set at 5%. Below are graphs showing the turbulent intensities along the various 

pipes: 

  

 Figure 5.7 (a); Turbulent Intensity (i) D = 0.25m (blue)   (ii) D = 1m (green) 

(iii) D = 5m (red) and (iv) D = 10m (black) for k model   



  

Figure 5.7 (b); Turbulent Intensity (i) D = 0.25m (blue)   (ii) D = 1m (green) 
(iii) D = 5m (red) and (iv) D = 10m (black) for k model   

 
Figure 5.7 (a) and (b) demonstrate that the turbulent intensities  decrease at the 

inlet for all the pipes up to some distance; Figure 5.6 (a) (i) and (ii) for the first 2m 

and 7m respectively. After these distances there is a rapid increase and the 

intensity goes beyond the set value of 5%. However for figures 5.6 (a) (iii) and (iv) 

the decrease is gradual throughout the length of the pipe. This decrease in turbulent 

intensity corresponds to an increase in velocity (fig 5.4 (a)) 

The behavior of the Turbulent intensities is similar for the k  except for D = 1m 

where it shoots up the inlet 5% value. The decrease along the pipe lengths 

corresponds to an increase in axial velocities as can be seen from figure 5.4 (b). 

Over prediction of the k  is attributed to the dumping function used in the 

model namely: 
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  
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










250/Re1
4.3exp

t

 and  2Reexp3.01 t , , ANSYS FLUENT 12.1 Theory 

Guide, (2010). where tRe is the locale turbulent Reynolds’ number.  These terms 

are used to model turbulence right down to the wall where viscous effects 

dominate. Because of the variation, the dumping function is not able to detect the 

near wall characteristics correctly. The k predictions are better owing to the 

fact that in this model, the dumping function used is unity and does not depend on 

the local turbulent Reynolds’ number. 

5.8. Validation 

The following graphs show comparisons of centerline velocity. Coefficioent of 

skin friction and outlet velocity on two different meshes; Unrefined (30 x 100) and 

refined (60x100). 

 



Figure 5.8 (a); Axial velocity for D = 0.25m for refined (red) and unrefined 

(black) for k  model                                                                                                       

 

Figure 5.8 (b); Skin Friction coefficient for D = 0.25m for refined (red) and 

unrefined (black) for k  

 



 

85 
 

Figure 5.8 (c); Outlet velocity profile for D = 0.25m for refined (red) and 

unrefined (black) for k  

From the above three plots the skin friction and outlet velocity profile have 

remained nearly unchanged. However the centerline velocity results show 

significant improvement with the refined mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

 In this chapter, conclusions regarding the relative performance of the two models 

are given. The conclusions here are based on the results discussed in chapter five. 

6.1 Conclusions  

The purpose of this study has been to analyze the turbulent flow inside pipes of 

varying diameters using two equation RANS k and k  models at a constant 

Reynolds number. Numerical results were obtained for the two models for 

velocity, skin friction coefficient and Turbulent Intensity along the length of the 

pipes.  

(i) Axial velocity increases along with the length of pipe and in the fully   

developed regime it becomes constant.  

     (ii). The velocities at the centerline increase with a decrease in pipe diameter 

    (iii).The turbulent intensities show a decrease at the inlet. This decrease in                

turbulent intensity corresponds to an increase in velocity. 

    (iv).Skin friction coefficient decreases along with the length of pipe and                   

becomes constant after entering the fully developed regime.  
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     (v).The axial velocity is maximum at the centerline and zero at the wall to                 

satisfy the no-slip boundary condition for viscous flow. 

   (vi).The k model gives better approximation for the centerline velocities.           

The results compare relatively well in terms of the entry length of the                 

pipes. 

  (vii). The k model is more suitable for predicting turbulent flow in a pipe. 

From the study the following conclusions are made: 

(i). For good parametric studies and some unconfined flow problems where certain 

degree of generality are required we recommend k model to be used. 

(ii).In situations where boundary value problems and for many industrially relevant    

flows the k  model is recommend. It is well established and most widely 

validated turbulence model. 

6.2 Suggestions for further study 

(i). In this study we recommended the k for many industrially relevant   flows 

because it is most widely validated. Do more studies using the k model so 

that it can become established. 

(ii).A study can be carried out with fluid entering the pipe with pipe walls at       

different temperature from fluid temperature. 



(iii).The effect of variable properties to be studied while varying the length of the 

pipes at constant Reynolds number. 

(iv).The results obtained in this study can be compared with results obtained using 

other two- equation models like SST , LES in fluent.  

(v). This study can be done using a different software or using a different method 

like the finite difference.  

(vi). Study of pipes of a different cross-sectional area geometry for example 

rectangular, triangular and so on. 
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APPENDIX 

A. APPENDIX 1: First publication 

MATHEMATICAL ANALYSIS OF TURBULENT FLOW IN 

PIPES OF VARYING DIAMETERS USING RANS k   

MODEL 

1B.K. Menge, 2 M. Kinyanjui, 3J.k.Sigey 

1Department of Mathematics and Physics. Technical  University of Mombasa, P.O BOX   90420-

80100,Mombasa,    Kenya. bethmenge@gmail.com 

2,3Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and 

Technology, Box 62000-00200, Nairobi, Kenya 

Abstract  

In analysing fluid flow problems, Computational Fluid Dynamics based simulation 

procedures are now considered to be an indispensable analysis and design tool in a 

wide and ever-increasing range of applications involving fluid flow. In the analysis 

of water distribution networks, the design parameters are the lengths, diameters, 

and the coefficients of friction of a pipe. This paper presents computational 

investigation of turbulent flow inside pipes of varying diameters. Reynold’s 

Averaged Navier Stokes Turbulent model; the k model is used for the 

simulation. The Reynolds number based on the pipe diameter and average velocity 

at the inlet is 10,000. 
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The fluid used for this purpose is air with Pr = 0.7 and the pipe material is 

aluminium. The fluid used for this purpose is air. The results obtained 

computationally are well in agreement with the results obtained experimentally. 

Keywords: Computational fluid dynamics, Reynold’s Averaged Navier Stokes, 

k  model, Turbulent, Average Velocity, Coefficient of friction. 

Nomenclature  

      

      

      
     I      Turbulent intensity   

      

       
      P     Pressure   

        
       r     Radius of elementary ring 

       R     Radius of pipe, m       

       Re   Reynolds number  

       Pr    Prandtl number 

            mean velocity  

       cV    centerline velocity m/s 

       v     velocity at the inlet m/s. 

       
           Density of fluid kg/m3   

           root-mean-square of the turbulent velocity fluctuations   

       iu , ju Mean velocities of fluid 



            Dynamic viscosity 

1.0 Introduction 

Fluid flow is classified as external and internal, depending on whether the fluid is 

forced to flow over a surface or in a conduit. The transport of fluid in a closed 

conduit is extremely important in our daily operations. A brief consideration of the 

world around us will indicate that there is a wide variety of applications of pipe 

flow. The hot and cold water that we use in our homes is pumped through pipes. 

Water in a city is distributed by extensive piping networks. Oil and natural gas are 

transported hundreds of miles by large pipelines. Blood is carried throughout our 

bodies by arteries and veins. The cooling water in an engine is transported by 

hoses to the pipes in the radiator where it is cooled as it flows. Thermal energy in a 

hydronic space heating system is transferred to the circulating water in the boiler, 

and then it is transported to the desired locations through pipes. The analysis of 

pipe flow is also very important from the engineering point of view. Due to 

rigorous engineering application and implications, it has become quite necessary to 

carry out an analysis on the nature of flow inside pipes and tubes. The objective of 

the present work is to investigate the nature of fully developed turbulent flow in a 

pipe computationally and to determine the various parameters such as skin friction 

coefficient, axial velocity, turbulent intensity and centerline velocity associated 

with it. Although some of these parameters such as the pipe lengths and the pipe 

diameters would remain the same at different points but the coefficients of friction 

would change during the life of network and therefore they can be treated as 

imprecise information  
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One important characteristics of a turbulent flow is that the velocity and pressure 

may be steady or remain constant at a point, but still may exhibit irregular 

fluctuations over the mean or average value. The fluid elements which carry out 

fluctuations both in the direction of main flow and at right angles to flow are not 

individual molecules but rather are lumps of fluid of varying sizes known as eddies 

In the computational simulation of turbulent flow, it is important to decide how 

finely we should resolve theses eddies in the computational model as it has a direct 

effect on the accuracy of the prediction as well as computer time. Methods 

available for simulating turbulent fluid flow are Direct Numerical Simulation 

(DNS) based on direct solution of Navier-Stokes Equations and Averaged or 

Filtered Simulation based on averaged solution of Navier-Stokes Equations. 

In principle, the time dependent three dimensional Navier-Stokes equations can 

fully describe all the physics of a given turbulent flow. For a general linear 

Newtonian viscous fluid the Navier-Stokes equations are given by the following 

set of equations: 
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 1.1 Literature Review 



A large number of research analysis have been carried out on the internal flows 

during the recent years. Sahu et al (2009) investigated the accuracy of numerical 

modelling of the laminar equation to determine the friction factor of pipe. They 

found the friction factor to be 0.0151 at the entrance length of 2.7068 m. while the 

experimental result shows the value of friction factor as 0.0157. 

Banfi et al (1981) used a laser-Doppler velocimeter to investigate transitional pipe 

flow, in particular the behavior of the velocity fluctuations as the Reynolds number 

was increased from 1500 to 4000. It was noted that the velocity fluctuations 

reached a maximum at a Reynolds number of about 2800 (in the transition region). 

Rudman et al (2002) compared results from experimental and numerical 

investigations of non–Newtonian fluids at transition to turbulence and in weakly 

turbulent flows. Experimental results showed flow features similar to turbulent 

puffs and slugs observed in Newtonian transitional flows. Numerical results 

showed some quantitative discrepancies with the experimental results but did show 

turbulence suppression, drag reduction and delayed transition as observed 

experimentally. Yogini P. (2010) carried out a numerical simulation of flow past a 

circular cylinder, using a commercial CFD code (ANSYS Fluent 12.1) with large 

eddy simulation (LES) and RANS Shear-Stress Transport (SST) approaches for 

Reynolds 1000 and 3900. The numerical results extracted from these simulations 

have good agreement with the experimental data of Zdravkovich M.M. (1997). 

1.2 Pre-analysis 
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A turbulent flow exhibits small-scale fluctuations in time. It is usually not possible 

to resolve these fluctuations in a CFD calculation. So the flow variables such as 

velocity, pressure, etc. are time-averaged. Unfortunately, the time-averaged 

governing equations are not closed. (that is, they contain fluctuating quantities 

which need to be modeled using a turbulence model.)  

The k-ε models consist of two differential equations: one each for the turbulent 

kinetic energy k and turbulent dissipation ε. These two equations have to be solved 

along with the time-averaged continuity, momentum and energy equations. To 

obtain the equations that govern the current problem, the following assumptions 

are made for the analysis: 

 (i). Constant transport properties of fluid 

(ii). Incompressible fluid flow 

(iii). Newtonian fluid 

(iv). continuum fluid. 

1.3 Computational domain 

The computational domain and the boundary conditions for the simulation of the 

flow are shown in Figure 1. The cylinder is simulated with a diameter (D) and length 

L. This paper will consider the flow inside pipes of varying diameters and a length 

of 20m using FLUENT 6.3.26. The geometry is symmetric therefore we will model 

only half portion of the pipe (radius R). 



                     

                         Figure 1: computational geometry 

Air enters from the inlet boundary with a velocity of 1m/s and various viscosities   

depending on the  diameter of the pipe. The flow Reynolds number is 10,000 to 

illustrate the turbulent flow. 

1.4 Simulation set-up 

The analysis is carried out with the help of CFD package FLUENT 6.3.26 which is 

a computational fluid dynamics (CFD) software package to simulate fluid flow 

problems. It uses the finite volume method to solve the governing equations for a 

fluid. Geometry and grid generation is done in GAMBIT 2.3.16 which is the 

preprocessor bundled with FLUENT. 

In  this 2D-code, discretization is done based on a finite volume approach. A 

steady and pressure based solver is used. A least square cell based method is used 

to calculate gradients. Boundary conditions and the discretization schemes used 

are summarized in Table 1 below. We have considered convergence criteria 

1x1 0 - 6  for these simulations. 

Table 1: Simulation settings for flow in a pipe with RANS k  model 
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 Simulation type                                2D, Steady 

 Space                                                 Axisymmetric                       

 Solver                                               Double precision, pressure based and implicit 

 Temporal disretization                     2nd order 

 Turbulence model                            k  model 

 Pressure                                            Standard 

 Pressure-velocity coupling               SIMPLE 

 Momentum                                       2nd order upwind 

 Turbulent kinetic energy                  2nd order upwind 

 Turbulent dissipation rate                2nd order upwind 

Boundary conditions: 

 Inlet                                                 Velocity inlet 

 Outlet                                              Pressure outlet 

 Top wall                                          No-slip wall 

 Bottom wall                                    Axis 

 

1.5 Turbulent velocity profile 

 The velocity profile for turbulent flow through a smooth pipe is approximated by 

the power-law equation : 

  
n

c R
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                                                                                                        (3) 

Where u is the time mean average of x- component of instantaneous velocity, cV  is 

the centerline velocity or axial velocity, R is the radius of pipe, r is the radius of 

elementary ring and n is a function of the Reynolds number. To determine the 



centerline velocity cV , we must know the relationship between V (the average 

velocity) and cV  . This can be obtained by integration of equation (3). Since the 

flow is axisymmetric, 
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1.6 Results and Discussion 

In this section we will discuss the cases with D = 0.25m, D = 1m, D=5m and D = 

10m respectively. Here all simulations have been done using a grid which contains 

6000 quadrilateral cells. 

 

Figure 2:Wall Y plus : (i) D = 0.25m(blue)   (ii) D = 1m(green)  (iii) D = 
5m(red)  and  (iv) D =  10m(black)  for k model                                                                                   
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There is a sharp drop in the y+ values for all the three pipes at the inlet. For all 

cases the y+ is seen to be < 5 therefore the near-wall grid resolution is acceptable. 

For all the four pipes it can be observed that there are no changes in these profiles 

with time, that is away from the inlet. 

 Axial velocity 

We plot the axial velocity as a function of the distance along the centerline of the 
pipe 

                                                                         

  Figure 3: Axial velocity (i) D = 0.25m(blue)   (ii) D = 1m(green)  (iii) D = 
5m(red)  and  (iv) D =  10m(black)  for k model  

In fig 3 (i) and (ii), the velocity reaches a constant value beyond a certain distance 

from the inlet: x = 6m and x = 11m respectively. This is the fully-developed flow 

region where the centerline velocity becomes a constant. Fig (iii) and (iv) shows 

the velocity increasing steadily from 1m/s to 1.11m/s and 1.09m/s respectively at 

the outlet. 

The flow rate decreases when the diameter is increased as can be seen from the 

figures except for the pipe with the smallest diameter. Flow towards center of the 



pipe tends to flow faster in the flow direction. When a fluid is bounded by a solid 

surface, molecular interactions cause the fluid in contact with the surface to seek 

momentum and energy equilibrium with that surface. All fluids at the point of contact take 

on the velocity of that surface. As the flow  develops downstream of the inlet, the 

boundary layer grows, the fluid near the wall is retarded by viscous friction and this results 

in an injection of fluid into the region away from the wall to satisfy mass conservation. 

Skin Friction Coefficient 

The value of skin friction coefficient is given by 

  2
2
1 V

C w
f 


                                                                                                   (7) 

   where w is the Wall shear stress and is given by 

L
pD

w 4


                                                                                                        (8) 

The pressure drop p is given by 

  
2

2V
D
Lfp 

 , where f is the friction factor and is calculated with the help of 

the Moody chart.  

Plotting the friction coefficient along the top wall gives the following results:  
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 Figure 4: Skin Friction Coefficient (i) D = 0.25m(blue)   (ii) D = 1m(green)  
(iii) D = 5m(red)  and  (iv) D =  10m(black)  for k model   

In Fig4 the fC  profiles along the pipes for all the four diameters show similar 

trends. As one moves away from the inlet, the fC  value decays exponentially. 

Shear stress is caused by momentum flux due to the random motion of molecules 

and is largest at the wall. In a fully developed flow, the pressure gradient balances 

the wall shear stress only and attains a constant value as one moves away from the 

inlet. 

 

Velocity Profile 

Plotting the velocity at the outlet as a function of the distance from the center of 
the pipe: 

   



 

  Figure 5; Velocity Profile  (i) D = 0.25m(blue)   (ii) D = 1m(green)  (iii) D = 
5m(red)  and  (iv) D =  10m(black)  for k model   

The axial velocity profiles in Fig.5 for all the four pipes show a similar trend. They 

have a flattened shape at the wall corresponding to 0 velocity. As you move away 

from the wall, there is a slight increase in velocities for figures (i), (ii) up to 

1.19m/s and 1.11m/s,1.09m/s for figures (iii) and (iv) at the centerline respectively.                                                

The axial velocity is maximum at the centerline and zero at the wall to satisfy the 

no-slip boundary condition for viscous flow. The velocities at the centerline 

increase with a decrease in pipe diameter 

Turbulent Intensity 

The turbulence intensity, also often referred to as turbulence level, is defined as: 

 
U
uI


                                                                                                                     (9) 

 For fully developed pipe flow the turbulence intensity at the core can be estimated 

as: 

 8
1

16.0 eRI                                                                                                           (10) 
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Figure 6:Turbulent Intensity (i) D = 0.25m(blue)   (ii) D = 1m(green)  (iii) D = 

5m(red)  and  (iv) D =  10m(black)  for k model   

The turbulent intensities show a decrease at the inlet for all the pipes upto some 

distance; Figure (i) and (ii) for the first 2m and 7m respectively. After these 

distances there is a rapid increase and the intensity goes beyond the set value of 

5%. However for figures (iii) and (iv) the decrease is gradual throughout the length 

of the pipe. This decrease in turbulent intensity corresponds to an increase in 

velocity (fig 3) 

 
 
 
1.7 Conclusion  
 
Based on the CFD analysis of the flow inside the pipe the following conclusions 

can be drawn: 

1. The velocities at the centerline increase with a decrease in pipe diameter 

2. Axial velocity increases along with the length of pipe and in the fully developed 

regime it becomes constant.  



3. The turbulent intensities show a decrease at the inlet. This decrease in turbulent 

intensity corresponds to an increase in velocity. 

4. Skin friction coefficient decreases along with the length of pipe and becomes 

constant after entering the fully developed regime.  

5. The axial velocity is maximum at the centerline and zero at the wall to satisfy 

the no-slip boundary condition for viscous flow 
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Abstract 

Many if not most flows of engineering significance are turbulent. Fluid engineers 

need access to viable tools capable of representing the effects of turbulence. In this 

paper, a computational fluid dynamics model of fully developed turbulent flow in 

the pipes is implemented with the help of ANSYS FLUENT 6.3.26 software and 

its preprocessor Gambit 2.3.16. Two Reynolds Averaged Navier Stokes Turbulent 

models; the k and k  models are used for the simulation to determine axial 

velocity, turbulent intensity and skin friction coefficient along the length of the 

pipe. The Reynolds number based on the pipe diameter and average velocity at the 

inlet is 10,000. The fluid used for this purpose is air and the pipe material is 

aluminium. The results obtained computationally are compared with experimental 

data and shows that using the k model gives more compatible results with 



those obtained from experiments. 

Keywords: Computational fluid dynamics, Reynold’s Averaged Navier Stokes, 

Turbulent intensity, Axial Velocity, Skin friction Coefficient.  

Nomenclature  

     

     

    I      Turbulent intensity   

      

     n̂     Outward normal at the surface. 

      P     Pressure 

      R     Radius of pipe, m       

      Re   Reynolds number  

      S     Surface of the control volume 

          Mean velocity  

      V     Cell volume   [
3m ] 

      


v     Velocity vector  [
1ms ] 

     v       Velocity at the inlet m/s. 

      

           Density of fluid kg/m3   

          Root-mean-square of the turbulent velocity fluctuations   

           Dynamic viscosity 

           Gradient operator 

            Shear stress [
2Nm ]    
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            Turbulent dissipation  [
32 sm ] 

       k     Turbulent kinetic energy  [
22 sm ] 

           Specific dissipation  [
1s ] 

1. Introduction. 

All flows encountered in engineering practice become unstable above a certain 

Reynolds number. At low Reynolds number flows are laminar. At higher Reynolds 

number, flows are observed to become turbulent. A chaotic and random state of 

motion develops in which the velocity and pressure change continuously with time 

within substantial regions of flow. Turbulence is characterized by flow 

visualization as eddies, which vary in sizes from the largest to the smallest. Largest 

eddies contain most of the energy, which break up into successfully smaller eddies 

with energy transfer to yet smaller eddies until an inner scale is reached. In a 

turbulent flow, the velocity and other flow properties vary in a random and chaotic 

manner. A turbulent flow can be characterized by the mean values of flow 

properties and statistical properties of their fluctuations. 

In industrial scale, fluid flow patterns are often turbulent and for the prediction of 

the process, mathematical modelling is needed. Computational fluid dynamics can 

simulate many processes such as turbulent combustion, heat transfer rate and 

radiation by using mathematical modelling. Numerical method is the basis of 

computational fluid dynamics and it is based on mass, energy and momentum 

continuity equations. First, total fluid space is divided into small components, then 



the continuity differential equations for each of these components are resolved. 

In this paper, the standard k and k models were used to model flow in the 

studied geometry. The Standard  k  model (Launder and Spalding, 1974) 

model is the most widely used complete RANS model and it is incorporated in 

most commercial CFD codes (Tannehill J. C., Anderson D. A., Richard H.  1997). 

In this model, the model transport equations are solved for two turbulence 

quantities i.e. k  and  .The k  turbulence model solves the flow based on the 

assumption that the rate of production and dissipation of turbulent flows are in 

near-balance in energy transfer (Ferrey P. and Aupoix B. 2006).  The standard 

k  model (Wilcox, 1998) is very similar in structure to the k model but the 

variable  is replaced by the dissipation rate per unit kinetic energy .    

The main aim of this paper was to obtain a model which gives a better 

approximation to experimental results obtained from the literature. 

2. Literature review 

Several studies have been done on the flow patterns in pipes by Mullin T. and 

Peixinho J. (2006), Sahu M. et al (2009), Willis A. P et al (2008). Rudman et al 

(2002) compared results from experimental and numerical investigations of non–

Newtonian fluids at transition to turbulence and in weakly turbulent flows. 

Experimental results showed flow features similar to turbulent puffs and slugs 

observed in Newtonian transitional flows. Numerical results showed some 

quantitative discrepancies with the experimental results but did show turbulence 

suppression, drag reduction and delayed transition as observed experimentally. 
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Yogini P. (2010) carried out a numerical simulation of flow past a circular 

cylinder, using a commercial CFD code (ANSYS Fluent 12.1) with large eddy 

simulation (LES) and RANS Shear-Stress Transport (SST) approaches for 

Reynolds 1000 and 3900. The numerical results extracted from these simulations 

have good agreement with the experimental data of Zdravkovich M.M. (1997). 

Analysis of fully developed turbulent flow in a pipe using computational fluid 

dynamics was carried out by Bhandari D. and Singh S. (2012) and the results 

obtained computationally were in agreement with analytical results. 

3. Computational domain 

The computational domain and the boundary conditions for the simulation of the 

flow are shown in Figure 3.1. The cylinder is simulated with a diameter (D) and 

length L. This paper will consider the flow inside a pipe of diameter 0.25m and a 

length of 20m using FLUENT 6.3.26. The geometry is symmetric therefore we 

will model only half portion of the pipe (radius R). 

                                             

   Figure 3.1: computational geometry and boundary conditions. 

Air enters from the inlet boundary with a constant velocity smu /1 , density ρ = 1 

kg/ m3 and coefficient of viscosity mskg /105.2 5 .  The fluid exhausts into 



the ambient atmosphere which is at a pressure of 1 atm. The Reynolds number 

based on the pipe diameter and average velocity at the inlet is: 

       000,10Re 


uD  

At this Reynolds number, the flow is usually completely turbulent. 

4. Governing Equations 

Applying the fundamental laws of mechanics to a fluid gives the governing 

equations for a fluid. The conservation of mass equation is  

0








 

V
t



                                                                                                 (1) 

and the conservation of momentum equation is 

jigpVV
t
V  






 


 

                                                                 (2) 

These equations along with the conservation of energy equation form a set of 

coupled, nonlinear partial differential equations. It is not possible to solve these 

equations analytically for most engineering problems. However, it is possible to 

obtain approximate computer-based solutions of the governing equations for a 

variety of engineering problems. In this investigation, simulation of turbulent flow 

in a pipe has been done by FLUENT v6.3.26, which uses finite volume approach 

in which the integral form of the conservation equations are applied to the control 

volume defined by a cell to get the discrete equations for the cell. The integral 
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form of the continuity equation for steady incompressible flow is  

0ˆ 


dSnV
S                                                                                                           (3) 

The integration is over the surface S of the control volume and n̂ is the outward 

normal at the surface.  Physically, this equation means that the net volume flow 

into the control volume is zero. 

5. Simulation set-up 

The analysis is carried out with the help of CFD package FLUENT 6.3.26. 

Geometry and grid generation is done in GAMBIT 2.3.16 which is the 

preprocessor bundled with FLUENT. 

In this 2D-code, a steady and pressure based solver is used. A least square cell 

based method is used to calculate gradients. Boundary conditions and the 

discretization schemes used are summarized in Table 1 below. We have considered 

convergence criteria 1.0x10-6 for these simulations. 

  

 

 

 



Table 5.1: Simulation settings for flow in a pipe with RANS models 

  

 Simulation type                                2D, Steady 

 Space                                                Axisymmetric 

 Solver                                               Double precision, pressure based, and implicit 

 Temporal discretization                     2nd order 

 Turbulence model                            k  / k model 

 Pressure                                            Standard 

 Pressure-velocity coupling               SIMPLE 

 Momentum                                       2nd order upwind 

 Turbulent kinetic energy                  2nd order upwind 

 Turbulent dissipation rate               2nd order upwind 

       (for k model)  

Specific dissipation rate                    2nd order upwind 

       (for k model)  

Convergence criteria                         1x10-6 

Boundary conditions: 

 Inlet                                                 Velocity inlet 

 Outlet                                              Pressure outlet 

 Top wall                                          No-slip wall 

 Bottom wall                                    Axis        
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6. Results and Discussion 

Here all simulations have been done using a grid which contains 6000 quadrilateral 

cells. Characteristics of the simulation in this case are summarized below; 

  

                

             Figure 6.1: Constructed mesh of studied geometry              

Numerical results were obtained for the two models for velocity, skin friction 

coefficient and Turbulent Intensity along the length of the pipe as shown below:  

 

 

 

 

 

 



Axial velocity 

 

Figure 6.2: Axial velocity along the centerline of the pipe for k model (red) 

and k  model (black) 

In figure 6.2, the velocity reaches a constant value beyond a certain distance from 

the inlet at x=2m and x = 6m respectively. This is the fully-developed flow region 

where the centerline velocity becomes a constant. As the flow develops 

downstream of the inlet, the viscous boundary layer grows, and will eventually fill 

the pipe completely (provided that the tube is long enough). When this happens, 

the flow becomes fully developed and there is no variation of the velocity profile 

in the axial direction. 

Plotting the velocity at the outlet as a function of the distance from the center of 

the pipe gives the following results:   
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  Figure 6.3: Velocity Profile at the outlet from center of the pipe for 

k model (red) and   k  model (black) 

The axial velocity profiles in Figure 6.3 for both models show a similar trend. 

They have a flattened shape at the wall corresponding to zero velocity. The vector 

magnitudes are minimum at the wall and increase towards the centerline .This is in 

agreement with no-slip condition along the wall and higher velocities at the 

centerline for conservation of mass. When a fluid is bounded by a solid surface, 

molecular interactions cause the fluid in contact with the surface to seek 

momentum and energy equilibrium with that surface. All fluids at the point of 

contact take on the velocity of that surface. Fluid adjacent to the wall sticks to the 

wall due to friction effect. The eddy motion loses its intensity close to the wall and 

diminishes at the wall because of the no-slip condition.  

Skin Friction Coefficient 

Skin Friction Coefficient is a non-dimensional parameter defined as the ratio of the 



wall shear stress and the reference dynamic pressure 

2
2
1 v

C w
f 




                                                                                                        (6.1) 

Where w is the wall shear stress, and  and v  are the fluid density and velocity at 

the inlet respectively. 

 

Figure 6.4: Skin Friction coefficient along the top wall for k model (red) 

and k  model (black) 

In figure 6.4 for both models, the values at the inlet are much higher and 

fC profiles have similar shape all along the length of the pipe. The wall shear 

stress is the highest at the pipe inlet where the thickness of the boundary layer is 

smallest and decreases gradually to the fully developed value. Therefore the 

pressure drop is higher in the entrance region of a pipe resulting in large velocity 

gradients and consequently larger wall shear stress.  
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Turbulent Intensity 

The turbulence intensity, also often referred to as turbulence level, is defined as: 

 U
uI



                                                                                                                 (6.2) 

Where u  is the root-mean-square of the turbulent velocity fluctuations and U is 

the mean Velocity. 

  

Figure 6.5: Turbulent Intensity along the centerline for k model (red) and 

k  model (black) 

The turbulent intensities show a decrease at the inlet for both models up to some 

distance; the first 2m  and 6m for the k and k models respectively. After 

these distances there is a rapid increase and the intensity goes beyond the set value 

of 5% for the k model. This decrease in turbulent intensity corresponds to an 

increase in velocity (figure 6.2) 



7. Conclusion 

When compared with experimental results, the  centerline velocity for the fully 

developed region according to figure 6.2  is 1.19m/s with k  model while the 

experimental results show a value of 1.22m/s. The k gives a value of 1.26m/s. 

The results for the first model are closer to the experimental value. 

For fully developed turbulent flow of air, the value of skin friction coefficient 

comes out to be 0.01 while values obtained computationally are 0.0063 and 0.007 

for the k and  k  respectively (figure 6.4. The k has a better prediction 

for the skin friction coefficient. 

The turbulent intensities show a decrease at the inlet for both models but the 

prediction of the k  model has significant variation away from the inlet 

compared to experimental value of 5% (figure 6.5). However it can be seen that a 

decrease in turbulent intensity corresponds to an increase in velocity. 

It is also observed from the results that the axial velocity against position of 

centerline reveal that the axial velocity increases along the length of the pipe and 

after some distance it becomes constant which is in conformity with the results 

obtained experimentally. The axial velocity is maximum at the centerline and zero 

at the wall to satisfy the no-slip boundary condition for viscous flow 

The results of the skin friction coefficient against the wall also reveal that it 

decreases along the length of the pipe with maximum being at the inlet which is in 

conformity with experimental results. 
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